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ABSTRACT With the rapid growth of application demands and the real-time change of environmental
situations, the defects of the UAV task network in adaptability, flexibility, and resilience are becoming
more and more prominent. The current network architecture that the junction of points and lines is fixed
cannot dynamically provide capacity requirements in real-time due to the failure nodes encountered in the
Unmanned Aerial Vehicle (UAV) task scheduling process. To address this challenging issue, this paper
proposes a flexible network architecture supporting dynamic fault-tolerant task scheduling model (DSM-
FNA) for the UAV cluster. To be specific this paper resorts to super network theory, combining the
management theory of flexible network and resilience network to carry out the organizational calculation
on the model, and also draw upon linear transformation function to weight and stratify the capability value
according to the ability requirement required by the task. Then, a flexible network architecture dynamic
scheduling algorithm (FDSA) is proposed, and the substitution strategy is designed for the failure point,
to realize the capability and dynamically adapt to the task. Finally, compared with the classical Max-Min
algorithm and other algorithms, it is verified that the FDSA algorithm performs better dynamic adjustment

for quick response in case of UAV cluster emergencies.

INDEX TERMS Ability cluster, flexible dynamic scheduling, flexible model, task cluster.

I. INTRODUCTION

The rapid development of economic information globaliza-
tion, the deepening of the concept of unmanned intelligent
operation, the rapid progress of AI/ ML technology, the appli-
cation of unmanned platforms in various fields of land, sea,
and air, and the adaptive task architecture of Unmanned
Aerial Vehicle (UAV) clusters has become a research hotspot.
However, most of the existing research ignores the problem of
anode or a subgroup failure during the task execution process.
Most of the existing researches on UAV cluster mission archi-
tecture are from a macro perspective and lack of details and
authenticity. How to consider the adhoc emergency response
to unexpected situations during the task execution process is
the difficulty of the research on the adaptive task architecture
of UAV clusters.

Keus’ Netforce reference model, whose mathematical
model structure can describe two key characteristics of
network well [1]. In the current command and control
C2 super network model, network nodes and sub-networks
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have different functions respectively, and the complex rela-
tionships in the C2 network are quantified and described [2].
Super network architecture modeling highlights the inter-
action between nodes while considering the complex and
changeable cluster operation environment, great state uncer-
tainty, and strong time constraints, which is a prerequisite for
the success of large-scale unmanned operations of both sides
[3]. The unmanned combat of a formation can perform differ-
ent tasks at the minimum cost, and simultaneously carry out
comprehensive offensive and disturbance detection missions
in multiple combat fields [4]. Mosaic warfare uses dynamic,
coordinated, and highly adaptive composable forces to link
together low-cost, low-complexity systems in a variety of
ways, creating a Mosaic block-like combat system [5]. What
makes Mosaic unique is that when parts and combinations
of the system are destroyed by the enemy, they automati-
cally and quickly respond to each other, forming a combat
system that, though functionally degraded, can still link to
each other and adapt to battlefield situations and operational
requirements [6]. In the actual combat process, the situation
changes in real-time, and the task will change immediately,
instead of being fixed in advance. Architecture is the carrier
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FIGURE 1. The mission planning structure diagram.

of system capability, which integrates all the capabilities of
different component systems to achieve the overall mission
objectives of the operation. The combat mode has developed
from single aircraft simple task to multi-aircraft cooperative
execution of multiple complex tasks, and group coopera-
tion, unmanned intervention, and autonomous coordination.
Therefore, the integration of the dynamic scheduling model
of flexible network architecture (DSM-FNA) into existing
combat systems will be the main form of future combat
battlefield and play a pivotal role in the development of DSM-
FNA capabilities.

In this paper, we advance the state-of-the-art technology in

the following ways:

o First, our team is the first to propose and solve the
task of implementing a special event in a UAV cluster
architecture, which leads to the failure of the UAV node,
and the rapid dynamic reconstruction of the cluster to
implement the internal scheduling problem.

o Second, a dynamic scheduling model of flexible network
architecture for UAV cluster tasks (DSM-FNA) is pro-
posed for the challenges of the current network architec-
ture of the UAV cluster system. The model describes the
network architecture by using the theoretical method of
a super network to improve the quantitative computing
capability of the network.

o Third, we use the fuzzy mapping between task node and
capability weighted hierarchical method improves the
flexibility and intelligence of network architecture and
also realizes the mapping relationship between capa-
bility, task, and requirement. The cost of searching for
space and time is reduced, and the complexity of task
scheduling is reduced.
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e Fourth, we a flexible dynamic scheduling algo-
rithm (FDSA) for network architecture. To implement the
scheduling model we proposed, and compare it with sev-
eral traditional algorithms, the simulation experiment
proves that our research is intentional, and it can be
used for the follow-up work of the dynamic scheduling
of the UAV cluster architecture.

The rest of the paper is organized as follows in Fig. 2.
In the second part, we introduce the organizational structure
of the mission-oriented flexible network architecture of UAV.
In the third part, the dynamic scheduling model of DSM-
FNA is established to map capability and task requirements
effectively. In the fourth part, a flexible dynamic scheduling
algorithm (FDSA) for network architecture is designed and
compared with the classical Max-Min algorithm and other
algorithms. In the fifth part, the FDSA algorithm and classical
Max-Min algorithm, and other algorithms are compared and
analyzed, and the results are obtained. The sixth part is the
research summary of this paper.

Il. RELATED WORK

Due to its low cost and diversified combat tasks, unmanned
clusters have been attached importance to by military pow-
ers, and task scheduling of unmanned cluster architecture

115449



IEEE Access

T. Duan et al.: Dynamic Tasks Scheduling Model of UAV Cluster Based on Flexible Network Architecture

has become a research hotspot. In recent years, the United
States has been vigorously developing the “UAV cooper-
ative warfare” technology, including the new concept of
unmanned swarm warfare [11], which is mainly promoted
by DARPA, and the loyal wingman project, which is the
intelligent technology to control the unmanned “wingman”
through the fifth-generation fighter aircraft of the United
States [12]. All these technologies focus on improving the
status and function of intelligent equipment such as large
and high-performance UAV, unmanned wingman, and UAV
cluster in combat. At present, the research on combat mission
scheduling based on the UAV cluster is mainly divided into
two parts.

One is to combine task scheduling with an intelligent algo-
rithm to solve the task scheduling problem of UAV cluster
architecture. Lamont developed a parallel task planning sys-
tem based on a multi-objective evolutionary algorithm [13].
Ramirez-Atencia proposed a new multi-objective genetic
algorithm to solve the complex task scheduling problem
involving a group of unmanned aerial vehicles and a group
of ground control stations (GCS) [14]. They further proposed
a new algorithm to obtain the most important solution in
the Pareto optimal boundary (POF) [15]. Also, due to the
complexity of task planning, it is difficult for mathematical
models to describe all the characteristics of the planning
problem in detail. Because of the complexity of the func-
tional entities of military combat systems and the flow of
information between them, modeling them is a challenging
task. The rapid development of network science brings new
hope. Much research has been done on complex network
representations of military organizations [16]-[18].

The second is to use the simulation method to study
this problem. Slear [19] designed and implemented a com-
prehensive mission planning system that integrated several
problem domains in the UAV swarm simulation system.
Wei et al. proposed the operational simulation framework of
UAV group configuration and task planning and scheduling
[4]. Gaudiano et al. [20] proposed a strategy to use a genetic
algorithm to evolve group control parameters, such as transfer
probability of UAV in different modes, pheromone attenua-
tion rate, and pheromone attraction parameters of UAV, etc.,
for searching and suppressing enemy air defense missions.
Similarly, in Dasgupta [21], the clustering mechanism of
automatic target recognition is based on the positive intensi-
fied communication mechanism that insects use pheromones
to find target paths. The simulation results are only verified on
the AEDGE simulation platform. Kurdi ef al. [22] based on
the nature of locust species and their autonomous and resilient
behavior to internal and external forces. A new autonomous
bio heuristic method is proposed to efficiently allocate tasks
among multiple UAVs in one task. The dynamic task allo-
cation mechanism among multiple unmanned aerial vehicles
operating autonomously during the mission is discussed [23].
Task assignment is dynamically adjusted by each UAV in the
course of the task according to the criteria related to the oper-
ational status or mission parameters of the individual UAV.
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However, most of the existing studies do not consider
the adaptability of the cluster architecture. When the task
is performed, the tasks assigned to the UAV are known.
During the execution of a task, the real-time change of the
situation environment cannot be predicted for everything,
failing a certain UAV or a certain subgroup of tasks, and the
failure of nodes or subnetworks in the cluster architecture.
Ahmad et al. used the K shortest path to calculate the opti-
mal path planning path to reflect dynamics [24]. Literature
[25] proposes the dynamic resource allocation problem with
improved Quality-of-Service applicable to buses. Long-Short
Term Memory (LSTM) based neural networks are considered
to predict city buses locations for interference determination
between moving small cells. It will be a big problem on how
to dynamically adapt the unattended cluster architecture to
the changing environment.

Valerio et al. proposed that flexibility is the ability to rec-
ognize emergent behaviors and respond to them [26]. Man-
delbaum et al. [27] proposed an ability to respond to changes
in the environment promptly. Scholars say different things
about flexibility. Although there are many arguments about
flexible networks, most of them are about “variability” and
“invariance”. In this paper, a task-oriented flexible network
is proposed given the possibility of node interruption in UAV
cluster architecture and the uncertainties encountered at the
task end, as well as the disadvantages of network architecture
in the aspects of flexibility, adaptability, and self-adaptability.
The flexible network model is to use the flexible network
theory to serve the operational mission network architecture.
The flexible network is to use the resources of the internal
network nodes of the current architecture and the effective
resources of other nodes in the whole network to meet the
requirements of rapid adaptation of the failed nodes and
realize the ability to adapt to the sudden changes in the current
environment.

lll. FLEXIBLE NETWORK ORGANIZATIONAL STRUCTURE

The unattended cluster architecture reflects the configuration
of the components in the system and their interaction with
the external environment [28], [29]. In the third part, a task-
oriented flexible network is proposed given the possibility
of node interruption in UAV cluster architecture and the
uncertainties encountered at the task end, as well as the
disadvantages of network architecture in terms of flexibil-
ity and self-adaptability. Using the network of soft change
theory of the network, the flexible network is based on the
resources of the current structure Intranet node and the effec-
tive resources of other nodes in the entire network to meet the
rapid change of the failure node, and the ability to adapt to the
current sudden environmental change. The flexible network
is applied to the adaptive mechanism, and when the situation
of the network changes, the shorter time can be adjusted
autonomously, the measures can be found in time, and the loss
can be reduced as much as possible [30]-[32]. To reduce the
scale of the problem, literature [33] proposed a cost method
to try to combine the available processing cores into a group
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FIGURE 3. UAV cluster mission combat model diagram.

of clusters and allocate the disjoint subset of a given task
set. In this aspect, we divide the ability of the task to ability
is divided into different capacity levels, and the ability to
cluster in the hierarchy is different, to form the ability and
the mapping mechanism of the task. Finally, depending on
the requirements of the task, select different capacity clusters.
We only consider the mutual assistance between drones in the
drone cluster and automatically rescue activities. The supply
layer is clustered with the desired task requirements.

A. PROBLEM FRAMEWORK

Definition (Ability): The capability of the combat architec-
ture is that the combat system can provide m capabilities such
as reconnaissance and early warning, command and control,
and fire interception for the combat system. Let the ability be
indexed by l,soleL,l =1,2,...,m.

Definition (Ability Cluster): Ability to layer LC(l, a),
le[l, SL,],aeL = 1,2, ..., m. Where [ is the number of
layers, a is the sequence number of power clusters, SC,
is the number of power clusters of clustering, and is
denoted SC(1, 1), SC(1,2),SC(1, 3), ..., SC(n, n). The first
three are illustrated with a cloud dotted line as shown
in Fig. 4 below. By constructing the mapping relationship
between the capability supply layer and the task demand,
the search space of a single rescue node is reduced to search
the entire capability cluster.

Definition (Task Node): A task node is a combat activity
that can be towed by a capability node, denoted as C. Our
goal is to clearly define the relationship between tasks and
capabilities: each task can be broken down into the smallest
atomic tasks to form a task list. And can be indexed by n,
n=1,2,...,k. So we build an adjacency matrix for task-
capability C = [Cp,]mk and about task-capability that says
whether task / needs capability n or not. If the task requires
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an index of capabilities, and set Cj, to 1, Otherwise set to 0.
For each task n, there is at least one ability 1, namely:

> Cin = W(VIeL, Ciy =1 || Ci = 0). Q)

neN
Definition (Task Clusters): Is defined as TC =
t1,¢2,¢3,... It can allocate supplies for tasks, where
t1,12,13, ... as a task queue pl, p2, p3, ... is a capability
node that provides services. For the task nodes in the net-
work, the flexible network will dynamically send them to the
task queue 71, #2, £3, . .. corresponding to the supply cluster
according to the capability of the demand. Defines the set
of capability nodes as P = pl,p2,p3,...,pn. In order
to better describe the capabilities, the three capabilities of
UAY, namely, reconnaissance, strike and detection, control
and strike, are defined as p = py, Peds Pzkds - - -- Then,
the attribute value of the UAV node is calculated numerically
to obtain the capability supply layer where the supply node

pi is located.
Definition (System Node): The system node is the equip-
ment to complete the required task and provide the corre-
sponding capability, denoted as D. For the UAS, we set up
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TABLE 1. Symbol annotations.

Symbol Quantity Symbol Quantity

L Ability LC ability to layer

SC the number of cluster TC task clusters

SL the fuzzy capability layer ZX the ability cluster center value
A = task-system matrix Den i, system-capability matrix
[aze]mj

B the element adjacency matrix Clumk task-capability

o the variance P capability matrix

n task node k the calculated coefficient
z,y untransformed property value W the standard deviation
Mazx maximum value Min minimum value
M(U,V) | the objective function

the UAS for the mission unmanned system (UM-MCS) and
the UM combat readiness system as the backup (UM-MPCS).
It has j; UM execution system and j; UM preparation system.
Letm be indexed by ay, it can be expressed as, m» be indexed
by ey, it can be expressed as: e1€E1, E1 = 1,2,...,j1. So,
the selected system provides the corresponding capability for
the task to be performed, so we define the system matrix as:
exeEy, Ey = 1,2,...,j», m3 be indexed by e3, it can be
expressedas ezeE3 = 1,2,...,j3,s0has: E = E1 +E>+E3.
The selected system provides the corresponding capability for
the task to be performed, so we define the system-capability
matrix as D = [de,]jx. When system e needs n capabilities,
set do, to 1, otherwise it’s 0. The task-system matrix is A =
[@je)mj- When task [ needs e systems, set a;, to 1, otherwise
set it to 0. Both:

Y den = 1(Ve€E, dep =1 || den = 0). )
neN
Y ae = 1(VleL, ai = 1 || ae =0). 3)
ecE

where, we assume that each system will provide more than
one capability, that each task activity selects more than one
system, and that the different capabilities satisfy the linear
sum.

Definition (C2 Organization): We assume that MCSs is
controlled by u C; cell and all cells constitute u, population,
and C; cell and population are pulled by s1s7, that is,

Sl :[1725"-7u1]7 VS]GS],
So=[ur+1,ur+2,...,u1 +uzl, VseSs, @)
S3=lup+1,u0+2,...,u3 +upy], Vs3eSs,

S=514+35+8Ss.

At the same time, each C2 unit in the UM combat system
was pulled by s, and each group was assigned to a C2 unit.
Finally, the cluster was integrated into the UM combat system
and UM combat preparation system, respectively forming
the adjacency matrix B, C, and D. In the reconnaissance
system, if task ej is assigned to s1 in C2 cell, set be151 = 1
otherwise be 0, then constitute the element adjacency matrix
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B = [b,151]j1u1, the element adjacency matrix of the detection
system is C = [cc252]j242. Similarity, the element adjacency
matrix of the detection and control system is D = [d,353]j3u3-
With so many symbols and notations, we introduce a table
that is easy to find such as Table 1.

B. ABILITY TO LAYERED

In this article, to reduce the size of the problem, we only
consider dividing the inherent capabilities into layers. In addi-
tion, this paper only considers the three inherent attributes
of UAV’s capability resources: reconnaissance capability,
attack capability, and detection and control capability. Next,
the inherent capabilities are divided into several layers, and
the set of capabilities is defined as P = Py, Py, ..., Py. Its
attribute is p = pzc, Ped, Pzkd,s - - -» and the three main research
objects are mainly discussed, namely, the reconnaissance
capability p,., the strike capability p.qs, and the detection,
control and attack capability p,s. Then the data is prepro-
cessed to form the capability layer of different capability
performance levels SL;(le[1, SL,]).

The method of linear transformation function and stan-
dard deviation are used to normalize the attribute value of
capability. Firstly, the linear transformation function is used
to normalize the capability inherent attributes of network
architecture nodes. In order to facilitate calculation and pro-
gramming, the converted inherent attribute values are divided
into (0,1). The conversion function is expressed as follows:

k = (b —a)/(Max — Min) ®)
y=>b+kx(x— Max) (6)

Here k is the calculated coefficient, and a and b are the
intervals, and a = 0, b = 1. The expressions of (5)-(6).
are used to normalize the natural properties of the supply
layer, where x is the untransformed property value, y is the
transformed property value, and Max and Min respectively
represent the maximum and minimum values of the inherent
properties in the function. The membership function in fuzzy
mathematics is used to divide the ability of the supply layer
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into the following levels:

0 x>0.2
SLy(x) = 02—-x)%x10 0.1<x=<0.2 )
1 0<x<0.1
0 x <0
0 x>04
04—-x)%x10 03<x=<04
SLy(x) =11 02<x<03 ®)
x—01D*10 0.1=<x<02
0 x <0.1
0 x> 0.6
06—x)%x10 05=<x=<0.6
Sli(x) =41 04<x<05 &)
x—=03)%x10 03<x<04
0 x <03
0 x>0.8
08—x)%x10 07<x<0.8
SLy(x) = 31 06 <x<0.7 (10)
x—=05=%10 05<x<0.6
0 x <05
0 x> 1
SLs(x) = 1 08<x<1 (11
x—=07)%x10 0.7<x<0.8
0 x < 0.7

To better represent, this paper visualizes the membership
function of the MATLAB capability layer in the following
figure, where are the different capability layers of the network
architecture capability respectively, forming a collection of
the fuzzy layer. SLy, SL;, SL3, SL4, SLs is a set of different
capability layers of network architecture capabilities, and
its corresponding membership functions can be expressed
as expressions (7)-(11), and then normalized by using
equations (5)-(6).

C. ABILITY IS QUANTIFIABLE

The maximum value is set randomly at the beginning. The
three inherent attributes are normalized as p,._n, pcq_n, and
Pzkd_n by using equation (5), and then the values of the
three inherent attributes are normalized by using the cal-
culation expression (12)-(13), which can be expressed as

Pzes Ped > Pzkd -

1 = [pad_n~+ pze_n~+ pea_nl/3. (12)
o = ((paa_n — w?* + (Pze_n — p)*
+ (pea_n — 1)*1/3)' /2. (13)
pi — score = (p; — n)/o. (14)

where u represents the standard deviation, o represents the
variance, and formula (2) represents the normalization of the
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values of the three inherent attributes of p,._n, p.gq_n and
Pza_n. Then, the membership degree of each ability can be
calculated by substituting the membership degree function
into three attribute values respectively, which are expressed
as SCrL(pz), SCL(Pea), SCL(Pzka), where Le[l, SC,]. The
membership degree of each corresponding capability layer is
defined as:

SCL(PN) = d * SCL(Pze)+e * SCL(Pca)+f * SCL(Pzka)-
15)

The evaluation expression (5) represents the membership of
Py to the ability layer SCr, and the article uses the d, e, f
to represent the weight value of each attribute value, and
the weight is in line with the demand for the current loss
of the UAV node. When an unmanned vehicle fails to com-
plete the task, the task that it needs to do is to require a higher
capacity for reconnaissance, and the lower requirements for
other capabilities, which can make d bigger, e and f smaller
and make d + e + f = 1. After layering, the maximum
membership is selected in order from large too small to obtain
the ability layer Max[SCr(Ny)] of Max(Ny).
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D. CAPACITY CLUSTER CALCULATION

Consider the multi-node failure case, which means that multi-
ple nodes have requirements. As the number of requirements
nodes increases, there are capabilities of the same type for
each requirement that perform the same tasks. We set up
different capability layers that can provide the same require-
ment purpose. Each capability layer contains multiple capa-
bility clusters, and each capability cluster can provide similar
requirements and perform similar tasks. In this paper, the lin-
ear transformation function is used to normalize and stan-
dardize data preprocessing, and the clustering into different
capability clusters is denoted as SC(I, a).

The ability set in the L layer is called Py =
P1,DP2s---,Dis---, PN, and p; is the first i capability subset
in the capacity set. The center set of the ability cluster is
definedasZ = z1,22, ..., Zk, - - - » Zm»j€1, m. The calculation
expression of capability cluster center z; is denoted as:

ZX =) (wixp)/ Y wi. (16)
i=1 j=1

MU, V)= w0 ozl (A7)

j=1 i=1 i=1

The objective function depends on the membership function,
and the clustering of the supplying capability depends on the
central minimum objective function of the capability cluster.

wij = dist(p;, ZX;)/dist(p;, ZX;).

= VY 0i—ZXP VY i —ZX)*  (18)

i=1 i=1

The membership degree of the ability cluster is obtained by
using the membership degree function to form a set. To solve
the objective function according to the calculation expression
(18), each ability will be divided into the set of the ability
cluster with the highest membership degree.

The summary process is as follows: firstly, the initial sam-
ple matrix is established by the requirements provided by
m capabilities, and the data is normalized by using equa-
tions (5)-(6), and then the data set is standardized by using
equations (14). Then the number of capability clusters is
determined and the membership matrix is obtained by using
the objective function M (U, V). Then, according to the cal-
culation expression (18), the ZX of the ability cluster center
is calculated. Then, according to the demand, the objective
function is used to calculate the value of the objective function
of the ability cluster center, and the membership matrix is
updated until the clustering requirements are met.

E. CAPABILITY REQUIREMENTS TASK MAPPING

Capabilities are mapped to requirements in combat activities
by taking into account the capabilities of the three inherent
attributes p.., pcq and prqs. The mathematical expectation of
discrete random variables is used for calculation. The capa-
bility values of inherent attributes are first comprehensively
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considered and then the corresponding capability clusters
are determined according to the two-dimensional relation of
demand capability, to realize the mapping of demand and
capability and meet the requirements of different combat
tasks.

When a requirement instruction is issued, the weight of
capability value tends to be different according to different
requirements. Similarly, the correspondence relation of task
capability value is considered comprehensively. As shown
in Fig. 5. So, using the expected value,

n
EP) =Y (3 p) (19)
i=1
In this paper, to simplify the calculation and reduce the
complexity of the problem, only p.., pcq and p s are con-
sidered. That is:

BS(P) = 01 * pzc + 02 % Peq 03 * Prka (20)

where, parameter d1, d2, d3 represents the empirical coeffi-
cients of reconnaissance capability, control capability, and
detection and control capability respectively, and the sum of
the three empirical coefficients is 1. According to the cal-
culation expression (19), it can be expressed as(20), Where,
DPzexs Pedx and pzray are respectively the requirements for the
capability values of p.., p.q and p, g, when the task needs
to be executed, and 818283 is the weight of the calculation
expression (21), and the sum is 1.

XN (P) = B1 * pzex + B2 * Peax B3 * Prkdx 2D

IV. FLEXIBLE DYNAMIC SCHEDULING

ALGORITHMS (FDSA)

A. SCHEDULING ALGORITHM DESIGN

Next, this paper presents the dynamic scheduling algorithm
flow and its pseudo-code of the UAV task architecture net-
work based on the flexible network architecture, which is
automatically started when confronted with the emergent
situation.

The flow of the algorithm is as follows.

(1) Send task requirements to the corresponding capability
cluster. When a task monitoring robot finds the existence
of a task request, according to the requirements of the task,
evaluation expression (12) is used to calculate the comprehen-
sive capability expectation, find the corresponding capability
cluster, and then the robot sends the information of the task
to the virtual task queue.

(2) The alternate strategy of starting ability. The generates
the task is used as a signal to automatically trigger the alter-
nate strategy, and the co-managed robot begins to wait for the
evaluation and co-load value from other abilities.

(3) Calculate the residual capacity and workload, and judge
whether to participate in the substitution strategy. The ability
of cluster in its capacity surplus value can be calculated
respectively and according to the following expression (18)
own synergy load network architecture, to the current task
of virtual task queue in the group of the ability to read the
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FIGURE 7. FDSA algorithm scheduling diagram.

information. If you meet the requirements, participate in the
reserve. If unable to meet, exit the current layer from the
upper level of the ability cluster.

(4) Calculate the evaluation value and collaborative load
value of the task, and then send the evaluation result through
the information interaction robot.

(5) Determine the target node of the execution task. The
robot automatically sets the execution point of the task node
with the maximum evaluation value to the capability node that
provides the maximum evaluation value.

(6) Perform tasks. When the backup strategy ends, i.e., the
backup is zero, the current UAV is automatically replaced,
the mission is executed, and the operation is finished.

B. NETWORK ARCHITECTURE SCHEDULING

METHOD PROCESS

In the flexible network computing model, capabilities are
divided into clusters of different capability layers and can
be represented by different sets. Every time a task meets a
special situation, it is assigned according to the need, and the
task needs to find the substitute in the corresponding ability
cluster according to the demand of the ability, thus reducing
the completion time of the task. As shown in the following
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collaborative load

[ Y

No | Automatic

matching
matrix.
SC(1,1) 8C(,2) SC(1,1i) SC(1, SCp)

SC2,1) SC2,2) SC(2,1) SC(2,SCy)

SC(SL,, 1) SC(SLy,2) --- SC(SLy, i) --- SC(SLy, SCy)
(22)

When a task is sent to the corresponding capability cluster,
a new task will only send one message to generate one load
value, and m load values will be generated for m tasks. When
the virtual task queue is not empty, each team member who
can participate in the substitution needs to read information
to determine whether he can join the substitution queue.
At this time, the maximum load value generated is n pieces
of information acceptable to the capability node that can
perform the task. When the scheduling policy is started to
select a substitute, the value of the information generated in
the whole process will not be greater than the m message
sent by the task. All UAV cluster alternate nodes identify the
UAV capability node with the highest evaluation value as the
alternate node of the failure node and then send the task to
the alternate UAV node. Therefore, the load value generated
for m tasks is no more than m. That is, the total load value
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Algorithm 1 Scheduling Algorithm FDSA

Input: initialize a string T at random;
Output: until(termination-condition)
while Task request(7R)= null do
Calculate the combined expectations
determine the capacity cluster, and send the task
while x <= m do
Calculate the residual capacity (RC) and the collabo-
rative load values (CLV)
Read the task information of the virtual task queue
if (RC >= TR&CLV <= Thethresholdvalue) then
Computational ability evaluation
The robot conveys the value
end if
end while
if (BENCH == 0) then
Calculate the maximum value of evaluation & set
provide node Automatic matching & performing tasks
else
while / < SC; do
Search for search from the previous layer
Returns while(x< = m)
BREAK
end while
end if
end while

FZ — R FZ —

load

500 u
_—
___—-/.

1 2 3 4 5 6 7 8 i 10

FIGURE 8. Contrast with traditional random loads.

generated by the comprehensive calculation is:
RFZ=m+n+m+m=n+3m. (23)

The next calculation is the increasing of the network archi-
tecture, the ability node n, and the task node m. As the scale
of the problem increases, the relationship between the ability
of the attribute and the requirements of the task is not only
a great reduction in the complexity of the problem, but also
improves the efficiency of the task. When the failed node and
the unexpected situation occur, the suitable task replacement
points can be quickly found in the capacity cluster produced
by the hierarchical subhierarchy. To compare random loads,
we obtained Fig. 8 based on the data Table 2.

V. EXPERIMENTAL VERIFICATION

To verify that DSM-FNA can effectively adapt UAV tasks and
capability requirements, reduce scheduling time and system
communication load, we implemented the algorithm using
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TABLE 2. Contrast with traditional random loads.

Ordera m=10n n =a? FZ R FZ
1 10 1 19 31
2 40 4 319 124
3 90 9 1619 279
4 160 16 5119 496
5 250 25 12499 775
6 360 36 25919 1116
7 490 49 48019 1519
8 640 64 81919 1984
9 810 81 131219 2511
10 1000 100 199999 3100

Java HotSpot(TM) 64-bit Server VM on the eclipse platform
in Win64 Graphics Environment and compared it with the
traditional task scheduling method max-min under the same
parameter setting.

A. PARAMETER PERFORMANCE SETTINGS

In the experimental environment, the ability parameter value
and the number of tasks were given in advance. The capacity
storage space is calculated using the computer’s storage range
of [480mb,480gbds], and the Java version is 1.8.0_202 — ea.
In order to evaluate the analysis, we use the scheduling com-
pletion time and the C2 organization’s collaborative load CW
to experiment with the comparison. Scheduling completion
time depends on the completion time of the virtual task queue,

il Jl+2
Too= Y bag+ Y foo (24)
el=1 e2=jl1+1

The completion time Time depends on the time Ttx and the
task execution time of Tzx.

N
Time = Ttx + Tex = Y _ (Ttx/Ptx; + Tzxy/Pzxy). (25)
=1

The collaborative load depends on the communication load
between the task and the node and can be expressed by the
correlation coefficient. The greater the correlation coefficient
of the substitute UAV crew is, the stronger the relationship
between the two variables will be, and the smaller the coop-
erative load will be. Therefore, the cooperative load of CW
can be expressed by the Pearson correlation coefficient:

CW = (P' P') N COV(P[, Pj)
= P 7 O‘PiGPj
_ ELPi — uP)(Pj — uPj)] 26)
o oPioP; '

In this, P;, P; belongs to the capability layer Py =
p1,DP2,---,Di,---,PN, and the corresponding relationship
between the comprehensive consideration of the task capa-
bility is calculated in evaluation expression (26).
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FIGURE 9. Sample figure of FDSA algorithm scheduling 10-6.

B. ANALYSIS OF EXPERIMENTAL RESULTS

To verify that DSM-FNA can effectively reduce the sys-
tem communication load and task scheduling completion
time, this paper uses FDSA scheduling, randomly input
10 unmanned aircraft to perform 6 tasks, and gives the task
scheduling diagram in Fig. 9.

The FDSA algorithm was compared with the classical
Max-Min algorithm, the classical Min-Min algorithm, and
the FDSA variant algorithm F7ES. The simulation experi-
ment is designed as follows: when the task number is the
same and the ability resources are different. This experiment
observes the communication load of the middle class of the
scheduling process.

Randomly set the virtual task queue VSQ = 1330, 1500,
1550, 1650, 1650, 1750, 1750, 1750, 1850, 1850, 1900, 2000,
2050, 2100, 2150, 2200, 2250, 2300, 2350, While the capac-
ity supply number AN = [8000, 10000], when the number
of tasks is the same but the number of resources is different,
the total task completion time of the two tasks is observed
in this experiment. The comparative analysis of experimental
results is shown in the following.

(a) The number of task sequences is the same as the
capability value at the same time, and the time comparison
generated by the scheduling process. Randomly set the virtual
task queue VSQ = 1330, 1500, 1550, 1650, 1650, 1750,
1750, 1750, 1850, 1850, 1900, 2000, 2050, 2100, 2150, 2200,
2250, 2300, 2350. While the capacity supply number AN =
[8000, 10000], when the number of tasks is the same but the
number of resources is different, the total task completion
time of both is observed in this experiment. The comparative
analysis of experimental results is shown in below, where
Fig. 10(a) represents the time comparison between FDSA
under the same task sequence and other traditional scheduling
algorithms when AN = 8000, and Fig. 10(b) represents the
time consumption comparison when AN = 10000.

(b) Time comparison generated by the scheduling pro-
cess when the number of task sequences is different
and the capability value is the same. Randomly set the
virtual task queue VSQ1 = 1330, 1500, 1550, 1650,
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FIGURE 11. Comparison of scheduling time of different tasks with
different abilities.

1650, 1650, 1750, 1750, 1800, 1850, VSQ2 = 1900,
2000, 2050, 2100, 2150, 2200, 2250,2 300, 2350. How-
ever, the capacity supply number AN = 8000. When the
number of tasks is different but the number of abilities is the
same, the total completion time of both tasks is observed in
this experiment. The comparative analysis of experimental
results is shown in Fig. 11, where Fig. 11(a) represents the
time comparison between FDSA and traditional scheduling
algorithm when VSQI, and Fig. 11(b) represents the time
comparison between FDSA and other traditional scheduling
algorithms when VSQ2.

(c) A comparison of loads with the same number of virtual
tasks and different Numbers of capabilities. Compare the
number of virtual tasks with the same number of abilities.
Where, Fig. 12(a) indicates that when AN = 8000, the co-
load value CW of FDSA under the unified task sequence is
compared with that of the Max-Min scheduling algorithm.
Fig. 12(b) indicates that when AN = 10000, the co-load value
CW of FDSA under a unified task sequence is compared
with that of the Max-Min scheduling algorithm, the Min-Min
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FIGURE 12. Collaborative load value comparison.

scheduling algorithm, and the FrES algorithm. Fig. 12(c)
shows the load comparison between FDSA and several classi-
cal scheduling algorithms at VSQ1, and Fig. 12(d) shows the
load comparison between FDSA and traditional scheduling
algorithms at VSQ?2.

As can be seen from Fig. 10-12, the maximum task
scheduling of the FDSA algorithm takes less time than that
of the other scheduling algorithms. This is because DSM-
FNA implements the mapping between capability require-
ments and tasks. According to the requirement of capability
value, the FDSA algorithm determines the node to execute
the service. Therefore, the FDSA algorithm embodies the
principle of on-demand allocation and effectively shortens
the completion time of the task. From the above experiments,
it can be seen that DSM-FNA can effectively reduce the
maximum task scheduling time and system communication
load. This is mainly because the FDSA algorithm consid-
ers the mapping between capabilities and task requirements
in the scheduling process. According to the comprehensive
expectation, the selection can perform the calculation and
generate less load value. In general, the replacement strategy
process of the FDSA algorithm only includes the ability to
meet the task requirements, while the classical scheduling
algorithm requires all UAV network capability nodes in the
system to participate in the replacement strategy process.
At the same time, we analyzed the average difference method
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log and found that the FDSA improved by percent 40.12.
Therefore, FDSA has less traffic load than other scheduling
algorithms.

VI. CONCLUSION

Aiming at the challenge of flexibility in the current UAV clus-
ter task scheduling network architecture, a Dynamic schedul-
ing model of flexible network architecture (DSM-FNA) for
UAV cluster tasks is proposed and established. DSM-FNA
designs an FDSA based on a flexible network to dynamically
manage and control capabilities and tasks, effectively realiz-
ing the dynamic adaptation of capabilities and tasks. Based
on the comprehensive capability expectation, the capability
cluster in the capability layer can be corresponding, and the
capability and task can be mapped one by one. Therefore,
the selection space is effectively reduced, the operational
needs of different task scheduling are satisfied, and the ratio-
nality of assignment is guaranteed. Finally, through exper-
imental comparison and analysis, it can be concluded that
FDSA algorithm can effectively reduce the communication
load and task scheduling time compared with the classical
Max-Min algorithm and other algorithms, which verifies the
effectiveness of the proposed model, guarantees the flexi-
bility and reliability of network architecture, and provides a
theoretical basis and key technology for dynamic matching
of task requirements and capabilities. Thus, the flexibility,
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reliability, and independent decision-making ability of the
system are improved, and the problem of adaptability of the
task architecture in a small range under the change of situa-
tion environment is satisfied correctly. The future work will
focus on the problem that the failure node is going to select a
given number of optimal architectures from the UAV cluster
architectural space. Further, we hope to study the problem of
failure node capacity in DSM-FNA.
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