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ABSTRACT Nowadays, Wireless Sensor Networks (WSNs) are playing a vital and sustainable role in
many verticals touching different aspects of our lives including civil, public, and military applications.
WSNs majorly consist of a few to several sensor nodes, that are connected to each other via wireless
communication links and require real-time or delayed data transfer. In this paper, we propose an autonomous
Unmanned Aerial Vehicle (UAV)-enabled data gathering mechanism for delay-tolerant WSN applications.
The objective is to employ a self-trained UAV as a flying mobile unit collecting data from ground sensor
nodes spatially distributed in a given geographical area during a predefined period of time. In this approach,
two Reinforcement Learning (RL) approaches, specifically Deep Deterministic Gradient Decent (DDPG)
and Q-learning (QL) algorithms, are jointly employed to train the UAV to understand the environment and
provide effective scheduling to accomplish its data collection mission. The DDPG is used to autonomously
decide the best trajectory to adopt in an obstacle-constrained environment, while the QL is developed to
determine the order of nodes to visit such that the data collection time is minimized. The schedule is
obtained while considering the limited battery capacity of the flying unit, its need to return the charging
station, the time windows of data acquisition, and the priority of certain sensor nodes. Customized reward
functions are designed for each RL model and, through numerical simulations, we investigate their training
performances. We also analyze the behavior of the autonomous UAV for different selected scenarios and
corroborate the ability of the proposed approach in performing effective data collection. A comparison with
the deterministic optimal solution is provided to validate the performance of the learning-based approach.

INDEX TERMS Internet-of-Things, data gathering, reinforcement learning, scheduling, unmanned aerial
vehicles.

I. INTRODUCTION
Multi-rotor unmanned aerial vehicles (UAVs), aka drones,
have become the central means for many novel applications.
From real-time trafficmonitoring to rapid good’s delivery ser-
vices, UAVs have been proven to be extremely beneficial in
many fields where human intervention and ground machines
are unable to perform in a timely and efficient manner due to
diverse issues and physical obstacles [2]–[4].

In recent years, the use of UAVs in wireless Internet-of-
things (IoT) systems have been proven to be very efficient
by providing reliable connectivity. Thanks to their mobility
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and flexibility, UAVs can play an important role to support
ground transceivers, especially in remote areas and/or for
delay-tolerant applications [5]–[8]. This avoids long-range
transmissions and the need of relaying data over multiple
hops from each sensor node to the sink. In fact, UAVs can
navigate as a flying mobile data collector, i.e., collecting data
from dispersed sensors to forward it to a central node, e.g.,
to the cloud [9]. Moreover, the aerial data collection is distin-
guished by a better channel quality with higher line-of-sight
(LoS) opportunities which provides higher communication
range and lower latency. However, the use of UAVs for such
communication applications is still facing several constraints
such as the technical specifications of the UAVs and mainly
their limited battery capacities [10]. Hence, the UAVs can be
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exploited for short time periods before sending them back to
the charging station to reload their batteries [11]. Moreover,
the UAVs may need to fly at low altitudes to communi-
cate with low transmission power sensors. Hence, navigating
within an environment plenty of obstacles remain a challeng-
ing task to address. Therefore, there is a need to optimize
the navigation and schedule of the UAV when collecting
data while considering the different aspects, e.g., battery
limitation [12], communication channel, geo-locations of the
ground nodes [13], and obstacle avoidance [14].

A. LITERATURE REVIEW
Large-scale IoT systems have seen rapid development in
recent years. Wireless Sensor Networks (WSN), composed
of thousands of sensing, computing, and communication
nodes, form the backbone of such systems. The integration
of collaborative UAV-WSN systems led to increased moni-
toring areas and better overall performance in large regions
of interest. Alongside this presented study, there are many
relevant and recent contributions, research projects concern-
ing UAV-assisted WSN implementations. In [15], the authors
proposed an autonomous-underwater-vehicle (AUV) assisted
data gathering scheme based on clustering and matrix com-
pletion (ACMC) to improve the data gathering efficiency in
an underwater wireless sensor network. In [16], the paper
presented a hierarchical structure based on the collabora-
tion between a team of UAVs and a structure of federated
wireless sensor networks for crop monitoring in precision
agriculture. In [17], the authors proposed a data collection
technique inWSNs using projection-based CompressiveData
Gathering (CDG) and UAVs, where the CDG was utilized
to reduce the number of transmissions and corresponding
energy consumption through aggregating data en-route from
sets of sensor nodes to a set of projection heads and UAVs
were used to enhance the energy efficiency of the sensors by
avoiding long-range and multiple hop transmissions to reach
the destination sink node. The study in [18] focused on the
experimental validation of the Geometry-based Localization
technique to localize static sensor nodes on a studied WSN
scenario. A scenario that consists of static sensor nodes with
one mobile node, mounted on a UAV, broadcasting its posi-
tion and collecting data. The work in [19] investigated the
utilization of UAVs for data collection from dispersed mobile
sensors distributed along a predefined linear path, where
each having a different velocity. The authors considered dif-
ferent data collection algorithms and revealed that taking
into consideration the contact duration and rate transmission
between the UAV and the sensor nodes leads to the best
performance. In [20], the authors focused on the clustering
method in UAV-assisted WSNs, in which UAV can fly to a
sensor node to collect data and then fetch the collected data
to the nearby base station. In [21], The authors proposed a
UAV-assisted cluster-head selection mechanism to balance
the energy consumption and to increase the lifetime of aWSN
cluster. Also, in [22], the paper presents a UAV-enabledWSN
where a flying UAV is employed to collect data frommultiple

sensor nodes to maximize the minimum average data collec-
tion rate from all sensor nodes. Jointly, an optimization of the
UAV communication scheduling and three-dimensional (3D)
trajectory is taken into consideration. In [23], multiple opti-
mization problems are sequentially solved to group ground
sensors into clusters, determine UAV data collection stops,
and provide the path that the UAV should follow to complete
its tour in an energy-efficient manner. In [24], a Mixed-
Integer Linear Program (MILP) was formulated to minimize
the total traveled distance of the UAVs when collecting data
from dispersed ground sensors. In [25], the authors proposed
two modified meta-heuristic-based approximate solutions,
namely genetic algorithm, and harmony search, to find the
shortest path for multiple UAVs in order to gather data from
several roadside units.

However, most of the previous studies are based on
complex optimization solutions, evolutionary algorithms, or
heuristic approaches [26]–[29]. Nowadays, the new research
tendency of using artificial intelligence (AI), precisely,
Reinforcement Learning (RL) came out as a new strategy that
can grant the flying units sufficient intelligence to make local
decisions to accomplish missions. RL is a Machine Learning
(ML) technique that can be utilized to train autonomous
agents in a semi-supervised manner to operate independently
as a bottom-up alternative to the centralized systems dis-
cussed earlier. In [30], the authors proposed aML pipeline for
autonomous mobile terminals that first extracts spatial fea-
tures through a Convolutional Neural Network (CNN), and
utilizesMulti-Agent DeepDeterministic Policy (MA-DDPG)
to learn to autonomously collect specified data in a region
of interest. In [31], the study presented a mission-oriented
path planning algorithm based on Q-learning for UAVs to
autonomously navigate between tasks in a specified mission
area whilst avoiding obstacles. Most of the developed models
are limited to simplified 2D navigation space (i.e., fixed
altitude), where the UAV is not able to change its altitude to
cross over obstacles. In [32] and [33], the authors presented
a Q-learning algorithm to solve the autonomous scheduling
problem of UAVs. Q-learning was also employed to establish
paths while avoiding obstacles in [34]. However, the authors
used discrete actions (i.e. the environment is modeled as a
grid world with limited UAV action space, degree of free-
dom). This may reduce the UAV efficiency when dealing
with real-world environments, where the flying units operate
according to a continuous action space. Moreover, these stud-
ies ignore the challenges related to limited battery constraints.

B. CONTRIBUTION
In our context, RL can empower UAVs with sufficient intelli-
gence to make local decisions and autonomously accomplish
necessary tasks without requiring the support of a central
unit or human involvement. In [35], we have designed a
single-algorithm RL solution for routing autonomous agents
however, without considering the data collection challenges,
and the environment hurdles such as obstacles. In this study,
we develop a generic autonomous navigation and scheduling

VOLUME 8, 2020 110447



O. Bouhamed et al.: UAV-Assisted Data Collection for Wireless Sensor Networks: Autonomous Navigation and Scheduling

approach using a combination of two RL-based frameworks
for navigating and scheduling a UAV collecting data from
multiple ground nodes with the objective of minimizing the
data collection time. The developed RL framework are given
as follows:

• The first framework aims to provide obstacle-aware
navigation for the autonomous UAV to reach its target
destination dispersed in a 3D areawith continuous action
space. To this end, a DDPG-based algorithm is devel-
oped with the objective to allow a UAV to determine
the best course to accomplish its data gathering safely,
i.e. obstacle avoidance. The output of this framework is
the shortest and safest route connecting the UAVwith its
destination as well as the corresponding required flying
time.

• The second framework aims to provide a trip plan for
the autonomous UAV incorporating all the earlier men-
tioned aspects to gather the messages from the scattered
sensor nodes within a predefined time horizon. The
framework allows the UAV to return to the charging
station to reload its battery when needed. A Q-learning-
based approach is modeled with the objective to allow
this UAV to determine the best schedule and rapidly
accomplish its missions while taking into consideration
the flying time needed, provided by the first framework,
to safely reach its targets. A reward function is designed
to force the UAV to reach the missions on time and
minimize the completion time of the whole trip.

During the training phase, the UAV learns the environ-
ment, precisely the WSN, given its technical specifications
and its surrounding obstacles and then, during the prediction
phase, it determines its data collection plan by figuring out
its trajectory and which node to visit first and at which time
instant and when it needs to return to recharge its battery.
The performances of the RL-based framework are validated
through simulations and compared to the results obtained by
an optimal MILP-based solution.

The rest of the paper is organized as follows. Section II
introduces the system model of the UAV-assisted WSN.
Section III-B presents the RL-based approach for data gath-
ering. The section includes both the DDPG and QL frame-
works. Section IV provides the simulation results analyzing
the performance of the different components of the developed
approach. Finally, the paper is concluded in Section V.

II. SYSTEM MODEL
In this study, we consider K wireless sensors deployed ran-
domly in a given 3D geographical area, managed by an
autonomous UAV, that is responsible to collect data generated
by each node during a givenmakespan0 as depicted in Fig. 1.

A. NETWORK MODEL
The set of sensors is defined as W = {wk , k = 1, . . . ,K }.
We assume that the sensing units are equipped with a single
unidirectional antenna. We presume that each sensor node wk

FIGURE 1. Illustration of the autonomous UAV data collection from four
sensor nodes

{
wk , k = 1, . . . , 4

}
. The UAV starts its journey from the

charging station (w0).

has a data reading, denoted by message mk , intended to
be sent to a sink node that could be either a cellular base
station or a data collection central unit. Each sensing unit
wk is also defined by the parameters stk , ptk , and prk which
are the acquisition time of data by the sensor (i.e., indi-
cates the moment of availability of the message mk to be
transmitted), the time during which the message mk should
be collected by a UAV, and the message priority, respec-
tively. In practice, different cases of stk and ptk values can
be encountered depending on the application. For example,
the scenario where stk and ptk are equal to zero and0, respec-
tively, means that the message mk is ready for collection
anytime. Another case, we could face in practice, is that the
message mk is only available during a certain time window
starting at the instant of data acquisition from the sensor and
ending after a fixed time period, otherwise the data is lost.
In both cases, we are dealing with delay-tolerant applications.
Unlike delay-intolerant applications where data collection
must occur in real-time and instantaneously, in delay-tolerant
applications, strict real-time data collection is not required.
Nevertheless, this does not necessarily mean that latency
tolerance is infinite. Therefore, rapid data collection is still
required in delay-tolerant wireless sensor networks in order
to, for example, acquire the data as soon as possible or allow
efficient exploitation of the UAVs for other tasks, e.g., data
collection from another network nearby or other missions.
To this end, we have developed this learning framework to
automate the scheduling of UAVs in order to ensure the data
collection of all assigned sensors within a minimum time
frame.

Moreover, we assume that each sensing unit is character-
ized by its 3D geographical location locwk = (xwk , ywk , zwk ).
The UAV, defined as d , is characterized by its current location
locd = (xd , yd , zd ), its battery level and capacity bd and
b̄d , and the charging power level cd . At the beginning of the
makespan, we assume that the UAV is placed at the charging
station defined as w0, located at locw0 = (xw0 , yw0 , zw0 )
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assimilated as an extra special node always active and to
which the UAV can go at any moment of its operation.
In general, the UAV can be in three possible modes:
• waiting at the charging station w0: in this situation,
the UAV will need to remain at the charging station
where it can reload its battery.

• collecting message from sensor node wk : the UAV d
should be located close to locwk to be able to receive
data from the sensor node wk .

• flying from wk to wk ′ where k 6= k ′: the UAV is moving
from a position to another to cover it or to return to the
charging station w0.

B. ENVIRONMENT AND OBSTACLE MODELS
Autonomous navigation for UAVs in a real environment is
complex. Hence, Without loss of generality, we create a
virtual 3D environment with high matching degree to the
real-world urban areas. Unlike most of the existing virtual
environments studied in the literature, which are usuallymod-
eled as a grid world, in this paper, we focus on a free space
environment containing 3D obstacles that may have diverse
shapes as illustrated in Fig. 2. Consequently, the UAV has
the freedom to take any direction and speed to reach its target
unlike the gridworld, which restricts themobility of UAV into
a finite set of actions. The goal is to train the UAV to fly safely
from any arbitrary starting position to reach any destination
in the considered area with continuous action space. The
objective is to communicate with a ground node and hence we
consider that theUAV reaches a destination point at which it is
able to communicate with the ground node with the specified
data transfer rate.

FIGURE 2. Illustration of the autonomous obstacle-aware UAV navigation
in an urban environment.

The encoded environment contains a predefined set of
obstacles that must be avoided by the UAV when flying.
The goal is to train the UAV to fly safely from any arbi-
trary starting position to reach any destination in the con-
sidered area with continuous action space. In the framework,
the investigated system assumes the environment’s obstacles
have different heights. Each one of them is represented by a
3D polygon characterized by its the starting reference point

[xobs, yobs], the set containing the edges of the base edgobs,
and its height hobs. Hence, if it is flying at an altitude higher
than the obstacle’s height, the UAV can cross over the obsta-
cles. Otherwise, the UAV can avoid it by flying around.

We also consider that the UAV is flying at an average
speed Vd and hence, requires ftd,wk seconds to reach locwk
when leaving from its current location locd . The flying time
between the two locations depends on the trajectory, denoted
by 8, followed by the UAV. The flying time can be then
expressed as follows:

ftd,wk =
18(d,wk )

Vd
, (1)

where 18(d,wk ) is the distance traveled by the UAV to
safely reach its destination wk from its current starting posi-
tion.

C. CHANNEL MODEL AND ACHIEVABLE RATE
EXPRESSION
Due to the nature of the investigated network, we are using
an air-to-ground channel type to model the communication
link between the UAV and the ground sensors, i.e., zwk = 0.
In this study, we only consider the large-scale path loss effect
in the channel gain, denoted by h. Its expression is given as
follows1:

h
(
1E (d,wk )

)
=

1√
PL

(
1E (d,wk )

) , (2)

where PL is the path loss in its linear form between UAV d
and sensorwk . It depends on the euclidean distance separating
the UAV and its target sensor, which is defined as1E (d,wk ).
The LoS links between the flying unit and the ground sensing
nodes are assumed to be available with a certain probability
denoted by pLoS . The average air-to-ground free space path
loss PL in dB is given as follows [36]:

PLdB
(
1E (d,wk )

)
=pLoSPLLoSdB +(1−p

LoS )PLNLoSdB , (3)

with the non-LoS free path loss PLNLoS and LoS free path
loss PLLoS are expressed as follows [36]:

PLXdB
(
1E (d,wk )

)
= 10n log10

(
4π f1E (d,wk )

c

)
+ LXdB,

(4)

where X = {LoS,NLoS}, f is the carrier frequency, n is
the path loss exponent, c is the speed of light, and LXdB is
the average additional loss due to non-LoS/LoS link. The
probability of LoS link between the UAV d and the sensor
node wk is given as follows:

pLoS
(
1E (d,wk )

)
=

1

1+β1 exp
(
−β2[θ

(
1E (d,wk )

)
−β1]

) ,
(5)

1Since we are dealing with delay-tolerant applications and determining
the UAV schedule over a long period of time, we focus on the system
performance based on its average statistics and hence, ignore the fast fading
effect.
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where β1 and β2 are constant parameters that depend on
the environment and θ

(
1E (d,wk )

)
is the elevation angle

between the UAV d and the sensor node. Evaluating the
expression of pLoS shows a trade-off between the path loss
and the distance separating the UAV and the sensor node
that should be taken into consideration while finding the
optimal altitude for the UAV. The higher the UAV’s altitude,
the lower the path loss. On the other hand, this increases the
distance between the flying unit and the ground sensor node
which may lead to a lower the transmission rate. In order to
compute the required time to transmit a message mk , denoted
by Tk , from a sensor node to the UAV d , we compute the
average transmission rate Rd,wk . The transmission time Tk is
expressed as:

Tk =
mk
Rd,wk

, (6)

where mk is the message size and Rd,wk is computed using
the truncated Shannon equation as follows:

Rd,wk =


Rmax , if γd,wk ≥ γmax
B log2

(
1+ γd,wk

)
, if γmin < γd,wk < γmax

0, otherwise,
(7)

where B is the total bandwidth of the channel, γd,wk is the
signal-to-interference-plus-noise (SINR) ratio expressed as
follows:

γd,wk =
Ptr |h

(
1E (d,wk )

)
|
2

�+ N0B
, (8)

where Ptr is the ground unit power in Watt with which the
signal is transmitted, Rmax is the maximum possible transmis-
sion rate corresponding to γmax . Below γmin, we assume that
the signal is not effectively detected and hence, Rd,wk = 0.
Finally, � is the average interference power and N0 is an
additive white Gaussian noise. It is worth to note that, in this
framework, we consider the average interference that might
be caused by external devices simultaneously communicating
while the UAV receives data from the ground nodes. In the
context of multi-UAVs, mutual interference should be mit-
igated, e.g., with optimized radio resource allocation. The
focus of this paper is mainly on the autonomous navigation
and scheduling of the data gathering UAV. Incorporating
interference mitigation solution is more elaborate and will be
investigated in the future extension of this work.

In order to determine the UAV stops at which the UAV
needs to hover to serve a ground node with a satisfactory
data rate. We consider the characteristics of the air-to-ground
channel in order to guarantee reliable communication by
solving the following optimization problem, which aims to
determine the maximum distance (i.e., radius) that can sepa-
rate the stop location of the UAV from the ground sensor:

maximize
zd ,r

r =
√
(xd − xwk )2 + (yd − ywk )2,

subject to: Rd,wk ≥ ηRmax , (9)

where r is the radius between the sensor and the parallel
projection of the UAV stop location on the ground 2D plan,
as shown in Fig. 1, and η is a tolerance coefficient regulating
the minimum transmission rate threshold where 0 ≤ η ≤ 1.
Hence, r represents the maximum range of the stop where
the UAV needs to hover to collect data from the ground
node wk . We assume that the exact UAV stop is chosen on
the segment connecting the charging station and the node wk
with a radius r .
The optimization problem formulated in 9 is only used

to determine the UAV stop guaranteeing a communication
data rate higher than ηRmax . In this sense, the UAV does
not need to hover on the top of the ground node to collect
the data. Reducing η allows the UAV to stop farther but
may increase the data transfer time. The optimization prob-
lem 9 is non-convex due to channel expression but can be
sub-optimally solved using numerical or heuristic solutions.

In this paper, we are essentially focusing on determining
the UAV trajectories and schedules given specific UAV stops
at which it has to hover to collect the data. As future work,
we will investigate a more elaborate problem where more
optimized UAV stops are also determined.

D. MAKESPAN DISCRETIZATION
In this paper and in order to overcome the time dimen-
sion dilemma, we divide the makespan into N time periods
s1, . . . , sN having the same length τ . Consequently, we asso-
ciate to each sensor node wk a certain number of time periods
during which its message mk should be collected. We define
the set of time periods Twk associated to sensor node wk
as follows: Twk =

{
swkst , . . . , s

wk
et
}
where swkst denotes the

time period where the data is gathered by the sensor (e.g.,
the message mk is available) while swket corresponds to the
ending time of availability of the message.

E. ENERGY MODEL
The power consumption of the UAV is mainly composed of
two components, one related to the propulsion and the other to
the mounted communication interface. In this study, we adopt
the following UAV power consumption presented in [37]:

P(Vd ) = Pbl
(
1+

3Vd 2

U2
tip

)
+ Pind

(√
1+

Vd 4

4v40
−
Vd 2

2v20

) 1
2

+
1
2
d0ζ sAVd 3, (10)

where Pbl , Pind , Utip, v0, d0 and s corresponds to the blade
profile power, the induced power level when the UAV stat-
ically hover, the tip velocity of the rotor blade, the mean
rotor induced speed in hover, the fuselage drag ratio and
rotor solidity, respectively. The parameters ζ and A denote
the air density and rotor disc area, respectively. The amount of
power to be consumed by the UAV when hovering, i.e., when
receiving data from other devices, can be obtained by setting
Vd in (10) to 0 and hence, it can be expressed as follows:

Phov = P(0) = Pbl + Pind . (11)
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When receiving data, the UAV is assumed to hover stati-
cally and hence, consumes the hovering power as well as a
reception power consumed by the communication interface,
denoted byPmd . The total power consumed during data recep-
tion is denoted by Prx and expressed as follows:

Prx = Phov + Pmd . (12)

The battery level of the UAV, denoted by bd , can vary
according to its three possible modes described earlier:
• ‘Standby’ mode: the UAV battery is charged as follows:

bd (sn+1) = min(b̄d , bd (sn)+ cd · τ ), (13)

where bd (sn) is the battery level at time period sn.
• Collecting message from sensor node wk : the battery level
is reduced as follows:

bd (sn+1) = max(0, bd (sn)− Prx · τ ). (14)

• Moving from a position to another: in this case, the UAV
battery is updated as follows:

bd (sn+1) = max(0, bd (sn)− P(Vd ) · τ ). (15)

III. RL FOR AUTONOMOUS DATA GATHERING
This section introduces the proposed autonomous UAV data
collection approach and its different components. After-
wards, it defines the inputs, outputs, and reward functions of
the navigation and scheduling RL frameworks.

A. PROPOSED RL APPROACH COMPONENTS
RL is a sub-category of ML that allows the agent to under-
stand their surrounding environment and convert situations
into actions such that it maximizes a certain metric usually
defined as a reward [38]. The learner has zero knowledge
about which actions to take, but instead, it must discover
which ones yield the most reward by gaining experience dur-
ing a training phase. Another RL characteristic is that actions
may affect not only the immediate reward but also the next
situation and, through that, all subsequent rewards. These two
features, trial-and-error search, and delayed reward are the
most important distinguishing characteristics of RL. In other
words, the idea behind RL is to make the agent interactively
learn from its environment using the received feedback from
its own experiences. In this paper, the essential behavior that
we intend to integrate into the UAV is to learn and take the
best course of actions to maximize the total reward count and
hence, achieve its application objective, i.e., gathering data
from the dispersed sensors.

To this end, we propose to adopt a joint autonomous data
collection approach where two RL frameworks are jointly
utilized to enable the autonomous navigation and scheduling
of the UAV so it can accomplish its data gathering tour. The
components of the proposed approach are illustrated in Fig. 3.
The first RL framework is based on the DDPG model and its
objective is to find the safest and fastest route that the UAV
needs to follow to go from any starting point to any desti-
nation in the 3D map while avoiding obstacles. In addition to

FIGURE 3. Illustration of the proposed autonomous data collection
approach and the interconnection between the navigation and scheduling
frameworks.

the route, the navigation framework delivers the total distance
18(d1, d2) to be traveled by the UAV to go from a position d1
to another d2 and the corresponding flying time, expressed
in (1), so it can be integrated to the scheduling framework,
i.e., the second RL framework, and used to determine the
UAV scheduling. Indeed, the second framework considers the
features of the UAV itself, the sensors, and the charging sta-
tion, presented in Section II, to determine effective scheduling
that takes into account the flying times between the different
nodes, the corresponding energy consumption, and the data
acquisition time of the data. The scheduling framework will
automatically determine at which instant the UAV needs to
return to the charging station to reload its battery. With QL,
the scheduling framework is modeled such that the collection
time is minimized. The proposed autonomous navigation and
scheduling framework will deliver at the beginning of the
makespan the action plan to be followed by the agent to
complete its collection tour.

The choice of the RL approaches depends on the nature
and the complexity of the investigated problem. For the data
gathering framework, we proposed the use of Q-learning,
a value-based reinforcement learning algorithm, which is
considered as a tabular method. Tabular methods can solve
problems in which the state and action spaces are small
enough to be presented as arrays and tables. The investigated
autonomous scheduling problem falls under the scope of such
methods since the decisions that can be made by the UAV are
limited: waiting at the charging station, collecting data from
a sensor, or flying from a sensor node to another. Moreover,
QL is considered computationally cheaper compared to other
forms of RL algorithms which allows the achievement of
the scheduling solutions with reduced complexity, i.e., less
running time. As for the autonomous navigation problem,
in contrast with the previous framework, we are facing a
case of large state and action spaces, i.e., free 3D mobility,
which makes tabular approaches impossible to use. That’s
why, we proposed the use of DDPG, in which the tabular
method is substituted for neural network-based approach,
which make it very suitable for high dimensional continuous
action problems.

B. DDPG LEARNING FOR AUTONOMOUS NAVIGATION
To calculate the distance 18(d1, d2) traveled between two
locations d1 and d2, the UAV needs to make a series of actions
so it can move step by step till it reach its destination d2.
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At each action, we assume that the UAV chooses a distance to
cross according to a certain direction in the 3D space during
1t units of time. The action is modeled using the spherical
coordinates (ρ, φ,ψ). In other words, if the UAV is located
at position (xd , yd , zd ) at time instant t , then it is location at
time instant t+1t , after taking a navigation action (ρ, φ,ψ)
is expressed as follows:

xd (t +1t) = xd (t)+ ρ sinφ cosψ,

yd (t +1t) = yd (t)+ ρ sinφ sinψ,

zd (t +1t) = zd (t)+ ρ cosφ, (16)

where ρ is the traveled radial distance by the UAV in each
step (ρ ∈ [ρmin, ρmax]), where ρmax is the maximum distance
that the UAV can cross during the step length 1t . Its value
depends on the speed of the UAV vd . The parameter ψ
denotes the inclination angle (ψ ∈ [0, 2π ]), and φ represents
the elevation angle (φ ∈ [0, π]). For instance:
• if ρ = ρmax , φ = π , and any value of ψ , the UAV moves
by ρmax along the z-axis.
• if ρ = ρmax , φ = π/2, and ψ = 0, the UAV moves along
the x-axis.

As previously stated, RL is a category of semi-supervised
ML. It allows the UAV to automatically determine the ideal
behavior taking into account the UAV characteristics and the
environment’s constraints, in order to maximize its perfor-
mance. A simple reward feedback, aka reinforcement sig-
nal, is required for the UAV to learn how to behave. There
are many different algorithms, such as the policy gradient
methods, that tackle this issue. They rely on optimizing
parametrized policies with respect to cumulative reward by
gradient descent.

DDPG was developed as an extension of deep Q-network
(DQN) algorithms introduced by Mnih et al. [39], which
was the first approach combining deep and RL but only by
handling low-dimensional action spaces. DDPG is also a deep
RL algorithm, that can deal with large-dimensional/infinite
action spaces. It tries to find an efficient behavior strategy for
the agent to obtainmaximal rewards in order to accomplish its
assigned tasks [40]. This DPG algorithm has the capability to
operate over continuous action spaces which is a major hurdle
for classic RL methods like Q-learning.

1) ACTOR-CRITIC LEARNING mModel
DDPG is based on the actor-critic algorithm. It is essentially
a hybrid method that combines the policy gradient and the
value function. The policy function µ is known as the actor,
while the value function Qnv is referred to as the critic.
Essentially, the actor output is a navigation action chosen
from a continuous action space, given the current state of the
environment anv = µ(snv|θµ), which, in our case, has the
form of a tuple anv = [ρ, φ,ψ]. As for the critic, its output
Qnv(snv, anv|θµ) is a signal having the form of a Temporal
Difference (TD) error to criticize the actions made by the
actor knowing the current state of the environment. A diagram
summarizing the actor-critic architecture is given in Fig. 4.

FIGURE 4. Architecture of the actor-critic learning model.

Note that the training phase of theDDPGmodel is executed
for Mnv episodes where each one of them accounts for T nv

steps. We use the index i to denote an iteration within a
single episode where i = 1, . . . ,T nv. The actor and critic
are designed with neural networks. The value network is
updated based on Bellman equation [41] by minimizing the
mean-squared loss between the updated Q value and the orig-
inal value, which can be formulated as shown in Algorithm 1
(line 11). As for the policy network’s update (line 13), it is
based on the deterministic policy gradient theorem [40].

Some practical tricks are used to enhance the perfor-
mance of the framework. A trade-off between exploration and
exploitation is made by the use of ε-greedy algorithm, where
a random navigation action anvi is selecting with εnv probabil-
ity, otherwise a precise navigation action anvi = µ(snvi |θ

µ)
is selected according to the current policy with a 1 − εnv

probability. Furthermore, an experience replay buffer bnv,
with size Bnv, is used during the training phase to break the
temporal correlations. Each interaction with the environment
is stored as tuples in the form of [snvi , a

nv, rnv, snvi+1], which
are the current state, the navigation action to take, the reward
of performing navigation action anv at state snvi , and the next
state, respectively (Algorithm 1 (line 9)) and, during the
learning phase, a randomly extracted set of data from the
buffer is used (Algorithm 1 (line 10)). Also, target networks
are exploited to avoid the divergence of the learning algorithm
caused by the direct updates of the networks’ weights with the
gradients obtained from the TD error signal.

2) REWARD FUNCTION FOR THE NAVIGATION
FRAMEWORK
In an obstacle-constrained environment, the UAV must avoid
obstacles and autonomously navigate to reach its destination
in real-time. Therefore, the reward function, denoted by fr ,
is modeled such that it encourages the UAV to reach its
destination and, at the same time, penalizes it when crashing.
Thus, the reward function is composed of two terms: target
guidance reward and obstacle penalty. The target guidance
reward, denoted by fgui, is used to motivate the flying unit to
reach its target as fast as possible, while the obstacle penalty,
denoted by fobp is responsible for alerting the UAV to keep a
certain safety distance off the obstacles. The reward function
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Algorithm 1 DDPG
1: Randomly initialize critic Qnv(snv, anv|θµ) and actor
µ(snv|θµ) neural networks with weights θQ and θµ.

2: Initialize target networks Q′ and µ′ with weights θQ
′

←

θQ, θµ
′

← θµ.
3: Initialize replay buffer bnv.
4: for episode = 1,. . . ,Mnv do
5: Receive first observation snv1 .
6: for i = 1, . . . ,T nv do
7: Select anvi based on ε-greedy algorithm: select ran-

dom action anvi with εnv probability, otherwise anvi =
µ(snvi |θ

µ) according to the current policy.
8: Execute action anvi and observe reward rnvi and new

state snvi+1.
9: Store transition [snvi , a

nv
i , r

nv
i , s

nv
i+1] in b

nv.
10: Sample a random batch of N nv transitions

[snvj , a
nv
j , r

nv
j , s

nv
j+1].

11: Set ynvj = rnvj + γQ
′(snvj+1, µ

′(snvj+1|θ
µ′ )|θQ

′

).
12: Update critic by minimizing the loss:

L = 1
N nv

∑
j(y

nv
j − Q

nv(snvj , a
nv
j |θ

Q))2

13: Update the actor policy using policy gradient:
∇θµµ|sj≈

1
N

∑
j ∇aQ(s, a|θ

Q)|s=sj,a=µ(sj)∇θµµ(s|θ
µ)|sj

14: Update the target networks:
θQ
′

← νθQ + (1− ν)θQ
′

θµ
′

← νθµ + (1− ν)θµ
′

15: end for
16: end for

is formulated as follows:

fr (1(d, d2), σ )= (1−β)fgui(1(d, d2))+βfobp(σ ), (17a)

fgui(1(d, d2))= exp(−51(d, d2)2), (17b)

fobp(σ )= exp(−100σ )− 1, (17c)

where 1(d, d2) measures separating the current location of
the UAV to its destination d2 and σ is the crash depth
explained in Fig. 5 and β is a variable that regulates the bal-
ance between fobp and fgui. The obstacle penalty is modeled
as a function of the crash depth σ to conserve the continuous
nature of the reward function instead of using a discrete
penalty, which proved to be more efficient to help the model
to converge. When the crash depth is high, the UAV receives
a higher penalty, whereas a small crash depth results in a
lower penalty. The use of this approach helps the UAV learn
efficiently over the training episodes on how to adjust its
trajectory to avoid obstacles.

3) TRANSFER LEARNING
Transfer learning is a machine learning technique used to
transfer the knowledge to speed up training and improve
the performance of deep learning models. The proposed
approach to train the UAV consists of two steps. Initially,
we train the model in an obstacle-free environment. Training
in such an environment grants the UAV the capability to

FIGURE 5. Example representing a collision scenario. The UAV’s altitude
is less than the obstacle’s height (obs1). The action is chosen such that
the UAV crosses the obstacle. This results in an obstacle penalty reflecting
the underwent depth.

reach any target in the covered 3D area with continuous space
action. Then, the trained model on the obstacle-free environ-
ment will serve as a base for future models trained on other
environments with obstacles. Afterwards, we transfer the
acquired knowledge (i.e., source task) and use it to improve
the UAV learning of new tasks where it updates its path
based on the obstacle locations while flying toward its target.
The adopted transfer learning technique applied to DDPG for
autonomous UAV navigation is illustrated in Fig. 6. Once
the training phase is completed offline, the UAV is capa-
ble to make instant decisions, while interacting with the
environment, to manage real-time missions. Hence, it can
autonomously provide a safe and fast trajectory to go from
a location d1 to a destination d2 characterized by a distance
18(d1, d2) and a flying time ftd1,d2 .

FIGURE 6. Illustration of the transfer-learning technique.

C. QL FOR AUTONOMOUS SCHEDULING
Once the UAV learns how to navigate safely within the
environment, we develop an autonomous scheduling frame-
work to accomplish the data collection tour while taking into
account the energy consumption of the flying unit and the data
acquisition time windows of the sensors. To this end, we pro-
pose to employ one of the fastest and simplest-structured RL
algorithms: the QL, where Q in QL stands for quality [42].
Quality in this case represents how useful a given action is
in maximizing coverage on highest priority events. QL is an
off-policy temporal difference learning [43]. It is considered
off-policy because the QL function learns from actions that
are outside the current policy, like taking random actions, and
therefore policy is not needed. More specifically, QL seeks to
learn a policy that maximizes the total reward.
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1) Q-TABLE STRUCTURE
In this framework, we focus on the positions that the UAV
can visit during his tour, namely, the charging station w0
and the locations at which it will collect the data from the
sensors wk ,∀k ∈ {1, . . . ,K }. We propose to divide the
battery capacity into K energy levels. Thus, each UAV has
E battery charging states that we refer as L = {l1, . . . , lE },
where the highest energy level lE = [b̄(1 − 1

E ), b̄] and the
lowest level l1 = [0, b̄E ]. Since the UAV may make any
decision (wait at the charging station, fly from a position
to another, or collect data from a sensor) at any instant of
time and at any battery level allowing it to execute that
decision, we create the set of states S by concatenating the
different Twk ,∀k = 0, . . . ,K , while taking into account the
different battery level states introduced previously as follows:
S =

{
T l1
w0 , . . . , T

l1
wK , . . . , T

lE
w0 , . . . , T

lE
wK

}
. On the other hand,

the set of actions is defined as A = W , which encompasses
the set of sensors plus the charging station. Hence, theQ-table
corresponds to a matrix having the size [N (K + 1)E × K ].
At each action, the UAV will choose one of the sensors to
serve given its current state.

QL revolves around the notion of updating the elements
of the table Q that we present its structure in Fig. 7. The
elements of the Q-table denote the values of doing an action
a ∈ A when the UAV is at a state s ∈ S. Initially, the
Q-table is filled with zero-elements. Note that the training
phase of the QL algorithm is executed for Ep episodes where
each one of them accounts for I iterations. The following
update rule inspired from the Bellman equation is used to fill
the Q-table [41]:

Q[swk ,ln , a](ι)

= (1− α)Q[swk ,ln , a](ι− 1)

+α[R(swk ,ln , a)+ ζmax
a∈A

Q[s
wk′ ,l

′

n′ , a](ι+ 1)], (18)

FIGURE 7. Q-table structure. Initially, the Q-table is divided into
E sub-tables referring to each possible energy level. Likely, each
sub-table is divided into divisions based on the the current state denoted
by w0, . . . , wK (e.g., current mission). Each division is a matrix,
presenting the worth of collecting data from sensor wk′ (i.e., taking
action wk′ ) while the UAV is at sensor wk at a time slot n.

where ι indicates the iteration of the learning algorithmwhere
ι = 1, . . . , I , α denotes to the learning rate (0 ≤ α ≤ 1), and
ζ is the discount factor which regulates the impact of the next
taken actions on the evaluation of the current state 0 ≤ ζ ≤ 1.
The functionR(swk ,ln , a) quantifies the reward obtained when
the action a is taken if the UAV is at the state swk ,ln . Finally,

the last term in (18), specifically max
a∈A

Q[s
wk′ ,l

′

n′ , a](i + 1),

is added to return the highest Q value among all possible
actions in A associated to the new state s

wk′ ,l
′

n′ .

2) REWARD FUNCTION
Recall that, in our setting, we aim to collect the messages
from dispersed sensors as fast as possible while taking into
account the limited battery capacity and the delay needed to
move from a location to another. If the UAV has no message
to collect, it is encouraged to return to w0 to either charge
its battery in case of a low battery charging state or to go
into standby mode. To deal with the flying time constraint,
the reward function of the UAV is expressed as a function
of the starting and ending times (swkst and swket ) of the sensor
node data acquisition period as well as the flying time ft spent
between the sensors’ locations provided by the navigation
framework.

For an efficient assessment of the chosen action, we intro-
duce the following time metrics:
• The arrival time of the UAV to collect data from sen-
sor node a after being at state swkn , denoted by AT (swkn , a),
is expressed as:

AT (swkn , a) = sn · τ + ftd,a, (19)

• The waiting time that the UAV must wait when it arrives to
the data collection location of sensor a before starting the data
reception after leaving the state swkn , denoted by WT (swkn , a),
is expressed as:

WT (swkn , a) =

{
swkst τ − AT (sn, a), if swkst ≤ AT (sn, a),
0, otherwise.

(20)

• The remaining time left for collecting the data of sensor a
if the UAV arrives its corresponding data collection stop after
being at state swk ,ln , denoted by RT (swkn , a), is expressed as:

RT (swkn , a)=

{
swket τ − AT (s

wk
n , a), if swkst ≤AT (s

wk
n , a),

(swket − s
wk
st ) τ, otherwise.

(21)

The metrics AT , WT , and RT are depicted in Fig. 8 for two
different cases depending on the arrival time of the UAV to the
data collection location of the server with respect to its data
acquisition period. The metric AT is added to encourage the
UAV collect the data from the sensor when the data acquisi-
tion time window is active. The UAV is penalized if it arrives
to sensor node too early, i.e., WT is high. The remaining
time left metric RT is considered to encourage the UAV go
to sensors as soon as possible once the data to be collected
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FIGURE 8. Explanatory diagrams illustrating the metrics AT , WT , and RT
for two different cases. (left) when the UAV arrives to the data collection
location before the availability of the message to transmit, (right) when
the UAV arrives to the data collection location after the message
acquisition time.

is available. This helps in accelerating the data collection
process from all the nodes. The reward function, 9(swk ,ln , a),
measures the worthiness of collecting data from sensor wk
when the UAV is located at state swk ,ln and is formulated as
follows:

9(swk ,ln , a)

=


prmmax

(
50

(
RT (swk ,ln , a)
(saet−s

a
st )·τ
+1

)
·

1

1+WT (swk ,ln , a)
, 0

)
,

if a ∈ A\{0},

100
(
−0.65 ·

bd
b̄d
+1
)
, if a ∈ {0},

if bd ≤ 0,

9(swk ,ln , a)

=

{
0, if a ∈ A\{0},
100, if a ∈ {0},

otherwise, (22)

where9 is formulated as a function having values ∈ (0, 100 ·
p̄r) where p̄r is the highest priority that can be assigned to a
sensor so it is data is collected first. The reward function for
data collection from sensing nodes except w0 is multiplied
by prwk to force the UAV prioritizes the mission with higher
priority. Fig. 9 depicts an example of the reward function 9
with respect to the time window of the data acquisition and
discusses different cases. The reward function is modeled to
encourage the UAV to cover tasks in case of filled battery
(sensing nodes score higher than w0 score) and the opposite,
in case of empty battery.

FIGURE 9. Illustration of the Reward function 9: (a) when collecting data
from the sensing node for wk 6= w0. The reward is plotted as a function of
time. It is equal as long as there is no data to collect from the sensor.
Then, it reaches its maximum when RT is exactly equal to the acquisition
time period. Finally, it linearly decreases to zero till the end of the data
acquisition time. (b) When the UAV is at the charging station (w0). The
reward is plotted as a function of the UAV battery level. It is modeled as a
linear function inversely proportional to the battery level. It is a at the
maximum 100 when bd = 0 and at the minimum when bd = b̄d .

Also, the scheduling framework is formulated in a way
that the UAV respects the transmission time of the messages

(i.e., the UAV remains at the sensor location until it acquires
the entire message from the sensing unit). Additionally, with
the intention of better management and efficient exploitation
of the UAV’s energy, a reward score depending on the UAV
battery charging state, is assigned to the w0 when a ∈ {0}.
Furthermore, during the offline training, an energy mask on
the list of sensors list to collect data from is added as a safety
measure for the UAV to avoid crashes due to battery deple-
tion. The sensors requiring high energy are, then, masked.

The UAV learns to head, when it is possible, towards the
sensing nodes and the charging station, by filling the Q-table
according to the reward function computed during the offline
training phase. Hence, at its end, the Q-table will include
what is learned at each situation (i.e., the right choice for
any battery level at any time step). Based on the final Q-table
value and to prevent the UAV from returning to an already
served sensing node, the Q-table’s column that represents
a served sensor as an action is removed from the Q-table.
The UAV will be able then to only consider the remaining
non-served sensors and collect data during the time window
of each sensor without violating the limited battery capacity
constraint.

3) TRAINING PHASE
As mentioned earlier, the training phase of the QL-algorithm,
illustrated in Fig. 10, is executed for Ep episodes where
each one of them accounts for I iterations. At the begin-
ning of each episode, the time is reset and the UAV is
returned to w0. At each iteration, the UAV is assumed to
progress in time according to the exploration or exploita-
tion decision. In exploration, an action is chosen randomly,

FIGURE 10. A block diagram describing the training phase of the
proposed Q-learning algorithm for UAV data collection.

VOLUME 8, 2020 110455



O. Bouhamed et al.: UAV-Assisted Data Collection for Wireless Sensor Networks: Autonomous Navigation and Scheduling

FIGURE 11. Path followed by UAV in three obstacle-constrained environments. Red dots refers to the UAV steps, green dot refers to the target, and
gray boxes to the obstacles. (a) environment 1 (env1) and (b, c) two cases in environment 2 (env2).

while, in exploitation, the action is chosen such that the
corresponding element in Q is maximized. To keep balance
between exploration and exploitation actions, an ε-greedy
action-selection policy is used with (0 ≤ ε ≤ 1). At each
progress step, one element of Q is updated as given in (18).
A terminal state is reached when the maximum number of
iterations I is achieved or the UAV fails to complete its
mission due to energy depletion. In that case, a new episode
starts.

IV. SIMULATION RESULTS
In this section, we investigate the performance of both
RL frameworks including their training and testing phases.
We aim to visualize the autonomous operation of the UAV
while navigating in a 3D environment first and then in deter-
mining its scheduling.

A. AUTONOMOUS NAVIGATION
In this section, we study the behavior of the autonomous
navigation framework for selected scenarios. We also visu-
alize its efficiency in terms of crash rate and safe navigation
accomplishment. To do so, we assume that the UAV starting
location d1, its target location d2, and the obstacles’ parame-
ters are randomly generated within a cube-shaped area with
100 m edge length. We make sure that the locations of both
the target and the UAV are outside the obstacles. The rest of
the simulation parameters of the navigation framework are
set in Table 1. The simulations are executed using Python in
normalized 3D environments. For the sake of clarity, the fig-
ures concerning the UAV path planning are presented in only

TABLE 1. Simulation parameters of the navigation framework.

2D dimension area (i.e., plan(x,y)) and we provide beside
each dot, the altitude of either the target or the UAV.

In Fig. 11, we plot the trajectory adopted by the UAV to
reach its destination using the autonomous navigation frame-
work. In Fig. 11(a), the UAV successfully reached its desti-
nation location while avoiding the obstacles. In Fig. 11(b),
on its way to the destination, the UAV crossed over obs2
(zd (4) ≈ 0.63 > hobs2 = 0.5) in order to reach faster its target
location unlike the case in Fig. 11(a), where the UAV could
not cross over obs2 because of the obstacle height. The UAV
is set to not fly at an altitude higher than that. In Fig. 11(c),
having a higher altitude than obs6, the UAV crossed over obs6
to reach its target. In all cases, scenarios show some lacking
in precision to reach the target location due to the fact of
using infinite action space whichmakes it hard to get pinpoint
accuracy. These scenarios show that the UAV successfully
learned how to avoid obstacles to reach its destination for
different scenarios.

In Fig. 12, we present the reward received by the UAV
during its training phase. Fig. 12(a) shows that the UAV learns
to obtain the maximum reward value in an obstacle-free
environment. We successfully obtained a trained model capa-
ble of reaching targets in 3D environment with continuous
action space. Then, using the knowledge gathered by the first
training, we trained the model to be able to avoid obstacles.
Fig. 12(b) shows that the UAV model has converged and

FIGURE 12. The reward received by the UAV during the training phase:
(a) the source task (obstacle-free) and (b) the environment with obstacles.
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reached the maximum possible reward value. Notice that
during the first 10000 episodes, fluctuations in the reward
can be noticed. Indeed, the RL model is adapting itself to the
obstacle-constrained environment. These fluctuations change
from an environment to another according to the density,
locations, and heights of the obstacles.

During the testing phase and as shown in Table 2, for the
obstacle-free environment, the UAV successfully reached its
target for the tested cases, 100% success rate for 1000 test
cases. As for the environment with obstacles, in the case
of env1, the UAV successfully reached its target safely for
84% of the 1000 tested scenarios and in the case of env2,
the reached its target safely for 82% of the 1000 tested
scenarios.

TABLE 2. Task-completion rate.

B. AUTONOMOUS SCHEDULING
In this section, we study the behavior of the autonomous
scheduling framework for selected scenarios. Also, a compar-
ison between the performance of the QL-based approach and
an optimalMILP-based solution is provided [44]. For the sake
of clarity and to be able to visualize the behavior of the UAV,
we assume that K = 5 sensing nodes are randomly generated
locations within 5×5 km2 area. Nevertheless, the framework
is able to provide results with a higher dimension of sensor
nodes. In practice, to deal with the increased complexity of
the training phase, a space-time division can be considered.
For instance, we can divide a large geographical area into
multiple subareas and treat each of them successively and
separately. Also, the time horizon can be divided intomultiple
sub-periods, and each sub-period can be treated separately. In
our simulations, we place the charging stationw0 is the center
of the geographical area. The data collection takes place all
along a makespan 0 = 60 minutes. The UAV’s average
speed Vd is fixed at 10 (m/s) and the average interference
level � = −83 dBm [45] as for the used power model
parameters are given in Table 3. The total bandwidth B is set
to 0.2MHz while the noise densityN0 is approximately equal
to −120 dBm. We investigate the scenario where the UAV
has to collect the messages from all scattered sensor nodes as
illustrated in Fig. 13.

TABLE 3. Power model parameters.

FIGURE 13. Scenario A: (a) UAV data collection path plan for five spatially
distributed sensing nodes located in 5× 5 km2, (b) autonomous
scheduling with limited battery capacity b̄ = 4000 mAh, and (c) the
evolution of the UAV battery during the UAV trip.

In Scenario A, we consider K = 5 sensor nodes, having
message size mk = 10 Megabytes to be collected. The nodes
are assumed to send a high amount of data, e.g., recorded
videos or all data collected from neighborhood sensors.2

Fig. 13 depicts the behavior of the UAV for Scenario A
where it successfully collects the data from all sensors in 38
minutes. In the beginning, the UAV, having an empty battery,
stays at the charging station w0 until minute 7.3 to charge its
battery till 2310 mAh in order to have enough energy to start
roaming. Therefore, the flying unit heads toward sensor nodes
w5, w1, and w2, respectively. Then, it returns to the charging
station, situated at locw0 , to charge its battery till it has enough
energy to collect messages from the remaining sensor nodes
w3 and w4 before returning to the charging station. The UAV
successfully learned how to collect all the messages from the
sensing nodes while respecting the battery limit.

In Scenario B (Fig. 14), we associate to the sensor w3 a
higher priority level than its peers. Hence, the UAV adjusts
its trip plan compared to Scenario A. The UAV stays for
5.33 minutes at the charging station till it has enough energy,
1650 mAh, to head toward sensor w3 to cover it first, as it
has the highest priority, then collects data from sensor w5.
Afterward returns to w0 to charge its depleted battery. Next,
the flying unit collects data from sensors w1, w2, and w3,
respectively, with a return to the charging station in-between
to avoid crashes. TheUAV successfully learned how to collect
all messages from the sensors while respecting the priority of
the sensors and the battery limit.

2The reason for choosing large messages in our simulations is also for
visualization purposes. Indeed, with low messages, the communication time
will be very low and the UAV will not be seen statically hovering to collect
the messages.
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FIGURE 14. Scenario B: (a) UAV data collection path plan, (b) autonomous
scheduling with limited battery capacity b̄ = 4000 mAh, and (c) the
evolution of the UAV battery during the UAV trip. In this Scenario,
sensor node w3 has a priority level higher than its peers.

FIGURE 15. Tour completion time of the UAV as a function of the ground
unit transmission power Ptr for two scenarios A and C. Blue line:
MILP-based optimal solution and red line: proposed QL approach.

In Fig. 15, we present the required time to collect data
from all the sensor nodes versus the ground unit transmission
power Ptr for Scenario A and another Scenario C (same
scenario as in A, but the messages size of sensors w3 and
w4 are reduced to mk = 4 Megabytes). We notice that for
both scenarios, decreasing Ptr leads to higher data collection
time. This is due to not only the decrease of the transmission
rate but also to the more frequent battery reload since more
hovering energy is needed. It is also shown that, in Scenario
C, decreasing the message size makes the data collection pro-
cedure faster and that is due to lower transmission time. The
figure also compares the performance of the QL approach
with an optimal MILP based solution, i.e., a learning tech-
nique versus a deterministic one. The QL solution achieves
a result close to the optimal with about 10% difference in
the tour completion time on average. The behavior of the
autonomous UAV for the investigated scenario corroborates
the ability of QL to handle the data gathering problem
efficiently.

V. CONCLUSION
In this paper, we have developed a UAV-based data collection
approach for delay-tolerant applications in wireless sensor
networks. The proposed approach is modeled based on a joint
combination of two reinforcement learning techniques. The
first one employs the DDPG model to enable autonomous
navigation in an obstacle-constrained environment. It delivers
the trajectory to adopt by the UAV to go from a position to
another in the 3D map. The second RL model uses the output
of the navigation framework to determine a scheduling of
the UAV in order to accomplish its collection tour as fast as
possible while considering the stored energy level, the need
to return to the charging station to reload the battery, and the
data acquisition time of the sensors. The UAV makes on-spot
decisions to gather the messages from all the scattered sen-
sor nodes within a predefined time horizon. In this study,
the navigation decisions are made according to a continuous
action space allowing an accurate avoidance of the obstacles.
Moreover, a reward function for the scheduling framework
is designed in order to maintain the UAV safety from crashes
due to energy depletion. Through simulations, we have shown
the effective operation of the UAV in autonomously determin-
ing its schedule and trip plan without involving external enti-
ties. It is also shown that the proposed scheduling approach is
able to achieve close performance to the optimal deterministic
solution.

As future work, we plan to study the multi-agent problem
where a fleet of UAVs is simultaneously employed to gather
data. We also aim to focus on designing an RL-based solution
to allow theUAV to autonomously learnwhere to stop to com-
municate with the ground sensors. It is also worthy to design
a solution dealing with multiple moving ground sensors.
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