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ABSTRACT Previously reported automatic sleep staging methods have usually been developed using
healthy groups of fewer than 100 subjects. In this study, an automatic sleep staging method based on
hybrid stacked long short-term memory (LSTM) was proposed and evaluated using a large-scale dataset
of subjects with sleep disorders. Twenty-four features, including temporal and spectrum factors, were
extracted from physiological signals and normalized after extracting the features. A variety of hybrid stacked
LSTM structures and hidden units were used to determine the most suitable structure and parameters for
the automatic sleep staging method. Finally, the proposed method was validated using a large-scale sleep
disorder dataset from the PhysioNet Challenge 2018. To validate the robustness of the proposed system, half
of the 994 subjects were randomly assigned to the training set, and the other half were assigned to the testing
set. The best accuracy and kappa coefficient of the proposed method are 83.07% and 0.78, respectively. The
best hybrid stacked structure was LSTM combined with bidirectional LSTM, which has 125 hidden units.
In addition, four common sleep indices, including sleep efficiency, sleep onset time, wake after sleep onset,
and total sleep time, were evaluated. The results, according to the intraclass correlation coefficient, indicated
a moderate agreement with the results of the expert. The performance of the proposed method was compared
with that of conventional machine learning, and it was noted that the hybrid stacked LSTM is a promising
solution for automatic sleep staging. In future work, this method may assist clinical staff in reducing the time
required for sleep staging.

INDEX TERMS Automatic sleep staging system, deep learning, hybrid stacked long short-term memory,
large-scale sleep disorder dataset.

I. INTRODUCTION electroencephalogram (EEG), electrooculogram (EOG),

Sleep is essential because it helps to restore the functions of
the body and mind, such as the immune, nervous, skeletal,
and muscular systems [1]. Sleep disorders, such as insomnia
and sleep apnea, may cause daytime sleepiness, reduced
cognitive function, weight gain, or even death. According
to Philips’ sleep survey, only half of the adults are satisfied
with their sleep. In addition, 51% of adults report having
sleep apnea. To diagnose sleep disorders, polysomnogra-
phy (PSG) was used to record and analyze all-night sleep
physiological signals from humans. The PSG data included
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electromyogram (EMG), and electrocardiograph (ECG).
After recording PSG data, the clinical staff uses manual sleep
scoring to analyze human sleep architectures and evaluate
their sleep quality. According to the American Academy of
Sleep Medicine (AASM) [2], the sleep signals were seg-
mented into many consecutive epochs with 30-s lengths, and
then clinical staff scored each epoch as a specific sleep stage
that contained wakefulness (Wake), nonrapid eye movement
(Non-REM; stages 1-3), and rapid eye movement (REM).
However, diagnosing sleep disorders is time consuming
and requires a considerable workload [3]. From the patient
side, they need to wait at least two months to record sleep sig-
nals using PSG at a sleep center. In addition, the sensors and
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electrodes attached to the patient’s body may cause mental
stress and discomfort. From the clinical staff side, the scoring
process is time intensive because the length of time it takes
to record sleep data is approximately 6 to 8 hours, and they
have to manually analyze patients’ sleep data to conduct sleep
scoring and annotate sleep-related events, which is a process
that takes at least 1 hour.

Various automatic sleep staging methods have been pro-
posed using all-night PSG recording data. These methods
can be mainly divided into two steps: extracting different
type of features from PSG data and training a classifier
using the features. Different types of features, such as time-
domain and frequency-domain, have been used to analyze
PSG data [4], [5]. In addition, conventional machines, such as
the support vector machine, are also used to help identify the
sleep stages. The overall agreements of these methods were
in the range of 80%—-85%. Recently, deep learning, which
has been promoted by strong computing power and massive
datasets, has recently achieved good performance on complex
medical pattern recognition tasks, such as pulmonary nodule
and retinopathy screening. Therefore, sleep stages can also be
classified using deep learning technology, such as deep belief
nets (DBNs) [6], convolutional neural networks (CNNSs)
[71-[9], or long short-term memory (LSTM) [9]-[11]. These
networks learn the hierarchical representations or features
from input data and classify them according to the learned
features.

However, the previous automatic sleep classification meth-
ods generally use fewer than 100 PSG recordings from
healthy individuals to develop and evaluate their method-
ologies. Although those methodologies have achieved high
performance for healthy individuals, they are unlikely to
have good generalizability. PSG signals vary widely due to
individual differences, sleep conditions, and medicine effects.
Therefore, the amount of PSG data is not enough. Further-
more, common clinical patients usually suffer from more
sleep disorders than healthy individuals.

In this study, a massive sleep dataset from PhysioNet
(nearly 1000), which was recorded from patients with sleep
disorders, was used to train a hybrid stacked LSTM model
and evaluate the model. Before classification, the 24 features
were extracted from 30-s EEG, EOG, and EMG recordings
and normalized to decrease the individual differences. The
five hybrid stacked LSTM models with different numbers
of hidden units were designed to find the model with the
highest performance. The proposed method was validated
using randomly selected subjects with independent training
data. The performance evaluation used a confusion matrix to
compute the overall agreement and kappa. In addition, the dif-
ferences in the four common sleep indices between expert
judgment and the proposed method were also compared using
the Bland-Altman plot and intraclass correlation coefficient.

The significance of this study is the following. (1) The
massive PSG sleep disorder data were used to train and eval-
uate the hybrid stacked LSTM models. (2) The five stacked
LSTM models with the different numbers of hidden units
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were designed. (3) A suitable model with the appropriate
number of hidden units to classify sleep stages was found.
(4) We also used four sleep indices to compare the differences
between the proposed method and expert judgment and the
results are compared to those from previous studies.

Il. MATERIALS AND METHODS

A. DATA DESCRIPTION

We used the PhysioNet2018 dataset in this study, which
was taken from the PhysioNet Challenge 2018 [12]. The
subjects in the dataset had all-night PSG recordings taken at
an MGH sleep laboratory to diagnose sleep disorders. The
dataset, which is a collection of 1893 all-night PSG record-
ings, was divided into two parts: a training set (n = 994) and
a testing set (n = 989). Each PSG recording contained EEG
(C3-M2, C4-M1, F3-M2, F4-M1, O1-M2, and 02-M1), left
eye EOG (E1-M2), and chin EMG recordings with a sampling
rate of 200 Hz. In addition, the all-night PSG recordings in
the training set had their sleep stages and events annotated.
According to the American Academy of Sleep Medicine
(AASM) rule, each EEG with a 30-s interval in the training set
was annotated with a corresponding sleep stage by the clinical
staff. Therefore, we only used the training set to develop and
validate the proposed method. The training set had 994 all-
night PSG recordings that were obtained from patients with
sleep disorders, and the mean =+ standard deviation of the
age and apnea-hypopnea index (AHI) of the patients was
55414.2 years and 19+14.6 per hours, respectively. More
information can be found on the official website [12].

B. METHODOLOGY

Fig. 1 illustrates the proposed automatic sleep stage clas-
sification method, including (1) preprocessing, (2) feature
extraction, and (3) classification. The following fig-
ure presents each part in greater detail.

1) PREPROCESSING

The eight-order Butterworth bandpass filter with a cutoff
frequency of 0.5-30 Hz was used to filter the EEG and EOG
data, and the eight-order Butterworth bandpass filter with a
cutoff frequency of 5-100 Hz was used to filter the EMG
data. Next, the all-night PSG signals were segmented into
consecutive epochs with a length of 30 s each.

According to the American Academy of Sleep Medicine
(AASM) guidelines, multiple channel PSG recordings were
taken because the physiological signals measured in the
recording procedure may contain noise or artifacts. In actual
clinical conditions, a channel with a better signal quality was
selected to score by an expert. If the EEG channel selection
method is not used, features with noise or artifacts may be
extracted from the signal. This approach means that the clas-
sifier could not be successfully trained and would be unable
to accurately classify sleep stages. An EEG with an amplitude
greater than 250 'V during sleep generally means that it is an
abnormal signal and will affect the classifier’s performance.
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FIGURE 1.

Six EEG signals

Proposed automatic sleep stage classification architecture.

TABLE 1. Sleep features considered in this study for automatic sleep
staging.

1}';;;:(1;1 :zl::;e:fil(lnt)h:f No. Type Feature Source Label
normal range (less 1 PS Total power of 0-30 Hz EEG 0-30 E
than 250 uV) 2 PS Total power of 0-30 Hz EMG 0-30 M
= T = -1 3 PS Total power of 0-30 Hz EOG 0-30 O
v v v : 4 PR 0-4 Hz/0-30 Hz EEG 0-4E
Select the channel of the Select the onl EEG Select th? channelfl:;]the 5 PR 4-8 Hz/0-30 Hz EEG 4-8E
maximum amplitude | > eh"“ Y ‘l’“e normat range ‘;_t de 6 PR 8-13 Hz/0-30 Hz EEG 8-13E
with minimum values channe maximum ampituce 7 PR 1322 Hz/0-30 Hz EEG 1322E
with minimum values
8 PR 22-30 Hz/0-30 Hz EEG 2230 E
fecti N 9 PR 0-4 Hz/4-8 Hz EEG 0-4/4-8 E
FIGURE 2. EEG selection method. 10 PR 8-13 Hz/4-8 Hz EEG 8-13/4-8 E
. 11 PR 0-4 Hz/0-30 Hz EOG 0-40
Therefore, we adopted an EEG channel selection method 12 SF Mean frequency of 0-30 Hz ~ EEG ~ Mean(fre.) E
to choose a channel with less abnormal signals. Fig. 2 shows 13 SF Mean frequency of 0-30 Hz ~ EOG ~ Mean(fre.) O
the flowchart of the EEG channel selection method. First, i;‘ ZE lg/fzanffrfequency of 0-30 Hz ?}gg M;Z’Zgre;)EM
. . . of frequency Te.
we computed the numbgr of EEG channels (n? with ampli- 16 SF Std. of frequency EOG Std(fre.) O
tudes less than 250 uV (i.e., normal range) during each 30-s 17 SF Std. of frequency EMG  Std(fre.) M
epoch. If n > 1, the EEG channel with a maximum amplitude 18 DR Alpha ratio EEG Alpha E
that is at the minimum of the normal range was chosen. ;g gi Zf‘ndle ra“?_ N3) rat Egg Sp}‘\gﬂg E
. oW wave (1.€. ratio
If n =0, the 30-s epoch was (j‘o.n51dered' t.o be body movement 21 DR K-complex ratio EEG  K-complex E
(Mov). Therefore, our classifier classified each 30-s epoch 22 energy  Std. of amplitude EOG  Std(AMP) O
as either Wake, N1, N2, N3, REM, and Mov, and the Mov 23 energy  Mean amplitude EMG Amp M
epochs were eliminated after smoothing according to the 24 cnergy  Std ofamplitude EMG _ Std(AMP) M

AASM rule.

2) FEATURE EXTRACTION
The 24 features that were computed from EEG, EOG, and
EMG signals were used in this study, as shown in Table 1.
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Each epoch, which is a consecutive signal with a length
of 30 s, was segmented into 15 nonoverlapping subinter-
vals (i.e., with each 2-s subinterval as a window) to avoid
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losing the spectral characteristics, such as spindles and the
K-complex. Then, the power of each subinterval was com-
puted using the FFT. These features could be divided into
five types: power spectrum (PS), power ratio (PR), spectral
frequency (SF), duration ratio (DR), and energy. The PS is
calculated by averaging the power of a specific frequency
band. The PR is the power ratio of two frequency bands. The
SF is the mean frequency of the spectral power. The DR is the
ratio between the number of windows in which the energy of a
specific frequency band is higher than a threshold to the total
number of windows in an epoch (15). The energy represents
the statistical features. More details regarding these features
can be found in reference [4].

3) FEATURE NORMALIZATION
Feature normalization was applied to reduce the effects of
the individual variability and was performed over values for
each feature separately. This process can prevent extremely
high or low values from influencing any conclusions. The
procedure for feature normalization is summarized in the
following steps.

Step 1: Calculate the means of the 10% lowest and highest
values for the feature as the min and max values,
respectively.

Step 2: Set the min and max values as 0 and 1, and then
normalize the other values from O to 1.

Step 3: If the value is higher than 1, the value is speci-
fied as 1. If the value is lower than O, the value is
specified as 0.

Fig. 9 shows the distribution, means, and standard devia-
tions of each feature corresponding to the five sleep stages
in Table 1. It can be observed that some features have a clear
distinction for a specific sleep stage. For example, the feature
“0-30 E” could clearly distinguish between REM and N3,
and the feature “22-30 E” could clearly distinguish between
Wake an N3, as shown in Fig. 9 (a) and Fig. 9 (h), respectively.

4) CLASSIFICATION

Long short-term memory (LSTM) [13] was used to classify
each feature vector into one of the six sleep stages in this
study. An LSTM network modifies the standard RNN to
effectively overcome the problem that the standard RNN is
not good at learning a time series with latent long-term depen-
dencies. In addition, the bidirectional LSTM (BiLSTM) is
also used. The basic idea of the BiLSTM is to present each
training sequence forward and backward to two separate
LSTM layers, both of which are connected to the same out-
put layer. Therefore, for every point in a given sequence,
the network has complete, sequential information regarding
all the points before and after it. The sequence to sequence
model is widely used and applied in the semantics field
and can extract more rich semantic features. The purpose
of this study is whether the stacked models using unidirec-
tional and bidirectional LSTM layers are better than the same
type of LSTM layer. Therefore, we designed hybrid stacked
LSTM networks with double and triple layers to find the best
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FIGURE 3. Five different structures of the hybrid stacked LSTM models for
the proposed method. (a) Single LSTM, (b) single BiLSTM, (c) LSTM and
BiLSTM, (d) double BiLSTM, and (e) triple BiLSTM (deep LSTM).

LSTM-based model for sleep staging and tested the various
LSTM architectures and parameters of the network setting.
In this study, five different structures of hybrid stacked LSTM
models were tested, as shown in Fig. 3. The FC layer denotes
the fully connected layer. To find the optimal hyperparameter
of the network structure, the recurrent hidden unit was set
from 10 to 250 with a step size of five. The maximum number
of training epochs was 35. The adaptive moment estima-
tion (ADAM) algorithm was adopted in this study for the
backpropagation.

TABLE 2. Smoothing rules.

No. Condition
Any REM epochs before the very first appearance of N2 are
replaced with N1 epochs

Wake, REM, N2 — Wake, N1, N2

N1, REM, N2 — N1, N1, N2

N2, N1, N2 — N2, N2, N2

N2, N3, N2 — N2, N2, N2

N2, REM, N2 — N2, N2, N2

N3, N2, N3 — N3, N3, N3

REM, Wake, REM — REM, REM, REM
REM, N1, REM — REM, REM, REM
REM, N2, REM — REM, REM, REM
Mov, REM, N2 — Mov, N1, N2

O 02NNk W —

—_
—_

5) SMOOTHING RULE

After scoring the sleep stages using the hybrid stacked LSTM
model, a smoothing rule was used to increase the accuracy
by considering the temporal contextual information since an
expert may refer to the neighboring epochs in addition to
the current epoch to make decisions. Therefore, we use the
existing smoothing rules [4] to make sure that the automatic
sleep staging results were similar to the expert’s manual
scoring. Table 2 presents the existing smoothing rules. For
example, according to smoothing rule 1, any REM epochs
before the first appearance of the N2 stage were replaced
with N1 epochs. The three consecutive epochs of N2, REM,
and N2 were replaced with the sequence N2, N2, and N2.
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Similarly, the consecutive epochs of REM, N1, and REM
were replaced with the sequence REM, REM, and REM.

6) MOVEMENT EPOCH ELIMINATION

After smoothing, a Mov elimination procedure using the
AASM guidelines was used. If the Wake stage pre-
ceded or followed the Mov stage, Mov was replaced with
Wake. If non-REM or REM preceded or followed Mov, Mov
was replaced with the same stage as the epoch that followed
it. The final result of the hypnogram was still characterized
by the five stages.

C. EVALUATISON METRICS

A confusion matrix was used to compare the differences
between our proposed method and the expert’s manual scor-
ing, and different metrics were employed to evaluate the
performance of the proposed method, including the overall
agreement (overall, i.e., accuracy), sensitivity (Se), and pos-
itive predictive value (PPV). These metrics are defined as
follows:

TP + TN
overall = . €))
TP+ TN + FP + FN
P
e = ———. )
TP + FN
P
PPV = ——. 3)
TP 4 FP

where TP and TN denote number of correct classifications,
and FP and FN denote the number of incorrect classifica-
tions. PPV is the ratio of the true positives to the predicted
positives. In addition, we also calculated Cohen’s kappa coef-
ficient (k) [14] to evaluate the agreement of the classification
result between the expert and the proposed method. Cohen’s
kappa coefficient is a statistical measure of the interrater
agreement among two or more raters.

To diagnose sleep issues, four common sleep indices can
be used as a reference, including the sleep efficiency (SE),
total sleep time (TST), sleep onset time (SOT), and wake
after sleep onset (WASO). These indices are calculated from
a hypnogram and defined as follows. The TST is defined as
the amount of actual sleep time in a sleep episode. The SE is
defined as the ratio of the TST to the time period from lights
off to lights on. The SOT is defined as the amount of time it
takes to go from being fully awake to sleep. The WASO is
defined as the total minutes of wakefulness recorded after the
SOT. In clinical diagnoses, a subject may have a poor night of
sleep if their SE is lower than 85% [15]. The SOT is calculated
to assess whether a subject can fall asleep promptly. The
WASQO is calculated to assess whether a subject has difficulty
remaining asleep after the SOT.

We calculated the mean absolute errors (MAEs), the intr-
aclass correlation coefficients (ICCs) [16], and the paired
t-tests to evaluate the sleep indices. The MAE is the average
magnitude of the absolute errors in a set of forecasts. The ICC
represents the agreement between two or more raters or eval-
uation methods in the same dataset. The ICC form was set
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as ICC (2, 1) (i.e., two-way ANOVA, single measurement,
and absolute agreement) in this study. The ICC can be inter-
preted as follows: an ICC less than 0.5 means poor reliability,
an ICC from 0.5 to 0.75 means moderate reliability, an ICC
from 0.75 to 0.9 means good reliability, an ICC greater than
0.9 means excellent reliability. The p-value, which was cal-
culated using the paired ¢-test, was considered statistically
significant when it was less than 0.05. In addition to the above
metrics, we also used a Bland-Altman plot [17] and scatter
plot to present the differences between the proposed method
and the expert’s manual scoring.

Ill. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

Two-fold cross-validation was used to evaluate the perfor-
mance of the proposed method. Specifically, half of the sub-
jects were randomly grouped into the training set, and the
others were used as the testing set. We repeated the random
2-fold cross-validation 64 times to test the robustness and
generalization ability of the proposed model. In each 2-fold
cross-validation program, the subjects that were part of the
training data were independent of the subjects that were part
of the testing data and were randomly selected. It means that
the data from the same subjects do not simultaneously appear
in both the training and testing sets; therefore, they fit the real
situation.

Each run would compute their evaluation metrices, and
the average evaluation metrics were used as the final results.
According to Penzel et al. [18], our evidence grading for the
performance evaluation studies is level one. The performance
was evaluated based on the following respects: (1) the average
performance of the method for five different hybrid stacked
LSTM models with various numbers of hidden units, and
(2) the sensitivity (Se) of each sleep stage obtained using the
proposed method from the best hybrid stacked LSTM model.

B. AUTOMATIC SLEEP STAGING PERFORMANCE
Fig. 4 shows the average accuracy curves for the five hybrid
stacked LSTM models with different numbers of hidden
units. The following characteristics can be observed: (1) the
accuracy may decrease when the number of hidden units
is very few or many, (2) the accuracy is not better for the
three-layer LSTM model than the two-layer LSTM model,
and (3) the accuracy is better with BILSTM than LSTM for
sleep staging. Table 3 shows the highest average accuracy for
the five hybrid stacked LSTM models with the number of
hidden units. The LSTM+BiLSTM model with 125 hidden
units obtained the highest average accuracy. In addition, each
hybrid stacked model had a lower standard deviation, which
confirmed the robustness and stability of the proposed model.
The 15,680 (5 x 49 x 64) hybrid stacked LSTM mod-
els with different network structures and different num-
bers of hidden units were trained in the experiment. The
best hybrid stacked LSTM model that exhibited the high-
est accuracy throughout the experiment was recorded.
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The confusion matrix was used to compare the best clas-
sification result from BiLSTM+LSTM to the expert result,
as shown in Table 4. The testing set contained 497 PSG
recordings with 476,750 30-s epochs, and the Mov epochs
were not considered. The overall agreement and kappa were
83.07% and 77.52%, respectively. N1 has a low sensitivity
due to class imbalance and sleep stage transition. N1 in Phy-
sioNet2018 is only 19.6% of the dataset whereas N2 is 51%.
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In addition, the patients with sleep apnea may be aroused
after falling asleep because they cannot breathe on their own.
Therefore, the PhysioNet2018 dataset had more sleep stage
transitions. Misclassification mostly occurred from one stage
to another between the pairs Wake-N1, N1-REM, N2-N3, and
REM-Wake [19]. Both the sleep onset time and total sleep
time may not be accurately evaluated due to N1 having low
sensitivity.
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TABLE 3. Best average accuracy, standard deviation, and number of
hidden units for five hybrid stacked LSTM models (bold letters indicate
the best results).

TABLE 5. Comparison of the manual scoring and proposed method in
terms of various objective sleep indices.

SE (%) SOT (mins)  WASO (mins) TST (mins)
Model Bestaveraged Standard Number of Expert 75.165+14.74 21.47+19.99  92.04+59.80 345.55+74.84
accuracy (%) _ deviation (%) _hidden units Proposed s 4111205 215541673 77.09449.06  360.43+63.76
LSTM 76.19 223 225 method ' : : : : : : :
BiLSTM 77.34 +223 175 MAE 6.79 7.29 30.56 31.13
LSTM+BIiLSTM 78.90 +£2.29 125 IcC 0.68 0.62 0.63 0.75
BiLSTM+BILSTM 78.84 +2.53 105 p-value 0.74 0.67 0.70 0.80
Deep BiLSTM 78.83 £239 105

TABLE 4. Confusion matrix and evaluation metrices of the best hybrid
stacked LSTM model.

Computer Metrics (%)

Wake| NI N2 N3 |REM | SE | PPV |overall|kappa
Wake|51168| 4955 | 5521 0 840 |81.89|74.67
©| N1 [10282({40344| 8199 | 70 |12937|56.16|77.07
§ N2 | 3448 | 1334 |165953| 8929 | 411 |92.16|85.81
FUN3 | 104 | 492 | 11084 |74784) 112 |86.38/88.80
REM | 3526 | 5221 | 2634 | 429 |62976|84.21|81.49

83.07 | 77.52

C. EVALUATION OF THE SLEEP INDICES

1) EVALUATION METRICS
The four common sleep indices were calculated using the
proposed automatic sleep staging method and compared with
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the expert’s manual scoring [20]. Table 5 shows the results
that compared the expert’s manual scoring and the proposed
automatic sleep staging method. No significant differences
were found among the sleep indices obtained from the manual
scoring and the proposed automatic sleep staging method.
The MAEs of the SE, SOT, WASO, and TST were 6.79%,
7.29 min, 30.56 min, and 31.13 min, respectively. The ICC
indicated moderate agreement between the expert’s manual
scoring and the proposed automatic sleep staging method.

2) BLAND-ALTMAN PLOT ANALYSIS

Fig. 5 shows the Bland-Altman plots for each sleep index,
and each subplot represented a sleep index. The Bland-
Altman plot can present the mean and the standard deviation
(std) of the differences between two methods. The Y-axis
shows the difference between two methods (A-B), and the
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X-axis shows the mean of the two methods ((A+B)/2). The
positive or negative bias was represented as the difference
between the mean difference and zero, and it also respectively
represented the proposed method’s overestimation or under-
estimation. In addition, the £2 std represented the 95% confi-
dence intervals, and we observed whether the data points lied
within this interval. The biases of the SE, SOT, WASO, and
TST were —0.03%, —0.08 min, 15.07 min, and —15.48 min,
respectively.

The results of the Bland-Altman graph showed that the
sleep indices obtained using the manual scoring and the
proposed method were similar in terms of the SE and SOT
but considerably different in terms of the WASO and TST.
Because body movement indirectly affects the assessment of
the sleep indices, if a subject’s movement during sleep was
unusual (e.g., with low sleep efficiency), the WASO and TST
could not be accurately reported using the proposed method,
and further examinations would be required.

3) SCATTER PLOT ANALYSIS

Fig. 6 shows the comparisons of the subject-by-subject sleep
indices estimated using the proposed method and the results
of the manual scoring. The root-mean-square errors (RMSEs)
between the estimation obtained using the proposed method
and the manual scoring for the various objective sleep indices
were also calculated. The RMSE is a quadratic scoring rule
that measures the average magnitude of the error. The RMSEs
of the SE, SOT, WASO, and TST were 10.91%, 16.02 min,
48.19 min, and 49.89 min, respectively. The distributions of
SE and SOT were extremely close to the diagonal, which
indicated that the proposed method exhibited good perfor-
mance when calculating the SE and SOT, although some large
errors were observed in the WASO and TST. These errors
may arise because the subject experienced many transitions
in their sleep stages. This phenomenon was consistent with
the findings shown in Fig. 5.

IV. DISCUSSION AND CONCLUSION

An automatic sleep staging method using the hybrid stacked
LSTM was proposed in this study. The 24 features were
extracted from the selected EEG, left-eye EOG, and chin
EMG signals and normalized to reduce individual differ-
ences. Then, the five hybrid stacked LSTM models with
different numbers of hidden units were designed to find the
suitable number of hidden layers and their hidden units to
score PSG data. In addition to the model evaluation, the four
sleep indices that were computed using the proposed method
were compared to those that were computed by experts.
The hybrid stacked LSTM model, the LSTM+BiLSTM with
125 hidden units, had the highest mean accuracy of 78.90%
and the highest accuracy of 83.07%. In addition, the std.
of the best hybrid stacked LSTM models was only 2.29%.
It proved the robustness and stability of the proposed method.
For the assessment of sleep indices, the biases of SE, SOT,
WASO, and TST were —3.28%, —0.08 min 14.95 min and
—14.87 min, respectively. The results indicated a moderate
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FIGURE 7. Hypnogram of the subject tr03-0005 (sleep efficiency:
54.38%). (a) The visual scoring. (b) The automatically scoring.

agreement with the expert results for each sleep index accord-
ing to the intraclass correlation coefficient.

Our contributions in this study include four points.
(1) The massive PSG data on sleep disorders (nearly 1000)
was used to train and evaluate the hybrid stacked LSTM
models. (2) Five hybrid stacked LSTM models with different
numbers of hidden units were designed. (3) We find the
suitable model and number of hidden units to classify sleep
stages, and the suitable model was the LSTM+BiLSTM with
125 hidden units. (4) Similar to previous studies, we also use
four sleep indices to compare the differences between the
proposed method and experts.

Fig. 7 shows the hypnogram of Subject tr03-0005 (sleep
efficiency: 54.38%). The manual scoring by the expert is
shown in Fig. 7 (a), and the automatic scoring is shown in
Fig. 7 (b). It can be observed that the hypnogram of the pro-
posed automatic sleep staging system follows the changes in
the sleep stages of the subject. The overall agreement for this
subject is 88.50%. The sleep indices of Subject tr03-0982,
that is, the SE, SOT, WASO, TST, show differences of 1.75%,
—1.5 min, 9 min, and —7.5 min, respectively, when the results
of the proposed method and those of the expert are compared.

Furthermore, we used six different classifier-based con-
ventional machine learning techniques, namely, classification
trees, linear discriminant analysis, the naive Bayes, the sup-
port vector machine, the K-nearest neighbors (KNN), and
an ensemble of a subspace KNN, to compare conventional
machine learning with the proposed method. The data are
input into six different classifiers based on conventional
machine learning techniques that have the same processing
and validation method. Each epoch, a 30-s signal, had 24 fea-
tures extracted as the input of six different classifiers, and
these six different classifiers conducted training and testing
according to the ground truth. The overall agreement is as
shown in Table 6. The best overall accuracy was 69.50% for
the conventional machine learning technique involving the
ensemble of a subspace KNN. Compared with the LSTM-
based neural network, these classifiers are not based on time
series and they did not consider the temporal contextual
information. However, sleep architecture has the temporal
contextual information. Thus, they did not perform well.

To understand how LSTM learns the features of different
sleep stages in the network model, we visualized the output
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FIGURE 8. Activation of the LSTM hidden units from the automatic sleep staging for the subject tr03-0982. The top image shows the heat map,

and the bottom image shows the hypnogram from the automatic sleep
the number of hidden units.

TABLE 6. Overall agreement of the classifier based conventional machine
learning techniques.

Shallow Neural Networks Overall agreement (%)

Classification Trees 62.00
Linear Discriminant Analysis 62.80
Naive Bayes 54.50

Support Vector Machine 69.10
K-nearest Neighbors (KNN) 69.10
Ensemble of a Subspace KNN 69.50
Our Proposed Method 78.90

of LSTM in a heat map for one subject (tr03-0982), as shown
in Fig. 8. The X-axis is the number of epochs, and the Y-axis
is the number of hidden units. It was observed through the
heat map that the output intensity of the hidden neurons of
the LSTM changed with time for the different sleep stages.
In addition, it can be observed from Fig. 8 that a hidden unit
learns the features of a single sleep stage, and thus the output
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staging. The X axis represents the number of epochs, and Y axis denotes

intensity of the hidden unit changes with the sleep stage. For
example, the 20" hidden unit has a higher output intensity in
the Wake stage and a lower output intensity in the non-Wake
stages, the 115" hidden unit has a lower output intensity in
the Wake stages and a higher output intensity in the non-
Wake stages, and the 45" hidden unit has a higher output
intensity in the REM stages (epochs 335-366) and a lower
output intensity in the non-REM and Wake stages.

Table 7 shows a comparison of our method and other sleep
stage scoring methods based on the deep learning and con-
ventional machine learning classifier in terms of the kappa,
overall agreement, and sensitivity. Although reference [21]
has the highest performance, they only used eight healthy
subjects and tested the method by subject dependent. This
did not meet the real situation in the clinical application.
In terms of the used dataset, we used PhysioNet2018 in the
comparison since it has the greatest number of subjects (994).
On the other hand, both the Sleep-EDF and Montreal Archive
of Sleep Studies (MASS) were made up of data from healthy
individuals, but the PhysioNet2018 was made up of data from
patients with sleep apnea. It means the PhysioNet2018 dataset
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Y axis represents the total number of each corresponding stage.
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total number of each corresponding stage.

has a higher frequency of sleep stage changes and more
complexity than both the Sleep-EDF and MASS dataset.

In addition, most patients who have PSG recordings taken
in sleep center or hospital are more likely to have sleep
disorders than healthy individuals. This means that Phys-
ioNet2018 is closer to the actual clinical situation. In terms of
the validation procedure, the 2-fold cross-validation strategy
has a greater number of testing subjects than the other meth-
ods. It showed that the proposed method was more robust than
the other methods. In addition, we reported our iterations to
prove the generalization ability. The kappa also showed that
the proposed model has substantial agreement.

Perslev et al. [22] proposed a U-Net-based automatic sleep
scoring method and evaluated the method using the Phys-
ioNet2018 dataset. Their method was based on time series
segmentation for sleep scoring. Compared to their results,
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the agreement and the sensitivities of Wake, N2, and N3 for
our proposed method were better.

In summary, the model was trained using the data of
patients with sleep disorders, which could guarantee the clin-
ical applicability. On the other hand, the data of patients with
sleep disorders contained significant noise; thus, the robust-
ness of the model may increase more than when using the data
from healthy individuals.

In future work, this method can assist clinical staff in
reducing the time required for sleep staging. We can try to
use the same architecture to analyze at healthy group or other
group with sleep-disorders to ensure the transferability of
the system. In addition, the existing research proposed some
features that could distinguish between high and low sleep
efficiency [5], [23]. These features can be combined with
the proposed method to improve the system robustness.
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TABLE 7. Comparison between the proposed method and other sleep staging methods.

. N Agreement kappa Sensitivity (%)
Ref. Dataset Number of subjects | Validation strategy Method (%) %) Wakel NI | N2 | N3 |REM
[24] | DREAMS 20 (healthy) Szu']fj‘.’elgt(jgpgﬁfgt MCFS+SVM @ 8331 7709 |93.7]29.7|88.4 | 83.9 | 82.6
[21] Sleep-EDF 8 (healthy) _ 10-fold TQWT+AdaBoost® |  91.36 864 [98.9(39.7]90.2|82.383.0
subject dependent
[25] Sleep-EDF 8 (healthy _ 10-fold EEMD+RUSBoost® |  83.49 84.1  [952]42.079.5(77.38| 80.5
subject dependent
[26] Sleep-EDF 20 (healthy) leave-one-out HMM ¢ 78.1 70.0  [86.918.3[87.6]79.5]86.4
60%-20%-20%
[27] MASS 62 (healthy) (training-validating- | MLP+LSTM © 85.92 79.09  [84.55/56.31(90.73|84.76|86.12
testing)
95%-5%
[28] Sleep-EDF 20 (healthy) (training-testing) CNN+LSTM 82.00 7870 | 84.7 |46.60|85.90(84.80(82.40
[29] MASS (healthyzgopatients) 90%-5%-5% Two-layers LSTM |  87.10 815  [89.40|59.70|90.90|80.20]93.50
[30] Sleep-EDF 20 (healthy) 20-fold Two-layers BILSTM | 82.0 76.0  |83.4(50.1|81.7]|942|83.9
22 . 5-fold U-Net 78.76 714 [80.43|57.41|85.94|76.36/83.43
————- ' PhysioNet
994 (patients
prfe‘;ﬁzzd Challenge 2018 ® ) 2-fold (64 times) [Hybrid stacked LSTM|  83.07 775 |81.89(56.16(92.16|86.38(81.49

*MCFS+SVM: multi-cluster/class feature selection (MCFS) + support vector machine (SVM)
"TQWT+AdaBoost: tunable-Q factor wavelet transform (TQWT) + adaptive boosting (AdaBoost)
‘EEMD+RUSBoost: ensemble empirical mode decomposition (EEMD) + random under sampling boosting (RUSBoost)

YHMM: hidden Markov model
°MLP: multilayer perceptron

First, these features can be used to distinguish between satis-
factory and unsatisfactory sleep, and a specific model trained
by different groups can later be used to score subject sleep
stages. In addition, for clinical application, we can develop a
semiautomatic human machine interface to assistant a sleep
expert in scoring the sleep stage. The function of the human
machine interface should include manual and automatical
scoring and calculation of the sleep indices. In automatical
scoring, the system’s uncertain epoch can be marked and
24 features of that epoch can be provided for the experts to
analyze.

APPENDIX

Fig. 9 shows the distributions of the epoch numbers and
feature values in Table 1 for the Wake, N1, N2, N3, and REM
stages, respectively. The X axis represents the distribution of
the magnitude of the normalized feature values; its range is
0 to 1, and the bins are 0.05. The Y axis represents the total
number of each corresponding stage.
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