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ABSTRACT Deep learning has recently been extensively investigated to remove artifacts in low-dose
computed tomography (LDCT). However, the power of transfer learning for medical image denoising tasks
has not been fully explored. In this work, we proposed a transfer learning residual convolutional neural
network (TLR-CNN) to restore LDCT images at single and blind noise levels. A residual network was
implemented to effectively estimate the difference between denoised image and its original map, and a noise-
free image was obtained by subtracting the residual map from the LDCT image. The results were compared
to competing baseline denoising methods in terms of quantitative metrics including the PSNR, RMSE, SSIM
and FSIM. For the single noise level, the proposed method demonstrated better denoising performance than
the other algorithms for both simulation data and clinical data. As for the blind denoising, the image qualities
were improved for all noise levels for all the quantitative metrics, but such improvements were decreasing as
the noise level decrease (higher mAs). Comparative experiments suggested that the proposed network could
effectively suppress artifacts and preserve image details with faster converge rate and reduced computational
time.

INDEX TERMS LDCT, image denoising, CNN, transfer learning, residual network.

I. INTRODUCTION
X-ray computed tomography (CT) is widely used to help
doctors diagnose diseases and guide surgery and radiotherapy
through imaging [1], [2]. Due to the health risk of radiation
exposure to patients, however, researchers continue to seek
ways to reduce the radiation dose by decreasing the number
of projection views or lowering the tube mAs [3]. However,
low-dose techniques cause streaking artifacts and degrade
image quality, both of which affect clinical diagnosis signif-
icantly. To cope with the problems associated with low-dose
CT (LDCT), a number of algorithms have been designed;
these algorithms can be roughly divided into three categories,
namely, (a) sinogram filtering techniques, (b) iterative recon-
struction, and (c) postprocessing methods.
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Sinogram domain filtering compensates for the missing
sinogram of raw data before image reconstruction, such
as filtered backprojection (FBP), is applied. Representative
traditional methods to denoise in sinogram domain mainly
includes bilateral filtering [4], structural adaptive filtering [5]
and penalized likelihood methods [6], [7]. These approaches,
however, suffer from the difficulty of raw data acquisition
in clinical practices, as well as the potential loss of image
edges over-smoothed by filters. Over the past decades, iter-
ative reconstruction algorithms have been adopted in LDCT
denoising. These approaches try to integrate the prior knowl-
edge into the objective function as the penalty term and
smooth out noise in the image. Commonly used image priors
includes total variation [8]–[10], nonlocal means (NLM)
[11], [12], dictionary learning [13], tight wavelet frames [14],
and low-rank matrix decomposition [15]. Nevertheless, these
methods require excessive computational times because of
the back-and-forth iteration between the projection and
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backprojection, which limits the clinical use of these
algorithms.

Unlike the previous techniques, postprocessing algorithms
focus on reducing artifacts in the image domain instead of raw
projection data so that they can easily be incorporated into
the clinical CT imaging workflow. Although image-based
noise does not obey a regular distribution, numerous efforts
have been proposed for CT noise suppression. For example,
block-matching 3D (BM3D) is such a popular postprocess-
ing approach which has shown remarkable improvements in
noise reduction and spatial resolution in several CT-imaging
tasks [16]–[18]. By exploring similarities between the central
pixels and pixels in a voxel neighborhood, Chen et al. applied
a large-scale NLM method to LDCT reconstruction images
to suppress noise and artifacts [19]. Similarly, Li et al. and
Green et al. improved the NLM method via noise map esti-
mation and a database of high-SNR CT patches, respectively
[20], [21]. Based on sparse representation theory, Chen et al.
applied a k-means singular value decomposition (K-SVD)
approach [22] to a fast dictionary learning and made it effec-
tively suppress mottled noise and streak artifacts [23].

Recently, deep learning (DL) [24] has been success-
fully applied to many areas, such as speech recognition,
visual object recognition, and object detection, thus inspiring
researchers to expand its utility into the image-denoising
field. For LDCT image denoising tasks, researchers have
proposed many effective convolutional neural networks
(CNNs) [25] which were proved to be superior than com-
mercial iterative reconstruction algorithms [26]. Recently,
generative adversarial networks (GANs) were witnessed
applications in LDCT denoising [27]–[29]. In particular,
it is proven that residual images have a simpler topological
structure so that complex artifacts from CT reconstruction
images can be learned with greater ease than the original
artifact-free images [30]. Various residual learning architec-
tures [31], [32] have been successfully applied for medical
image denoising. For example, Kang et al. introduced a
deep residual learning CNN architecture using a directional
wavelet to extract the directional component of artifacts and
remove them from LDCT images [33]. Chen et al. combined
the autoencoder, deconvolution and shortcut connections to a
residual encoder–decoder CNN (RED-CNN) for LDCT noise
suppression and structural preservation [34]. Wolterink et al.
trained a CNN to predict the noise and then merged it into
GAN architecture and claimed to obtain improved denoising
ability [35]. Wu et al. proposed a cascaded training network
for residue artifacts estimation and removal [36]. However,
the obstacle for current studies were the limited sample size
available for training of a relatively large CNNs. As the CNN
architecture is getting deeper, larger dataset is needed. But
access to raw and clear medical images is often limited for
security and privacy.

Transfer learning technique has shed new light on the
data scarcity issue on CNNs training. Transfer learning
hypothesizes that the source and target domains are related
and similar in sample distribution, while the target domain

often has fewer high-quality training data and labels than the
source domain. Although natural and medical images differ
significantly, massive works for transferring shared knowl-
edge from the former to the latter have shown considerable
success. For example, Zhen et al. learned transferred knowl-
edge from VGG-16 CNN to address data limitations in a
rectum toxicity classificationmodel [37]. Jiang et al. explored
transfer learning by pre-training GoogLeNet and AlexNet on
a large-scale visual dataset to tackle the problem of limited
image samples in breast mass classification tasks [38]. More-
over, ImageNet-pretrained CNNs have been widely used for
object detection and segmentation, such as chest pathology
identification [39]–[42]. Such tremendous progress showed
that fine-tuning pre-trained CNN models from natural image
dataset to medical image tasks was an effective method to
avoid overfitting and had been proved to achieve satisfactory
performance. As for LDCT denoising, Shan et al. proposed
an initial 3D CPCE denoising model, which can be directly
obtained by extending a trained 2D CNN, and then fine-
tuned to incorporate the 3D spatial information from adjacent
slices [43]. They also proposed a transfer learning framework
that first trained several basic CNN units that were fused in
a cascaded fashion for the denoising task [44]. Gong et al.
introduced a parameter-constrained GAN with Wasserstein
distance and perceptual loss for low-dose PET image denois-
ing [45]. A transfer learning strategy was developed to train
the proposed model with parameters being constrained in
order to make the training process more efficient and thus
with improved denoising capability. These reported methods
all employed the transfer learning techniques and claimed to
be able to effectively suppress image noise while preserving
image details.

Inspired by these efforts, we explored the feasibility
of applying transfer learning to a residual neural network
(TLR-CNN) for LDCT image denoising. We also applied the
model to perform denoising with unknown noise level (i.e.,
blind denoising). For noise estimation, we designed a CNN
architecture with a residual network to achieve matching
from LDCT to a noise map. We pre-trained this model using
natural images and then fine-tuned its shared parameters with
limited LDCT images in order to remove the artifacts in
LDCT. Finally, we confirmed our hypotheses using a series
of comparative experiments.

The rest of this paper is organized as follows. In Section II,
we introduce the workflow of our proposed TLR-CNN and
the network architecture. In Section III, we provide a detailed
description of the implementation of the method and the
configuration of the parameters in the model. Results are also
shown and evaluated by comparison with several state-of-the-
art denoising methods. Finally, Section IV draws discussions
and conclusion.

II. METHODS
A. NETWORK ARCHITECTURE
Our proposed TLR-CNN is designed to predict the noise in
LDCT, the difference between the original and noise-free
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FIGURE 1. Architecture of the proposed TLR-CNN.

maps. Residual learning was utilized in our work to improve
the effectiveness of the training process.

Let us assume y ∈ Rm×n to be a LDCT image contaminated
with noise, and x ∈ Rm×n is the corresponding normal-dose
image. Their relationship is formulated as y = =(x), where
= denotes the corrupting process that contaminates normal-
dose CT image due to the quantum noise. For TLR-CNN,
we adopted residual learning formulation to train a residual
mapping <(y) such that x = y − <(y). The noise reduction
problem can be solved by minimizing the mean squared error
(MSE) between the desired residual maps and estimated ones
from noisy image

ζ (�) = argmin
�

∥∥<(yi;�)− (yi − xi)
∥∥2 , (1)

which is served as the objective function of TLR-CNN by
learning the trainable parameters �. Here, {(yi; xi)}Ni=1 rep-
resents N noisy-clean training pairs. In our work, Adam [46]
were utilized to optimize the above objective function.

As shown in Figure 1, the proposed LDCT image blind
denoising TLR-CNN mainly includes three types of compu-
tation layers: feature extraction, stacked residual blocks, and
residue prediction, which are detailed below.

1) FEATURE EXTRACTION
The first layer was set to extract the feature maps for the
following residual learning, including convolution (Conv)
and nonlinear activation, formulated as

L0(y) = ReLU(Conv(y,W, b)), (2)

where W and b denote the weights and biases of the first
layer. Here we used rectified linear unit, ReLU for short, to be
the nonlinear activation function, formulated as

ReLU = max(0, κ), (3)

where κ represents the convolutional kernel, formulated as

κ =
∑
i

Wi ∗ yi + bi i = 1, 2, . . . , n, (4)

where ∗ represents the convolution operator, and n is the
number of convolutional kernel. Here, W can be considered
as n0 convolutional kernel with a size of s0 × s0 × c0, and
b is a feature vector with size of n0 × 1. Parameter c0 is the
channel of feature maps in the layer and set to 1 for grayscale
images.

2) STACKED RESIDUAL BLOCKS
In this study, batch normalization (BN) [47] was used to boost
the denoising performance with input layer normalization by
adjusting and scaling the activation. Previous experiments
have shown that the integration of residual learning and BN
demonstrated superior performance among a series of relative
experiments [48].

Each residual block in the proposed TLR-CNN was com-
posed of three operations, connected by Conv, BN, and
ReLU. Unlike the residual building block in He’s work [31],
our residual block has no bypass connection such that the
residual images are fed into the next Conv layer directly. The
next connected layers are stacked by a single residual block,
Conv + BN + ReLU, formulated as:

Li(y)=ReLU(BN(
∑
i

Wi ∗ Li−1(y)+bi)) i = 1, 2, . . . , l,

(5)

where l is the number of stacked residual blocks, andWi with
a size of si × si × ci and bi with a size of ni × 1 are the
weights and bias of the Conv operator in ith residual block.
Parameter ci is the number of convolutional kernels in the
previous convolutional layer, equal to ni−1.

3) RESIDUE PREDICTION
The final layer of our network was a single convolution layer
to predict the residue map from multiple channels of the
previous layer, and could be formulated same as Formula (4).
What is different is, there is only one convolutional kernel
with size of s′ × s′ × c′, to compound the residue prediction
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of the model in only one channel. We then obtained the noise-
free image by subtracting the residue prediction from the
LDCT image.

B. TRANSFER LEARNING
We utilized the transfer learning technique in our method to
avoid over-fitting and reduce the training time. Initializing the
parameters randomly in the CNN model could easily lead to
overfitting and even gradient explosion [49], [50]. Options
to utilize the pre-trained parameters in the model include:
1) ‘‘shallow tuning’’: fine-tune only the last few fully con-
nected layers; and 2) ‘‘deep tuning’’: fine-tune all the net-
work layers. As suggestion by Choi et al. [51], fine-tuning
the last layer may not maximally extract the knowledge
from a pre-trained network, it’s better to activate all inter-
mediate layers to find the most effective representation.
Diamant et al. [52] implemented a general-image trained net-
work as initialization of the network by all the layers, trained
on ImageNet data to categorize the chest radiograph data.
Similarly, Yuan et al. [53] enhance the resolution of hyper-
spectral images by exploiting the knowledge from a whole
pre-trained CNN developed by natural images, and achieved
comparable performance. Inspired by these work and consid-
ering the substantial difference between the source applica-
tion (natural image) and target application (LDCT image),
we opted to fine-tune all layers in our proposed TLR-CNN.

C. DATA PREPARATION
The proposed TLR-CNN was first pre-trained by using the
natural noisy-clean image pairs, and then was fine-tuned by
the LDCT image dataset from end to end.

1) NATURAL IMAGES
We adopted a dataset including 400 natural images [54] to
pre-train the TLR-CNN for blind Gaussian denoising. The
images were cut and tailored into patches of 40 × 40 pixels,
and a data augmentation strategy, including rotation, flip-
ping, and scaling transformation, was applied to generate
additional data samples for the training process [55]–[57],
as shown in Figure 2. Then, we simulated the noisy images
by adding Gaussian noise to the clean natural image patches
to generate noisy-clean training patch pairs, i.e.,

δ(γ ) = γ +
1

√
2πσ

exp(−
(γ − µ)2

2σ 2 ), (6)

where γ represents the original image patch, µ represents the
mean value of Gaussian noise, and σ represents the Gaussian
noise level ranging within [1, 50] in current study. Finally,
we generated 217,856 blind noisy-clean patch pairs for the
network pre-training.

2) LDCT IMAGES
The CT image dataset employed included 5,761 normal-
dose CT images of pixels from 60 patients obtained from
The Cancer Image Archive (TCIA). These images covered
different sites of the human body, including the lung, colon

FIGURE 2. Data augmentation of the natural-image dataset: (A) Original
natural image; (B)–(I) Augmented images by rotation and flipping.

and head–neck, etc. Among the 5,761 images, 5,311 images
were randomly selected for model training, while the remain-
ing 450 images were used for testing. We followed Zeng’s
method [58] to inject Poisson and Gaussian noise into the
normal-dose CT images in the sinogram domain to simulate
LDCT images.

First, the CT values of the normal-dose images Ind,HU were
transformed to attenuation coefficients Ind,coff by using the
following formula:

Ind,coff = (
Ind,HU
1000

+ 1)× νwater , (7)

where ν represents the linear attenuation coefficient of the
scanned substances. At a tube voltage of 120 kVp, νwater
is equal to 0.2154. Second, we used the GPU-accelerated
forward projection operation in the Astra toolbox [59] to sim-
ulate the corresponding normal-dose CT sinogram Snd,coff
by:

Snd,coff = PInd,coff , (8)

in which P is the projection matrix and is defined by both the
volume geometry and the projection geometry. Here, we set
a 2D parallel beam geometry with detector numbers of 1024,
and projection angles of 2π/1024.

Third, the LDCT sinogram Sld,coff at different tube current
ranges between [10:10:100] mAs was simulated by using
the method introduced by Zeng et al. using the following
formula:

Sld,coff = Snd,coff + Îi{Poisson(λ)+ Gaussian(me + σ 2
e )}

i = 10, 20, . . . , 100mAs, (9)

where Îi is the measured noisy transmission datum, λ is the
mean number of photon passing through the patient, and
me and σ 2

e are the mean and variance of electronic noise,
which are determined by the specific mAs. Here, Poisson and
Gaussian represent the injected noise, which obey Poisson
distribution and uniform distribution, respectively [58].

Finally, we used the analytical reconstruction method
FBP [60] in Astra toolbox to reconstruct the LDCT attenu-
ated coefficients Ild,coff , accelerated with GPU. Then we use
reverse transform of Formula (7) to generate the CT value
images Ild,HU .
Three typical examples of the simulated normal-

dose CT and LDCT images were shown in Figure 3.
Finally, we extracted image patches from the normal-dose
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FIGURE 3. Typical CT images of the (a) head-neck, (b) lung, (c) colon, and
their simulated LDCT images at 20, 40 and 80 mas, displayed
in [−160, 240]HU.

CT images Ind,HU and LDCT images Ild,HU using a similar
procedure for processing the natural images as described
above.

III. EXPERIMENTAL DESIGN AND RESULTS
A. PARAMETER CONFIGURATION
For the neural network architecture, the sizes of convolutional
filters were set to 3× 3. The numbers of filters in the stacked
residual blocks were set to 64, and the first and last layers
numbered 64 and 1, respectively. At the beginning, weights
in the convolution operation were randomly initialized to
satisfy the Gaussian distribution with zero mean and a stan-
dard deviation of 0.01. The other hyper-parameters of the
model were initialized with a weight decay of 0.0005 and
momentum of 0.9 [61]. Different number of stacked residual
blocks ranging from 5 to 30 were used and the corresponding
performances were compared. We also used gradient clip-
ping to limit the magnitude of the gradient to avoid gradient
explosion. The gradient was clipped to the predefined range
of [−0.005, 0.005].

In the pre-training process, the learning rate was initialized
to 1e-3 and then decayed to 1e-4 when half number of the
epochs was reached. The patch size was 40, the batch size
was 128, and the number of epochs was 50. As for the fine-
tuning process, a smaller learning rate [1e-4, 1e-5] was set
to avoid the shared parameters in the pre-trained model to
be destroyed. And in fine-tuning, the patch size was 128, the
batch size was 16 and the model could converge within only
one or two epochs from end to end.

B. RESULTS
We compared our model with state-of-the-art denoisers,
namely, BM3D [62], KSVD [63], WNNM [64], FFDNet [65]
and WavResNet [66], where the BM3D, KSVD, and
WNNM are traditional image-based methods, whereas FFD-
Net and WavResNet are DL-based models. For quantitative
assessments, we utilized four evaluation indices, namely,

PSNR [67], RMSE [68], SSIM [69], and FSIM [70], where
the PSNR and RMSE are metrics to quantify the image
quality, while SSIM and FSIM are methods to assess the
image similarity based on human visual neurobiology and
perception.

1) SINGLE DENOISING MODEL
We first evaluated the denoising capability of the proposed
TLR-CNN models with 15 residual blocks that trained with
LDCT images at known noise levels of 30, 50, and 70 mAs,
respectively. Figure 4 shows the comparison results of the
proposed method and the results of other baseline methods.
To show the image details, the ROI areas (in the red box)
indicated in Figure 4 were enlarged in Figure 5. Visually,
the results of the proposed TLR-CNN are better than those
competing methods. For quantitative comparison, we mea-
sured all the 450 LDCT images in the testing set compared
with different methods in terms of means ± SDs, as shown
in Table 1. It can be seen that all the denoising methods were
able to suppress image noise, while TLR-CNN scored the
highest quantitatively, followed by the WavResNet, BM3D,
FFDNet, KSVD and WNNM methods.

2) BLIND DENOISING MODEL
To obtain a generalizable model for different noise levels,
we randomly mixed LDCT images at [10:10:100] mAs to
the training set and trained the pre-trained model within only
one epoch. The number of stacked residual blocks was 15.
After training, we selected two slices to test TLR-CNN and
compared the results with those of BM3D, K-SVD, WNNM,
FFDNet and WavResNet. Figures 6 and 7 show the observa-
tion results of LDCT at 10 and 40 mAs, respectively. We can
observe the severe streaking artifacts caused by LDCT. All
of the denoising methods could remove the noise to a certain
degree. Our proposed TLR-CNN could not only remove the
artifacts but also preserve the image structure better, while
other methods retained some streaking artifacts and showed
over-smoothing. Figure 8 shows the pseudo-color results of
Figures 6 and 7, the difference between the NDCT and
the LDCT, BM3D, K-SVD, WNNM, FFDNet, WavResNet
and TLR-CNN images. We can observe that our proposed
method could push the output distribution closer to the ground
truth. Table 2 shows the quantitative results of the detailed
ROIs in Figures 6 and 7. For visualized results of 10 and
40 mAs, our proposed method clearly outperforms the other
algorithms.

In this experiment, the blind TLR-CNN could be gener-
alized to different noise levels even when the actual level is
unknown. To test the blind denoising ability of the proposed
model, we used ten sets of different levels of noise from
10mAs to 100mAs for a total of 450 LDCT test images.
The PSNR, RMSE, SSIM and FSIM values of each group
were tested with the blind TLR-CNN model, and the average
values were calculated and compared with the other five
denoising methods, as shown in Table 3. The results indi-
cate that all the methods with these ten sets of noise can
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FIGURE 4. Results of denoising models for different signal noise levels: 30, 50, and 70 mAs. From the first to the last column: LDCT, BM3D, KSVD, WNNM,
FFDNet, WavResNet, TLR-CNN, and NDCT. Red rectangles indicate ROIs as shown in Figure 5. Images are displayed in [−160,240] HU.

improve the image quality when compared with the LDCT.
We calculated the increasing rate of the quantitative values,
the ratio of the difference between LDCT and the denoised
image by TLR-CNN. As shown in Figure 10, the maxi-
mum absolute increases in PSNR, RMSE, SSIM and FSIM
were 30.81%, 65.05%, 94.45% and 9.90%, respectively. The
image qualities were improved for all noise levels for all the
PSNR, SSIM, FSIM andRSME, but such improvements were
decreasing as the noise level decrease (higher mAs). In fact,
in Table 3, we can see that the TLR-CNN scored the highest
quantitative values in the range of 20 to 60 mAs, however,
this superiority was not observed at other noise levels.

C. MODEL AND PERFORMANCE TRADE-OFF
In this subsection, we explored several factors that will affect
the performance of TLR-CNN, including transfer learning,
number of residual blocks and optimization of the model.

1) TRANSFER LEARNING
In our proposedmethod, we first pre-trained TLR-CNN using
natural images with blind Gaussian noise and then fine-tuned

the model by blind LDCT images; the combined process
is known as the transfer learning strategy. In order to ver-
ify the necessity of pre-training, a comparative experiment
between three models was conducted. The first model was
trained by LDCT images from end to end directly. The
second model was double-trained with the LDCT image by
firstly pre-trained with the LDCT images (with compara-
ble size of natural images) and then further fine-tuned with
the LDCT images. While the third model was pre-trained
with the natural images and then fine-tuned with the LDCT
images. The comparative results were shown in Table 4.
Compared with the original LDCT, the model without pre-
training could hardly achieve satisfactory denoising capabil-
ity, while the models with pre-training (either with LDCT
or natural images) demonstrated superior denoising perfor-
mances, and the model pre-trained with natural image and
fine-tuned with LDCT performed the best with respect to all
the evaluation metrics. These observations were consistent
with the previous studies [71], [72] which reported that the
model pre-trained in natural image domain seemly achieved
better performance than that pre-trained with CT images.
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FIGURE 5. ROIs marked by red in the results of denoising models for different signal noise levels in Figure 4. Displayed in
[−160,240] HU.

FIGURE 6. Results from the lung image for comparison: 10mAs LDCT, BM3D, K-SVD, WNNM, FFDNet, WavResNet, TLR-CNN and
NDCT. The ROIs are marked by red and enlarged in the images. Displayed in [−400, 400] HU.

Thismight ascribe to the fact that natural images usually show
more complex textures which are beneficial for learning of
low-level features of medical images. Besides, pre-training

using additional data from different domains would tend to
lead to better generalization and thus improved denoising
performance as observed in current study.
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TABLE 1. Quantitative results (mean±SDs) associated with different algorithms and dosage for the testing dataset.

TABLE 2. Quantitative results of detailed ROIs in Figs. 6 and 7.

FIGURE 7. Results from the lung image for comparison: 40mAs LDCT, BM3D, K-SVD, WNNM, FFDNet, WavResNet,
TLR-CNN and NDCT. The ROIs are marked by red and enlarged in the images. Displayed in [−400, 400] HU.

2) NUMBER OF RESIDUAL BLOCKS
The deeper the neural network is, the better performance will
achieve by the model. However, limited training data and

the hardware context could restrict the depth of the model.
We tested different numbers of residual blocks using the
same training dataset to investigate the trade-off between
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FIGURE 8. The difference between the NDCT and the LDCT, BM3D, K-SVD, WNNM, FFDNet, WavResNet and TLR-CNN images, rendered in pseudocolor for
Fig. 6 and 7.

TABLE 3. Quantitative results (mean value) associated with different algorithms for different noise levels.

TABLE 4. Quantitative results for evaluation of transfer learning (Mean±SD).

performance and network depth. We tested 5, 10, 15, 20,
25 and 30 residual blocks for single noise levels of 30,
50 and 70 mAs. The models with 5, 10, 15, 20, 25 and
30 residual blocks featured 1.9e+5, 3.7e+5, 5.6e+5, 7.4e+5,
9.3e+5 and 1.1e+6 parameters, respectively.

Figure 9 shows the testing results of the models in terms
of four image quality indices and the average value of the

450 testing images. Though model of 15 residual blocks
performs the best at noise level of 30 mAs, blocks num-
ber of 10, 15 and 20 are similar at noise level of 50 and
70 mAs. To statistically evaluate the sensibility of residual
blocks, one-way ANOVA test with p<0.05 was performed.
The statistical results are in Table 5. There is no significant
difference between 10, 15 and 20 residual blocks at noise
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TABLE 5. Statistical analysis of FSIM for different residual blocks at different noise levels (Mean±SD).

FIGURE 9. Results of models with different numbers of residual blocks. (a) PSNR; (b) RMSE;
(c) SSIM; (d) FSIM.

TABLE 6. Results of models optimized with different solvers (Mean±SD).

level of 50 and 70 mAs, except 30 mAs. At noise level
of 30 mAs, the best model was the one with 15 residual
blocks.What’smore, experiments show that a simple network
was also difficult to learn the characteristics, while a deep
network would cause overfitting by the limited training data,
as the models with 5 and 30 residual blocks shows. Therefore,
considering the balance between the performance and the
computation time, we chose 15 as the number of residual
blocks in our studies.

3) OPTIMIZATION
As mentioned earlier, the Adam solver was utilized to opti-
mize the parameters in our TLR-CNN. Here, we drew a
gloomy contrast with the SGD solver. Table 6 shows the
results, indicating that using the Adam solver was better than
using the SGD solver overall.

FIGURE 10. Increasing rate of different noise levels by the blind
denoising model compared with original LDCT.

4) IMPLEMENTATION PLATFORM AND EFFICIENCY
Our implementation was derived from the MatConvNet tool-
box for CNNs of version 1.0-beta25 and coded on Matlab
2017a. Equipped with an NVIDIA GeForce GTX TITAN
Xp GPU, we used CUDA8.0 and cudnn5.1 to accelerate the
training processing.
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FIGURE 11. Denoising results from the test data. The first to third columns represent quarter-dose CT, denoised images by
TLR-CNN and the full-dose CT, displayed in [−160, 240]. And the profiles of the corresponding positions are plotted in the
fourth column.

FIGURE 12. Quantitative results of LDCT, BM3D, KSVD, FFDNet, WavResNet and TLR-CNN (boxplot): PSNR,
RMSE, SSIM and FSIM.

In our experiments, approximately 1.8, 3.3, 5.4, 7.5,
9.5 and 13.0 h were needed to pre-train models with 5, 10,
15, 20, 25 and 30 residual blocks, respectively. During the
fine-tuning process, we generated approximately 107 patches
from the LDCT dataset, which required approximately 4.6,
5.6, 8.1, 11.7, 19.5 and 29.5 h to train models from end to

end with 5, 10, 15, 20, 25 and 30 residual blocks, respec-
tively. A deeper model would require a longer training time
because it uses larger parameters. In this study, the execution
times for BM3D, K-SVD,WNNM, FFDNet,WavResNet and
TLR-CNN were 1.49, 2.96, 180.99, 0.093 17.66 and 0.10 s,
respectively. Among these methods, DL methods, TLR-CNN
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and FFDNet, were the most effective ways for denoising
LDCT images and outperformed the traditional denoising
algorithms.

D. CLINICAL DATA TEST
To validate the clinical performance of TLR-CNN, we uti-
lized a real data set, provided by Mayo Clinic for 2016 Low
Dose CT Grand Challenge. This training data includes ten
patient cases, with totally 2,378 3mm thickness full-dose
collected at 120 kV and quarter-dose images pairs. We chose
the blind denoising model as the pre-trained model, and then
fine-tuned it with 9 patients’ data within only 2 epochs. The
remaining one patient was used as the test set. Five-fold
cross-validation was also performed to select the optimal
model. And it took an average of 6.92 hours to train a model.
As shown in Fig. 11, we gave two cases to indicate the
denoising results and found that the noise in quarter-dose
images could be removed by our proposed method very well.
In addition, the profiles of the horizontal line across to the
corresponding images were drawn to demonstrate that the
results by TLR-CNN were close to the ground truth.

Moreover, to quantitatively illustrate the results, we
restricted two areas including regions of interest (ROI) and
background to calculate the value of contrast-to-noise ratio
(CNR). It is a critical measurement to determine image qual-
ity for physicians’ diagnostic, calculated by:

CNR =
|µROI − µBg

∣∣
σBg

, (10)

where µROI and µBg is the mean value of the intensity of ROI
and the background, and σBg stands for the standard deviation
[73], [74]. Also, signal-to-noise ratio (SNR) is analyzed by
the whole images of LDCT and the result of our method.
Higher CNR and SNR indicates better spatial resolution and
higher quality of the images. As shown in Figure 11, the yel-
low number written in the images is the CNR value calculated
from the red correspond circle regions, and the green number
is the SNR value. Compared with the LDCT, the values of
CNR and SNR of the result increased, which confirms that
our proposed method is helpful to remove the artifact in
LDCT and increase its spatial resolution. Figure 12 shows
the quantitative results of quarter-dose CT, BM3D, KSVD,
FFDNet, WavResNet and TLRCNN. The results show that
the average values of our proposed method are 48.16± 0.57,
0.9993±0.0652, 0.9862±0.0016 and 0.9916±0.0008, which
are superior to the other baseline methods.

IV. DISCUSSION AND CONCLUSION
In our study, the model was built based on the residual
network, which utilized the integration advantages of batch
normalization and residual learning to boost the denois-
ing performance of the model. For the training process,
we utilized transfer learning strategy and divided it into
two steps, including pre-training and fine-tuning, which was
proved to be able to help prevent overfitting by data scarcity.
The datasets for these two steps were from two different

domains, and the experimental evaluations demonstrated that
the model pre-trained inclusive of the natural images was
better than the model pre-trained merely with the CT images.

In conclusion, we proposed a deep convolutional network
TLR-CNN for LDCT image restoration by transferring the
knowledge from natural domain to medical image. This net-
work comprises of residual blocks and can estimate noise
maps directly and hence facilitate the process of LDCT arti-
fact reduction. To verify the performance of our method,
we performed comparisons with state-of-the-art methods
and achieved superior results. The proposed TLR-CNN was
proved to be able to remove image artifacts while preserving
texture details for LDCT at a low computational cost. In the
future, we plan to add a human reader study into clinical
practice for subjective image quality evaluation. Furthermore,
we can optimize our method and extend it to other CT image-
processing tasks, such as CT image reconstruction, CBCT
scatter correction, and geometric correction.
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