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ABSTRACT Induction motors (IM) are susceptible to mechanical failures with severe consequences for
production lines; hence, detection and classification of IM faults have been of great interest for researchers
in last years. Broken rotor bars (BRB) are one of the most difficult faults to detect, since this fault does not
give any indication of deterioration increasing significantly the production costs; hence, it is quite important
to detect them in early states. Several methodologies have been proposed to extract information about the
motor condition relying on motor-current-signature analysis (MCSA); however, they usually require high-
computational-complexity algorithms to reach trustworthy result. In this work, a novel methodology for early
detection and classification of BRB faults in IM is proposed. This methodology consists of obtaining two
spectrograms using fixed-width windows, which are segmented through Otsu algorithm to visualize the time
evolution of fault frequencies. The fault severity classification is performed through Kurtosis computation
from non-stationary components. Obtained results from real experimentation validate the proposed-method
high efficiency, reaching an overall 100% accuracy on detecting and classifying half, one, two BRBs, and
healthy condition.

INDEX TERMS Early broken-rotor-bar detection, induction motor, kurtosis, Otsu segmentation, time-
frequency distribution.

I. INTRODUCTION
Induction motors (IM) are very important in the modern
industry because they are the main source of mechanical
power. They have advantages such as its low price, stiffness,
and reliability. However, this type of electric machines is
susceptible tomechanical failures, which can lead to interrup-
tions in production lines, resulting in serious consequences,
raising manufacturing costs and decreasing quality of prod-
ucts. Therefore, detection and classification of IM faults
have gained great attention from researchers in recent years
[1]–[3]. Among the most difficult faults to detect are Broken
Rotor Bars (BRB). This is a silent failure that allows operat-
ing the motor without giving any indication of deterioration,
increasing the harmonic distortion and causing a significant

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

increase in production costs [3]. Hence, early detection and
classification of BRB is desirable, since operating under this
condition can be catastrophic for IM [4]–[7].

The most used method for detecting BRB faults is
the motor current signature analysis (MCSA), which usu-
ally is based on non-invasive electric-current measurement
[8]–[11]. Therefore, several methodologies have been pro-
posed to extract information about the motor condition
relying on MCSA. One common technique for IM fault
detection is the Fast Fourier Transform (FFT) [12], [13],
and its variations; for instance, the short-time Fourier
transform (STFT) [14], the Gabor transform (GT) [15]
and the method of selection of amplitudes of frequencies
ratio 50 second frequency coefficient (MSAF-RATIO-50-
SFC) [16], [17], which are suitable for information extraction
from non-stationary signals. However, the windowing length
has a direct effect on the time and frequency resolution.
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Short-length windows provide high resolution in time with
low resolution in frequency; otherwise, long-length windows
provide the opposite effect.

On another hand, the quadratic time-frequency distribution
(QTFD) has been used because of its independence from the
type or size of the window and its inherent suitability for
analyzing non-stationary signals [12]; hence, several QTFD-
based methods have been implemented for classifying IM
faults [11], [12]. In [11], a performance comparison between
the GT and the Wigner-Ville distribution with Choi-Williams
kernel is presented to detect BRB in IM. The Choi-Williams
kernel is used for suppressing cross-terms on QTFD, to get
better time and frequency resolution, compared to the GT.
In [12], a technique for detecting and diagnosing rolling
bearing faults based on high-order synchrosqueezing trans-
form (FSSTH) and detrended fluctuation analysis (DFA) is
presented. The vibration signal is decomposed using FSSTH
into an ensemble of oscillatory components; then, the number
of intrinsic mode functions is determined through an DFA-
based empirical equation. Fault characteristic frequencies
are identified using a time-frequency representation. Other
techniques have been used for BRB detection too, which just
provide high-frequency resolution. For instance, a multiple
signal classification (MUSIC) for order selection during BRB
detection in IM is presented in [5], where authors introduce a
feature extraction from frequency spectra components using
an automatic parameter selection for an optimal spectrum
representation. In [18], bearing and BRB faults are detected
using high-resolution spectral analysis using MCSA by sep-
arating frequency components close to the fundamental one.
The fault severity is estimated from the amplitudes computed
from least squares estimator. On the other hand, many arti-
ficial intelligence methods such as artificial neural networks
(ANN), fuzzy logic (FL) and support vector machines (SVM)
have been employed to improve the effectiveness of fault
detection and classification in IM [19]. Although, many of
the above-mentioned techniques provide high efficiency for
BRB detection and classification, themajor drawback inmost
of them is their high computational complexity. Hence, new
methodologies based on traditional techniques such as the
STFT are still being used [20], [21]. For instance, a method-
ology based on FFT is presented in [20] to detect BRB
conditions. The approach consists of two windows moving
along the analyzed current signal for subtracting the spectral
information from both windows to get the non-stationary
frequencies. In [21], broken rotor bars are detected consid-
ering that the fault-related harmonics will have oscillating
amplitudes due to the speed ripple effect. A time-frequency
transformation is used where fault-related frequencies are
treated as periodical signals over time and fast Fourier trans-
form is used for assessing spectral contents leading to the
discrimination of subcomponents related to the fault and the
estimation of their amplitudes. However, nearly none of the
above are able to detect half BRB. Hence, reliable identifica-
tion of half BRB is still open field under investigation as they
are really difficult to detect [22]–[27].

In this paper a novel methodology for early detection and
classification of BRB faults in IM is proposed. This method-
ology consists of using multiple-STFT with two different
fixed-width windows (Gaussian, Kaiser). The obtained spec-
trograms using each window are subtracted to highlight the
differences between them and obtain a reliable threshold. The
non-stationary frequencies are segmented using Otsu algo-
rithm to visualize the evolution in time of the fault frequency.
Finally, Kurtosis is obtained from these non-stationary com-
ponents as a classification parameter. In addition, the three-
sigma rule is used for demonstrating the proposed method
effectiveness for early detection of BRB in IM. Obtained
results using the proposed methodology on acquired data
from real experimentation validate its high efficiency, achiev-
ing an overall accuracy of 100% on discriminating among
one, two BRBs, and healthy condition, and even detecting
half broken bar, which nearly none of themethods in reviewed
literature achieve.

II. THEORETICAL BACKGROUND
A. BROKEN ROTOR BARS
Induction Motor Broken-Rotor-Bars (BRB) detection in
steady-state can be performed by the observation of the char-
acteristic broken-bar harmonic components (fBRB) in stator
line-current [5], [7], [28]. These frequencies are given in (1),

fBRB = fC (1± 2s) (1)

where fC is the fundamental frequency of the current supply,
and s is the dimensionless motor slip, and it is calculated as:

s =
n1 − n
n1

(2)

where n1 and n are the synchronous and the rotor speed,
respectively. On the other hand, the rotor speed changes dur-
ing the start-up transient, which causes the BRB characteristic
frequency changes over time too, until reaching the steady
state. The theoretical harmonic-component trajectories show
a linear evolution of the slip, and they are shown in Fig. 1.
These well-known Lower and Upper Sideband Harmonic
components (LSH and USH, respectively) are depicted in this
figure [28].

B. SHORT-TIME FOURIER TRANSFORM AND
SPECTROGRAM
To obtain the localized spectrum of a signal x(t) at time t = τ ,
the first step is to multiply x(t) by the window w(t), centered
on the time t = τ , obtaining

xw (τ, t) = x (t)w (t − τ) . (3)

Fourier Transform (FT) is applied to the windowed func-
tion obtained from (3) to produce (4).

F {xw (τ, t)} = Fwx (τ, ω) = F
t→ω
{x (t)w (t − τ)} (4)

where Fwx (τ, ω) is called the short-time Fourier transform
(STFT), which shows the time evolution of the frequency
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FIGURE 1. Theoretical trajectories of characteristic BRB harmonic
components during the IM start-up transient.

components ω in x(t), where ω = 2π f . The squared mag-
nitude of the STFT, denoted by Swx (τ, ω), is called the spec-
trogram [29]:

Swx (τ, ω) =
∣∣Fwx (τ, ω)∣∣2 (5)

=

∣∣∣∣ Ft→ω {x (t)w (t − τ)}
∣∣∣∣2 (6)

=

∣∣∣∣∣∣
∞∫
−∞

x (t)w (t − τ) e−jωtdt

∣∣∣∣∣∣
2

(7)

In this paper w(t) takes the Gaussian and Kaiser windows,
wg(t) and wk (t) respectively. The coefficients of discrete
Gaussian window wg(n) are computed from the following
equation

wg (n) = e
−

(
α
n−(N/2)
2(N+1)

)2
(8)

where N is the window length and α is inversely proportional
to the standard deviation [30]; whereas the discrete window
wk (n) is defined as:

wk (n) =


I0

[
πα

√
1−

(
2n/

N
)2]

I0 [πα]
|n| ≤ N

/
2

0 0 > N/
2

(9)

where I0 is the zeroth-order modified Bessel function of the
first kind, and α is a non-negative real number that determines
the shape of the window [31], [32].

C. OTSU THRESHOLD
Otsu algorithm is a nonparametric and unsupervised method
for computing an automatic threshold in an image. In this
work, it is adapted to be able to work with a TFD treating
it as a gray-scale level image. The histogram is normalized
and regarded as a probability distribution Pi [33], [34].

Pi =
ni
M
, Pi ≥ 0,

L∑
i=1

Pi = 1 (10)

where L is the total number of gray-levels, M is the number
of pixels or data in TFD, and ni is the repetition rate of pixels
with an energy level i in the TFD. Then the pixels are split into
two classes C0 and C1 (background and objects or vice versa)
by a threshold at level k. Therefore, each class occurrence
probability Pr and its corresponding mean level µr are given
by:

z0 = Pr (C0) =

k∑
i=1

Pi = z (k) (11)

z1 = Pr (C1) =

L∑
i=k+1

Pi = 1− z (k) (12)

µ0 =

k∑
i=1

iPr ( i|C0) =
µ (k)
z (k)

(13)

µ1 =

L∑
i=k+1

iPr ( i|C1) =
µT − µ (k)
1− z (k)

(14)

where µ(k) indicates the arithmetic mean for each level k ,
and µT is the total mean for all L levels, which are given by:

µ (k) =
k∑
i=1

iPi (15)

µT =

L∑
i=1

iPi (16)

Each class variance is given by:

σ 2
0 =

k∑
i=1

(1− µ0)
2 Pi
z0

(17)

σ 2
1 =

L∑
i=k+1

(1− µ1)
2 Pi
z1

(18)

The discriminating factor η to separate between two classes
(C0 and C1) is given as:

η =
σ 2
B

σ 2
T

(19)

where

σ 2
B = z0z1 (µ1 − µ0)

2 (20)

σ 2
T =

L∑
i=1

(i− µT )2Pi (21)

The optimal threshold k∗ that maximizes η or equivalently
maximizes σ 2

B is give by:

σ 2
B
(
k∗
)
= max

1≤k≤L

(
σ 2
B (k)

)
(22)
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FIGURE 2. Test bench for experimentation.

D. KURTOSIS
Kurtosis is used to measure whether the data is peaked or
flat relative to a normal distribution. Data sets with high
kurtosis have a distinct peak near to the mean. They decline
rapidly and have heavy tails. In contrast to those sets with
low kurtosis, which have a flat top near the mean. A uniform
distribution would be the extreme case [35]. The kurtosis K
of a random event Y = {y1, y2, . . . , yn} is defined as:

K =

n∑
i=1
(yi − µ)4

σ 4 (23)

where yi is equivalent to the spectrogram Pi.

III. EXPERIMENTAL SETUP
The proposed methodology was validated experimentally
through the test bench shown in Fig. 2. It consists of 1 HP
three-phase induction motor, model WEG 00136APE48T,
which is fed directly from the power line, and has the fol-
lowing features:

a) 2 poles.
b) Rotor with 28 bars.
c) Power supply of 220 V/AC at 60 Hz.

The proposed method was tested using a healthy motor,
a motor with half broken rotor bar, a motor with one broken
rotor bar and a motor with two adjacent broken rotor bars.

The broken-rotor-bar conditions were produced artificially
by drilling holes with 7.938 mm diameter on each bar without
harming the shaft. Fig. 3 shows the rotors with broken bars
used during experimentation. The mechanical load condition
was established by connecting an ordinary alternator, which
represents a quarter of the nominal load for the induction
motor. The powerline-supplied current signal is acquired
using an AC clamp model i200s from Fluke. The data acqui-
sition system (DAS) consists of an analog-to-digital converter
(ADS7809) with 16-bit resolution. The DAS uses a sam-
pling frequency fs = 1.5 kHz, obtaining 4,096 samples in
2.7 seconds during the motor start-up transient.

FIGURE 3. (a) One Broken Rotor Bar (1BRB), (b) Two Broken Rotor
Bar (2BRB).

IV. PROPOSED METHODOLOGY
The proposed methodology is depicted in Fig. 4. It con-
sists of the current-signal acquisition from one phase of
the power supply during the IM start-up transient. The
obtained discrete signal is resampled from 1.5 kHz to
256 Hz, reducing the number of analyzed data and processing
time. Two STFTs are computed applying a Gaussian and a
Kaiser window to each of them, respectively, both with a
σ = 2.5, producing a trade-off resolution between time and
frequency, with a large contribution of spurious frequencies.
Therefore, spurious frequencies are eliminated by subtrac-
tion and segmentation, keeping the distinctive BRB fault
frequency components. Otsu algorithm is used for defining
the optimal threshold to eliminate spurious frequencies, seg-
menting the spectrogram calculated using the Kaiser win-
dow. Kurtosis is calculated from the segmented-TFD his-
togram as a discriminant parameter among the healthy case,
and the faulty cases with Half BRB, One BRB, and Two
BRB.

V. DETECTION AND CLASSIFICATION
The effectiveness of the proposed methodology on detecting
and classifying BRB in an IM was validated by obtaining
20 sets of the discretized electric current signal supplied
to the IM under each motor condition; each set is com-
posed of 700 samples. Fig. 5 shows the different stages
of the proposed methodology, where, the sampled period
was 2.73 s of the start-up transient current signal. The time
evolution of the related harmonics for each motor con-
dition (HBRB, 1BRB, and 2BRB) during the start-up is
identified as:

1.- Lower Sideband Harmonic (LSH).
2.- Upper Sideband Harmonic (USH)).
The STFT spectrograms with Gaussian and Kaiser

windowing, along with Otsu segmentation provide an out-
standing representation of the BRB characteristic frequency
evolution in time, for the 3 faulty cases treated in this work,
during the start-up transient. However, there is a difficulty
on discriminating among them; therefore, it is necessary to
implement an automatic sorting method for improving the
classification into each faulty condition (HBRB, 1BRB and
2BRB). Hence, a simple and efficient classifier based on
normal distribution is used in this work, demonstrating a high
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FIGURE 4. Proposed methodology for the detection and classification of early BRB in IMs.

FIGURE 5. Proposed methodology stages during IM operational condition detection and classification.

performance of the proposed methodology for detecting and
classifying BRB.

A. FAULT EXTRACTION
Kurtosis parameter is used as a discriminant parameter for
classification of the fault severity. Its computation starts by

taking the segmented time-frequency representation shown
in the bottom row of Fig. 5. This TFD is obtained as a
color image, so it is necessary to convert it to its grayscale
representation in order to obtain the corresponding 256-level
intensity histogram. From the obtained histogram, the kur-
tosis is estimated and used as a discriminant parameter for
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FIGURE 6. Condition classification from the segmented TFD and its
corresponding Kurtosis computation.

TABLE 1. Statistical parameters of kurtosis for each treated condition.

severity classification of the treated faults. The procedure is
depicted in Fig. 6.

B. CLASSIFICATION
The kurtosis gives a numerical value to identify the motor
condition into four different classes [3]: 1) Healthy, 2) Half-
Broken Rotor Bar (HBRB), 3) One-Broken Rotor Bar
(1BRB), and 4) Two-Broken Rotor Bar. The normal distribu-
tion, given in (24), of the kurtosis value is used in this work
as classification parameter to identify the induction-motor
condition.

PDF(K : µ, σ 2) =
1

√
2πσ 2

exp

(
−
(K − µ)2

2σ 2

)
(24)

In (24), µ is the mean, σ is the standard deviation and
σ 2 is the variance. The mean and standard deviation are
computed according to (15) and (17), respectively, applying
Otsu segmentation on the obtained histogram from 20 trials
for each treated motor condition. Table 1 shows the statistical
parameters for the probability density distribution that defines
the membership and rejection regions of each treated case
through the empirical three-sigma (3σ ) rule, which ensures
a 99.7% effectiveness during the motor operation-state clas-
sification. Hence, the three-sigma limits are used as opti-
mum thresholds for performing the automatic detection and
classification of each condition (Healthy, HBRB, 1BRB or
2BRB). The probability density for each treated case is shown
in Fig. 7.

C. EFFECTIVENESS VALIDATION
The accuracy of the proposed methodology for detecting
and classifying an induction motor operational condition is

FIGURE 7. Box plot for BRB severity classification in IM.

TABLE 2. Proposed-methodology classification effectiveness.

assessed in terms of its four different outcome metrics as:

Accuracy(% ) =
TP+ TN

TP+ TN + FP+ FN
× 100% (25)

where TP, TN, FP and FN, are the true positive, true neg-
ative, false positive, and false negative rates, respectively.
These values are given as the occurrence of the positive
(correctly classified) and negative (incorrectly identified) out-
comes during an operational condition determination [35].
Table 2 shows the confusion matrix containing information
about actual and estimated classification for 20 new trials
on every induction-motor operational condition. Obtained
results validate the high effectiveness of the proposed
methodology with an overall accuracy of 100%.

VI. DISCUSSION
Table 3 shows a qualitative comparison of recent applied
techniques reported in the literature, against the introduced
in this work, for early detection and classification of BRB in
IM, regarding percentage load torque, processing time and
classification effectiveness. Taking into account this compar-
ison, the proposed methodology shows high accuracy in the
detection and classification of broken rotor bars, reaching
at least the same sensitivity and effectiveness than others
approaches; although, it has been extensively proven that
the higher the fault severity and/or the mechanical load, the
easier the BRB detection [26], [27], [36]–[41]. Furthermore,
it is desirable to have a visual representation of the fault-
frequency evolution in time, to corroborate the diagnosis of
the induction motor operational condition. Hence, it is note-
worthy that the proposed methodology classifies the faulty
condition during the start-up transient under only 25% of
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TABLE 3. Comparison chart of the proposed methodology against previous approaches.

its nominal mechanical load providing a graphical represen-
tation of the fault-frequency evolution in time. Finally, the
effectiveness of the proposed method shows a 100% accuracy
during the classification of all treated cases, including HBRB,
which is one of the most difficult faults to detect; thus, from
all described above, it is demonstrated that the proposed
methodology is a reliable, efficient and practical technique
for broken-rotor-bar detection and classification.

VII. CONCLUSION
Induction motors are very important in the modern industry;
hence, failures in these electric machines generate serious
consequences for industry. Broken rotor bars are among the
faults more difficult to detect; thus, early detection and clas-
sification of these faults have gained a lot of interest by the
scientific community. Several approaches, based on motor
current signature analysis, have been proposed for extracting
information about the induction motor condition; however,
their major drawback is the high computational complexity
for classification. In this work a novel methodology for early
detection and classification of BRB in IM is proposed using

STFT with Gaussian and Kaiser windowing and Otsu algo-
rithm. Quantitative and qualitative analyzes against recent
applied techniques reported in the literature demonstrate the
high effectiveness of the proposed method for detecting and
classifying the motor condition as: Healthy (HLT), Half-
Broken Rotor Bar (HBRB), One-Broken Rotor Bar (1BRB)
or Tow-Broken Rotor Bar (2BRB) with a 100% accuracy,
providing a reliable, efficient and practical technique for
early broken-rotor-bar detection and classification with low
computational cost and a graphical representation of the
fault-frequency evolution in time. Future work might include
studying different types of faults and trying other time-
frequency representations to perform the analysis under dif-
ferent operational conditions including power supply through
a variable speed drive.
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