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ABSTRACT In this paper a comprehensive system-level computational model of oculomotor pathways is
presented. This model shows the necessity of embedding internal models of muscles biomechanics in the
cerebellar Vermis to realize fast saccadic eye movements based on predicting the changes in muscles lengths.
First, the eye biomechanics are described by nonlinear equations during ‘‘slow’’ and ‘‘fast’’ movements.
Afterward, by analyzing these equations, a computational model, is deduced. Furthermore, each part of this
model is interpreted as a possible function of an element in the oculomotor pathways based on physiological
and anatomical pieces of evidence. In this model, two internal feedback loops compensate two types of
error: 1- error between desired and estimated values of eye position, calculated by Superior Colliculus,
and 2- error between desired and estimated torque, calculated by Cerebellar pathways. Simulations of this
circuit produce signals similar to the actual neuronal activities in the corresponding sites of the oculomotor
pathways during saccades. Effects of bilateral lesions of Fastigial nuclei, Vermis, Prepositus Hypoglossi,
the stimulation of Omni-Pause Neuron and Superior Colliculus are studied. Furthermore, the model ability in
performing smooth pursuit eye movements is investigated. Finally, the ‘‘main sequence’’ is reproduced. This
model is the first one to derive both the cerebellar function and the bilateral connectivity of the oculomotor
pathways from calculations based on physical hypotheses. The proposed model is useful to better understand
computational functions of different parts of the oculomotor pathways, and also using in robotics application
for controlling fast movement inspired by the brain.

INDEX TERMS Internal model, inverse function approximation, oculomotor pathways, saccade, cerebel-
lum, fast movements.

I. INTRODUCTION
During recent decades, many experimental and theoretical
studies have been performed to comprehend the princi-
ples of motor control and better understand motor diseases
[1]–[6]. Moreover, Biological motor control systems are
robust, adaptive and versatile, and they are also accurate,
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although sensory information is always delayed due to the
transmission and processing delay of sensory pathways [3],
[7]–[11]. Remarkably, fast and accurate movements can even
be performed without any sensory feedback. Thus, principles
of biological motor control might be used to improve robots
movements [11]–[14].

Fast movements such as saccadic eye movements, are
defined as those lasting less than the total duration of the
transmission and processing delays in the sensory-motor
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pathways [5], [15]–[20]. Therefore, they cannot be con-
trolled by a closed-loop controller based on sensory feedback
signals.

To use an open-loop controller instead of a closed-loop
one, an estimation of the inverse function of the plant is
necessary [5], [7], [16], [18]–[28]. But many functions have
no inverse one, because although a direct function is deter-
ministic, an inverse function is generally not. For instance,
biomechanical functions describing muscle contraction or
relaxation and limb dynamics are deterministic according to
the laws of classical mechanics, but various configurations
of the arm can perform similar hand displacements. Thus,
similar effects can result from different causes, and a cause-
effect relationship is generally not bijective, but is rather a sur-
jection from the domain of the causes to that of the effects [5],
[7], [16], [18]–[23], [25]–[28]. Therefore, no general method
permits to infer a single cause from a definite effect.

To overcome the ill-posed problem of inverse function
calculation, forward internal models are learned and built in
the brain to represent the causal relationships between the
input and the output variables of the biomechanical func-
tions. A forward internal model predicts the next state of a
commanded system, given the current state and the motor
command [5], [7], [16], [18]–[20], [23], [25]–[28].

Fast and slow eye movements are generated by neural
activity propagating through distinct pathways named oculo-
motor pathways. Oculomotor pathways has some interesting
characteristics due to eye’s specifications:

1) The eye globe is an almost homogeneous sphere rotat-
ing in the orbit around its center so that its inertia is
constant and insensitive to its orientation in the gravity
field;

2) It carries its own weight;
3) In the case of fixed head, eye movements are not per-

turbed, and thus no stabilizing reflexes control muscle
forces or lengths (an involuntary head movement can
be regarded as a perturbation, and in the case of nys-
tagmus, movements can be out of control leading to
diseases).

Due to these characteristics alongwith interesting ability of
fast movements generation,manymathematical models of the
saccadic motor pathways have been designed. The common
empirical practice is to start from the anatomical pathways
between brain regions, and define a circuit whose elements
are linked by connections matching these pathways; then,
local signal processing in each element is expressed by a
function defined on purpose to produce a simulated signal
resembling the observed time-course of the corresponding
neuronal activity (review in [29], [30]).

In most previous studies, linear functions are gener-
ally used. In seminal works published since 1975, David
Robinson and his followers chose to simplify drastically
the biomechanics and neglect the nonlinear behavior of the
muscles [31]. Thus, the whole biomechanics of the eye globe,
connecting tissues and muscles, can be described together
by a single linear function, liable to a Laplace transform,

which reduces to a first-order low-pass filter. In accordance,
inverse function can be approximated by two parallel path-
ways in the Brainstem: a direct path and an integrator whose
time constant matches that of the eye biomechanics, so that
poles and zeroes cancel out at low frequencies. This engineer
description of the command of eye saccadic eye movements
was an achievement at the time. But it is possible only due
to the simplicity of the eye biomechanics: constant inertia,
no sensitivity to gravity, no charge, no perturbations. Since
the biomechanical functions of the eye globe, connecting
tissues and muscles are not distinguished, the knowledge
about oculomotor pathways cannot be generalized to limb
motor pathways. In particular, the function of the Cerebellum
is not accounted for.

In the ‘‘bang-bang model’’ of the saccadic pathways, pro-
posed by Robinson [31], a feedback loop in the saccadic
pathways acts as a rough inner model of the eye biome-
chanics. The difference between desired and current positions
is calculated and serves as a motor signal. A solution for
optimal control is proposed: to go as fast as possible up to
about half the amplitude, and then switch the command to
brake the movement. After this pioneering work, several sites
where signals are compared have been identified. During
saccadic movements, motor pathways take into account the
biomechanics of the eye, including the ocular globe, muscles
and connective tissues [32], [33]. Since eye movements in the
orbit are never disturbed, and since obstacle avoidance is not
necessary, the limitation on eye velocity is that acceleration
is limited. Thus, command orders are likely limited by a
motor learning, similar to learning of the biomechanics of the
muscles in the Cerebellum.

Internal estimations of movement variables can be used
instead of sensory signals when those are unavailable [5],
[16], [18]–[20], [23]–[28], [34]–[36]. Signals encoding esti-
mates of angular velocity and position, recorded in the
Prepositus Hypoglossi (PH) nucleus, reach the Superior Col-
liculus (SC) and the Cerebellum [37], and signals encoding
predicted muscle lengths, recorded in the Vermis, reach the
Fastigial nucleus. By means of these inner signals, motor
commands can be calculated in a closed loop manner based
on internal estimated feedback without delay, instead of using
real sensory feedback received by delay [38].

Most models describe the ‘‘saccadic generator’’ within the
Pontine Paramedian Reticular Formation (PPRF), some focus
on the cerebellar Vermis and Fastigial nucleus, or on the
Superior Colliculus, but few consider all these parts together.
Amathematical model able to reproduce experimental results
is the outcome toward which any quantitative research on a
phenomenon tends. It is indispensable to express any quan-
titative theory and check the consistency of its hypotheses.
A model formalizes principles, allows to interpret observa-
tions and helps to transmit knowledge. Experimenters might
use it to design experiments, although this is not an indis-
pensable criterion of validity. Any acceptable model of neural
pathways should be represented by a circuit endowed with a
structure consistent with anatomy, each element of the circuit
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corresponding to a group of neurons. It should be able to
reproduce physiological and experimental observations.

Since movements are determined by the laws of classical
mechanics, models of sensorimotor neural pathways should
be based on these laws and on explicit command principles.
Indeed, the value of the accurate force must have been calcu-
lated and translated into the action potentials train. The first
step ofmodeling is to choose the level of precision intended in
the study and write a set of differential equations expressing
the physical relationships between the variables and the com-
mand signals. Kinematics and Biomechanics of muscles and
limbs are described by non-linear equations so that Laplace
transforms can no longer be used. Thus, to prepare a future
study of limb movements command, and progress toward a
theory of motor control, a command circuit of the eye was
derived from a mathematical analysis of a well-known set
of equations describing the eye biomechanics. Constraints
on the motor pathways, which iteratively compute ocular
motor signals, were then deduced. This method is reverse and
complementary to the usual empirical design of models.

This article presents a comprehensive model of saccadic
pathways, and it is organized as follows: first in section II
a brief survey of the main anatomical and physiological
features of the saccadic pathways is presented, which must
be accounted for by any realistic model of the eye motor
command circuit. At the end of section II, a brief summary
of the hypotheses used in the previous studies are presented.
Afterwards, mathematical analysis of the biomechanics of the
eye, ocular muscles, and connective tissues, is performed in
section III to precise the physical constraints on the process-
ing of the motor signals. Next, the modeling of the saccadic
command pathways is presented. Section IV includes the
computer simulations and comparison of the time-course of
the signal issued from each element to the neuronal activity
in the corresponding site of the oculomotor pathways. Model
suggestions, its main differences with previously proposed
models, and interpretation of computational functions of its
different parts are presented in section V. Finally, the paper
is concluded by conclusions in section VI.

II. PHYSIOLOGICAL AND ANATOMICAL REVIEW
The entire oculomotor system is composed of two parts:

1) The biomechanical system, consisting of the eye,
the muscles, and the connective tissues;

2) The neural motor circuit which prepares the motor
commands sent to the muscles, and is composed of
functionally articulated sub-circuits exchanging mes-
sages encoded in neural signals. This part includes
areas of cerebral cortex, Superior Colliculus, Cere-
bellum, Nucleus Reticularis Tegmenti Pontis (NRTP),
Prepositus Hypoglossi (PH) nucleus, and saccade
generators.

Any realistic model should be compatible with the
anatomical and physiological features which are hereafter
reviewed. Only the necessary pieces of information are
presented.

A. AREAS OF CEREBRAL CORTEX
The Lateral Intraparietal area of Cerebral Cortex receives
sensory signals encoding the location of possible targets.
Neuronal activities in the Parietal lobe represent the body
scheme and potential actions on objects in the surround-
ing. The Frontal Eye Field, Supplementary Eye Field and
dorsomedial portion of the Frontal Cortex, are involved in
selecting one relevant target toward which the gaze is to
be oriented, and the Frontal Eye Field plans either large
saccades of the head and eyes towards memorized targets
located out of the visual field, or voluntary saccades toward a
direction, including saccades of the eyes only while the head
remains immobile. These signals are sent to the neural motor
circuit in the Brain Stem termed ‘‘saccadic generator’’, to the
Superior Colliculus and to the pre-cerebellar nuclei, such as
the Nucleus Reticularis Tegmenti Pontis (NRTP) [39].

B. SUPERIOR COLLICULUS
The firing rate of some neurons in the Superior Colliculus
is modulated by the deviation of the eyes in the orbit [40].
The locus of activity is proposed to encode a two-dimensional
‘‘motor error’’, the angular distance in space between the
target and the current gaze orientation [41], [42].

C. NUCLEUS RETICULARIS TEGMENTI PONTIS (NRTP)
The caudal part of Nucleus Reticularis Tegmenti Pontis
(NRTP), which is the main pre-cerebellar nucleus, receives
signals from the motor Cerebral Cortex, the Superior Collicu-
lus, the contralateral Fastigial and Vestibular Nuclei and the
region surrounding the oculomotor nuclei [43]. Before and
during saccades, patterns of activity of neurons in the NRTP
resemble those of Superior Colliculus (SC) neurons encoding
eye position in the orbit [44] or eye velocity [45]. The NRTPs
project to the Flocculus andMedial Vestibular Nucleus, to the
oculomotor Vermis and to the Fastigial nucleus. Thus, they
take part in a short control loop Cerebellum/NRTP.

D. CEREBELLUM
The Cerebellum is involved in control and learning of fast,
smooth, and fine-tuned movements, both in sensory closed-
loop and motor open-loop control. Since the Cerebellum
adapts motor commands to various conditions, by means of
short-term signals and long-term changes in synaptic weights,
it has been compared to the controllers used in robotics
([5], [11], [16], [19]–[23], [28]).

Cerebellar Nuclei and Cortex receive similar excitatory
signals via the mossy fibers, and the Cerebellar Cortex
inhibits the Cerebellar Nuclei via the axons of the Purkinje
cells [46], [47]. Most Purkinje cells simple spike activities
are correlated with muscular tensions but show variability,
commonly interpreted as fitting the predictive signal to the
variable fatigue of muscular fascia [48], [49].

Lobules VI and VII of the Vermis project to the caudal
part of the Fastigial Nucleus. These parts of the Cerebellum
receive, via the NRTP, information on the command signals
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issued from the Cerebral Cortex, from the Superior Collicu-
lus, and from the ipsi- and contra-lateral Fastigial nuclei. The
Vermis receives also signals from the Prepositus Hypoglossi
nuclei, encoding the velocity and position of the eye. When
the Superior Colliculus is anesthetized and its output path-
way electrically stimulated, the triggered saccades are almost
unchanged, regarding the adjustment of the command signals
via a cerebellar internal feedback loop [50]. The variability
of the neuronal activities in the Vermis and Fastigial nucleus
would reflect the compensation by the Cerebellum of the
fatigue of the eye muscles, and also of the variability of
the activity in other parts of the oculomotor pathways, so that
the movement be always performed correctly [51].

In the Fastigial nuclei, close but separate regions process
motor signals for saccades, pursuit and stabilizing move-
ments [52]. These nuclei project contralaterally to the NRTPs
and EBNs [53]. Bursts of some Fastigial neurons last after the
end of contraversive saccades with head fixed [54], [55]. The
peak of neuronal activity in the Fastigial Nucleus contralat-
eral to the saccade precedes, by some tenths of milliseconds,
that in the Fastigial Nucleus ipsilateral to the saccade [54],
[56], [57]. Kleine et al. (2003) state: ‘‘faster saccades are
typically accompanied by bursts that start and peak earlier,
have a larger number of spikes that tend to occur in a shorter
time and, consequently, show higher peak discharge rates
than slower saccades of the same amplitude.’’ Thus sig-
nals issued from the Fastigial Nuclei ‘‘reflect the increase
in acceleratory drive and in braking force required to steer
the saccades’’, so that the Cerebellum ‘‘helps to accelerate
contralateral and decelerate ipsilateral saccades by means
of the early and late bursts, respectively, provided by the
Fastigial neurons’’. The late activity in the Fastigial Nucleus
ipsilateral to the saccade could re-excite the contralateral
EBN at the end of the saccade and help to stop it. Thus, activ-
ity appears related to the acceleration of the saccade in the
contralateral Fastigial and to its deceleration in the ipsilateral
Fastigial.

E. SACCADIC GENERATOR
The neurons of the circuit called ‘‘saccadic generator’’,
located in the Paramedian Pontine Reticular Formation
(PPRF), are active only during saccades [58]. ‘‘Excitatory
Burst Neurons’’ (EBNs) receive signals from the contralat-
eral Superior Colliculus (SC) (via Long Lead Burster Neu-
rons (LLBN) in Primates [59]) and from contralateral Fasti-
gial Nucleus. In most EBNs, the number of spikes emitted
during a saccade is correlated with the amplitude of the
angular rotation of one eye [60]. They project to the motoneu-
rons related to the ipsilateral lateral rectus muscle, to the
internuclear interneurons which innervate the contralateral
medial rectus muscle, and to the neurons of the Prepositus
Hypoglossi Nucleus (PH). The saccadic generator dispatches
also the motor commands among the motor pathways of
the opponent muscles, by means of the phasic ‘‘Inhibitory
Burst Neurons’’ (IBNs), which inhibit the contralateral EBNs,
IBNs, motoneurons, and neurons of the PH.

On the contrary, the activity of ‘‘Omni-Pause Neurons’’
OPNs are hypothesized to prevent eye movements during
fixations. Just before saccades, neurons in the SC activate
Long Lead Burst Neurons (LLBN) close to the NRTP, which
activate ‘‘latch neurons’’ which in turn inhibit OPNs and thus
trigger the saccades [61], [62]. LLBNs dispatch signals of
the Colliculus to cerebellar pathways [63], [64], like NRTP,
and to the OPNs [61]. In the rostral SC, ‘‘Superior Colliculus
fixation neurons’’ (SCFNs) pause during saccades and dis-
charge during fixations; they activate OPNs [65]. Electrical
stimulations of SCFNs interrupt eye saccades, while renewed
activity correlates with saccade end [66].

F. PREVIOUS MODELS OF SACCADIC AND CEREBELLAR
PATHWAYS
The most important hypotheses of previously proposed mod-
els of eye motor pathways, induced from experimental stud-
ies, are summarized as follows [67], [68]:

1) Direct motor pathways overcome the viscosity of the
connective tissues and of the muscles;

2) Motor velocity signals are integrated by the Prepositus
Hypoglossi nuclei into a position signal, reaching the
Superior Colliculus, the Cerebellum, and the motoneu-
rons to overcome the stiffness of connective tissues and
muscles, and maintain the eye in the current position;

3) Saccadic movements accuracy is ensured by means of
feedback loops, via sites where differences between
desired and estimated variables are calculated:
• The difference (error) between desired and esti-
mated current gaze positions is calculated in the
Superior Colliculus (SC) [69]–[71];

• The difference between desired and estimated
muscle lengths is calculated in the Cerebel-
lum [50];

4) Saccadic movement duration is minimized by some
optimization;

5) The precision of a gesture depends on the anticipat-
ing aptitude of sensorimotor looped pathways. During
fast movements, sensory signals are not available but
replaced by estimates calculated in predictive circuits.
Functionally, motor commands are thus calculated in
closed loop even if the information is encoded in pre-
dictive rather than sensory signals.

In this study, these largely accepted hypotheses are consid-
ered to propose the model.

III. PROPOSED MODEL
A. ANALYSIS OF THE BIOMECHANICS OF THE EYE
In this section, a high-level model of eye biomechanics is
presented. Afterwards, based on analyzing the model in both
slow and fast movements a mathematical model of oculomo-
tor circuit is presented. In the next section, different parts
of these mathematical model are interpreted as the possible
models for different parts of the oculomotor circuit, using the
physiological and anatomical facts reviewed in section II.
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FIGURE 1. Scheme of the eye in the rest position (a) and after an angular
movement θ (b). The length of the muscle is represented by black thick
line and the spring in red.

1) KINEMATICS OF EYE MOVEMENTS
The length of a spring at equilibrium and in the ‘‘rest’’
position is denoted l0. If the spring is stretched by a value
1l, the length becomes l and the spring exerts a force
F = K .1l = K .(l− l0). For antagonistic muscles (numbered
1 and 2), λ1 and λ2 denote the lengths of the elastic elements
of themuscles and connective tissues (Fig. 1). At each angular
position of the eye in the orbit, these lengths depend on those
of the muscles γ1 and γ2. These lengths are also dependent
on the angular positions of the insertions of the muscles in
the sclera β1 and β2. Moreover these lengths depend on the
positions of the tangency points of the muscles on the eye φ1
and φ2. Consequently we have:{

λ1 = φ1 − β1 − γ1

λ2 = φ2 − β2 − γ2
(1)

βi as well as φi are constant, while λi(θ ) as well as γi(θ ) are
functions of θ (i = 1, 2). At the ‘‘rest’’ position (visual field
‘‘straight ahead’’), the lengths of the muscles are λ01 and λ02
and the forces exerted by the muscles are: F1(0) = F2(0) =
F0 (Fig. 1-a). After making a change in muscles lengths in
order to move the eye, the line of sight v has rotated by an
angle θ (Fig. 1-b):{

λ1(θ ) = φ1 − β1 − γ1(θ )− θ
λ2(θ ) = φ2 − β2 − γ2(θ )+ θ

(2)

Therefore, the forces F1(θ ) and F2(θ ) exerted by the springs
as follows:{

F1(θ )− F0 = Ks.1λ1 = Ks.(γ01 − γ1(θ )− θ ))
F2(θ )− F0 = Ks.1λ2 = Ks.(γ02 − γ2(θ )+ θ ))

(3)

Two auxiliary positive variables y1(θ ) and y2(θ ) are defined
as follows: {

y1(θ ) = (γ01 − γ1(θ )) > 0
y2(θ ) = (γ2(θ )− γ02) > 0

(4)

Their initial values are zero. Now, we can rewrite equation (3)
by substituting y1 and y2 from equation (4):{

F1(θ )− F0 = Ks.1λ1 = Ks.(y1(θ )− θ )
F2(θ )− F0 = Ks.1λ2 = Ks.(θ − y2(θ ))

(5)

The radius of the eye being constant, the forces and torques
are not distinguished thereafter. Based on equation (5), at the
angular position θ , the torque exerted on the eye is calculated
as follows:

F1(θ )− F2(θ ) = Ks. (y1(θ )+ y2(θ )− 2θ) (6)

2) BIOMECHANICAL SYSTEM
Biomechanics of the eyeball, muscles and connective tis-
sues are represented by a second-order equation [72]–[75].
Muscular biomechanics are usually represented by the behav-
ioral Hill’s model, which does not describe biochemi-
cal mechanisms such as actin/myosin interpenetration, but
which is simple and has been used to model extra-ocular
muscles [74], [76].

Themuscle model used here is a Hill-basedmodel, adapted
to represent the biomechanics of the eye muscles [74].
Anatomical pulleys set the pulling direction of the eye mus-
cles, but this has no incidence on dynamics [76]. During
horizontal saccades toward side 1, the signals [α1, α2] of the
motoneurons induce respectively contraction of lateral (exter-
nal) and relaxation of the medial (internal) rectus muscle. The
state of the system is considered as:

X = (Fa1,Fa2,Fp,Fo, y1, y2, ẏ1, ẏ2, θ, θ̇),

which includes:
• The torque of active forces (Fa1,Fa2) that the muscles
exert;

• The resistant torques Fp and Fo exerted respectively by
the muscles and connective tissues;

• The angular positions (y1, y2) of the ends of the muscles
(expressed as angles, since the radius of the eye is con-
stant) and the velocities of muscle shortening (ẏ1, ẏ2);

• The angular position and the velocity of the eye in the
orbit (θ, θ̇ ).

The system dynamics are described by the system of non-
linear differential equations, presented below in the order of
the causes (the first two equations express muscle activation),
to the effects (the following equations express the biomechan-
ics of the muscles, connective tissues and eye).

Ḟa1 =
1
σ1
.(α1 − Fa1) (7)

Ḟa2 =
1
σ2
.(α2 − Fa2) (8)

F1 = Ks.(y1 − θ ) (9)
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F2 = Ks.(θ − y2) (10)

ẏ1 =


H .

Fa1 − F1
0.25Fa1 + F1

Fa1 ≥ F1

H .
Fa1 − F1
3Fa1

Fa1 < F1
(11)

ẏ2 =


−H .

Fa2 − F2
3Fa2

Fa2 ≤ F2

−H .
Fa2 − F2

0.25Fa2 + F2
Fa2 > F2

(12)

Ḟp =
1
τ
.(Kpθ + Bpθ̇ − Fp) θ > 0 (13)

Ḟo =
1
τ
.(Koθ + Boθ̇ − Fo) θ > 0 (14)

J .θ̈ = F1 − F2 − Fp − Fo (15)

This system of equations describe the eye muscle dynamics
as follows:

• Equations (7) and (8) describe the effects of signals α1
and α2 of the motoneurons on the recruitment and acti-
vation of muscle fibers. Active muscular forces Fa1 and
Fa1 develop according to temporal dynamics equivalent
to low-pass filters characterized by the time constants σ1
and σ2;

• Equations (9) and (10) describe the current forces, F1 or
F2, exerted by the muscles on the eyeball according to
the length (y1−θ ) or (y2−θ ) of each ensemble formed by
a muscle and its tendons. The stiffness coefficient is Ks.
The length of the elastic element is the variable which
causes the force;

• Hill’s equations (11) and (12) describe the length vari-
ation rate ẏ1 or ẏ2 of each muscle, depending on the
active forces, Fa1 or Fa2, and the current force exerted,
F1 or F2 [74]. Two formulas describe the behavior of the
muscles according to whether they contract (first line)
or relax (second line). Hill’s constantH is the maximum
speed of muscle contraction;

• Equations (13) and (14) express, as functions of the
position and velocity of the eye, the dynamics of the
passive resistive forces of the muscles (Fp) and connec-
tive orbital tissues (Fo, characterized by the same time
constant τ . The coefficient of passive muscle stiffness is
Kp the coefficient of the orbital connective tissues is Ko.
The viscosity coefficients are respectively Bp and Bo;

• Finally, equation (15) expresses the principle of inertia:
the product of the moment of inertia of the eye J and the
angular acceleration θ̈ is equal to the algebraic sum of
the active and resistant torques exerted on the joint.

Equations (13) to (15) can be combined into a single
second-order equation expressing the principle of inertia
applied to the biomechanical function of the eye, denoted
g(θ, θ̇ , θ̈ , t):

g(θ, θ̇ , θ̈ , t) = F1(t)− F2(t)

= Ks.(y1(θ (t))− θ (t))

−Ks.(θ (t)− y2(θ (t))) (16)

By applying Laplace transform on equation (16) we have the
following equation in the Laplace domain which is helpful in
the remaining analysis:

F1(s)− F2(s) = J .s2.θ + (Bp + Bo).
s

1+ sτ
θ

+ (Kp + Ko).
1

1+ sτ
θ (17)

B. CONTROL SYSTEM
The control system is proposed to operate differently for slow
and fast movements.

1) FUNCTION OF SACCADIC GENERATOR CIRCUIT
Since slow movements last longer than total duration of
transport and processing of the sensory signals, they are
controlled by using sensory signals including vestibular or
visual. In equations (7) and (8), the changing rate of forces
(Ḟ1 and Ḟ2) are small. The velocities of shortening (ẏ1) or
lengthening (ẏ2) are small. Therefore the current force F1 or
F2 exerted by each muscle is almost equal to the active force
Fa1 orFa2, which are directly controlled, at any instant, by the
signals α1 and α2 of the motoneurons: α1 − α2 = F1 − F2 =
Ks.(y1 − θ )− Ks.(θ − y2).
Since in equation (17), the term of inertia J .s2.θ for eye

is really negligible compared to those expressing stiffness
and viscosity, this term can be ignored. Furthermore, for
slow movements, due to the negligible velocities of muscle
shortening or lengthening, the effect of the low-pass filter
1/(1+ s.τ ) can also be ignored:

F1 − F2 =
(
(Bp + Bo)+ (Kp + Ko).

1
s

)
.s.θ (18)

If we consider that the desired angular velocity of the eye
is given to control system as the reference signal (θ̇D where
’D’ stands for ‘‘Desired’’), the desired position could be
calculated by integrating this input signal in the oculomotor
circuit (θC where ’C’ stands for ‘‘Calculated’’). Now, since
during slow movements the biomechanics of the muscles do
not modify the motor commands, it is not necessary to take
into account them in the computation of these commands.
Therefore, the system can be controlled by signals α1(t) and
α2(t) such that:
α1(t)−α2(t)=F1−F2= (Bp + Bo).θ̇D(t)+(Kp + Ko).θC (t).

2) FUNCTION OF SUPERIOR COLLICULUS
For fast movements, the term of inertia J .s2.θ can also be
neglected, but the effect of the low-pass filter 1/(1 + s.τ )
cannot. Rotating the eye in the orbit requires that the torque
F1 − F2 be calculated as follows:

F1(t)− F2(t) = (Bp + Bo).
s

1+ sτ
θD

+ (Kp + Ko).
1

1+ sτ
θC (19)

Different parts of equation (19) can be interpreted as
functions of different parts of oculomotor circuit utilizing
physiological and anatomical facts reviewed in section II.
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For saccadic command pathways in Pontine Reticular For-
mation, these hypotheses can be proposed as follows:
• The EBNs ipsilateral to the saccade receive a signal
encoding the desired position change θD(t) from the
contralateral Cerebral Motor Cortex and produce the
desired velocity signal θ̇D(t). In the Laplace domain,
their dynamics are expressed by the function: s/(1+sτ );

• This signal is sent to the ipsilateral motoneurons with a
gain Bp + Bo equal to the sum of the passive viscosities
of the muscles and the connective tissues viscosities.
It is also sent with a negative gain, via the IBNS, to the
contralateral neurons of the saccadic system;

• The EBN velocity signal is sent to the neurons of
the ipsilateral nucleus Prepositus Hypoglossi and inte-
grated. The calculated position signal θC (t) is in turn
sent to the ipsilateral motoneurons with a gain Kp +Ko,
equal to the sum of the passive stiffness of the muscles
and connective tissues stiffness. It is also sent, with a
negative gain, to the contralateral motoneurons. Thus the
relaxing muscle exerts no active force but only a passive
force.

Such a simple organization that includes the function of
Pontine Reticular Fromation (which is similar to the model
proposed since 1975 by Robinson [31]), approximates the
inverse biomechanical functions expressing passive forces
(equations (13) and (14)). An important question raised here
is ‘‘What are the functions of other parts of oculomotor
circuit, including the Vermis, Fastigial, Superior Colliculus,
and NRTP? Here, we will try to find the appropriate answer
for this question by revising equation (19), considering the
anatomical and physiological facts reviewed in section II.

Command signals issued from the Cerebral Cortex are sent
via a direct pathway to the Pontine Reticular Formation, and
complemented by signals sent via indirect, closed looped,
pathways and computed in two ‘‘proportional controllers’’:
• A proportional controller of gaze orientation lies in
the Superior Colliculus, where the difference between
desired and estimated (estimation of current position)
gaze positions is computed as an error signal [41], [77].
During coordinated eye-head movements, the Superior
Colliculus controls gaze trajectory i.e. space displace-
ment of the line of sight (not studied here). If the head
is fixed, gaze rotation in space is equal to eye rotation in
the orbit.

• A proportional controller of muscles lengths, which
coordinates muscles contractions, lies in the cerebellar
pathways, composed of the NRTP, the Vermis, and the
Fastigial nucleus. The cerebellar Vermis is assumed to
embed learned internal models of the biomechanics of
the eye muscles. Such an internal model allows predic-
tion of muscles lengths variations and the forces they
exert. The difference between the desired and predicted
muscle lengths is calculated in the Fastigial nuclei.

During a saccade, the high velocity (up to 1000 degrees
per second) prevent from utilizing sensory information, there-
fore it is necessary to utilize estimated values, calculated

by the internal models. Thus, the gaze directing control is
performed in a closed loop manner, but with estimated values
(sensory information). The signal encoding the desired angu-
lar position, issued from the Cerebral Cortex, is completed,
at the entry of the EBNs, by corrective signals issued from
mentioned ‘‘proportional controllers’’.

To consider the corrective effect of Superior Colliculus,
signal θD is replaced by θD + kc.(θD − θC ), where kc is
a constant coefficient, θD is the desired angular position,
θC is an estimate of angular eye position (from Prepositus
Hypoglossi). Indeed Superior Colliculus calculates the differ-
ence between desired and calculated positions as a predicted
error, used as a compensator.

C. CEREBELLAR COMPENSATORY SIGNALS
The biomechanics of the muscles, expressed by Hill’s equa-
tions (11) and (12), can change during fast movements,
and also over time (for example as a result of fatigue of
motoneurons or muscle). Therefore, the dynamics of muscle
contraction should be taken into account by the control unit.
The signals issued from the motor Cerebral Cortex and the
Superior Colliculus are complemented by signals, computed
in the Cerebellum according to the estimated state of the
muscles, and sent from the contralateral Fastigial nucleus to
the EBNs and NRTP.

In this model it is proposed that the Cerebellar Cortex com-
putes a signal encoding the predicted change of length of each
muscle according to the estimated state of the muscle and
to the current motor commands. In the Cerebellar Nucleus,
this signal is compared to the premotor signal encoding the
change of length necessary to complete the movement. In the
case of saccadic eye movements, the difference between the
necessary and predicted values is calculated in the contralat-
eral Fastigial nucleus and sent to the NRTP and to the EBNs,
where it complements the signals issued from the motor
Cerebral Cortex and from the Superior Colliculus.

Possible computational rules are presented based on a set
of four functional hypotheses:

1) Differential signals are used to adjust the motor com-
mands;

2) The Cerebellum contains predictive models of biome-
chanical functions;

3) Differential signals are calculated by neurons in the
Fastigial Nuclei;

4) Identical calculations are not made twice in the nervous
system.

Note: Hereafter, ’D’, ’C’, and ’E’ stand for ‘‘Desired’’,
‘‘Estimated’’, and ‘‘Calculated’’ values.

1) HYPOTHESIS I: DIFFERENTIAL SIGNALS ARE USED TO
ADJUST THE MOTOR COMMANDS
Copies of motor commands sent to the motoneurons are sent
to the Prepositus Hypoglossi (PH), where the torque to be
exerted (F1(θ )− F2(θ ))C = gC (θ, θ̇ , θ̈ , t) is estimated. This
is sent to the Vermis and to the Fastigial Nuclei. Simultane-
ously, the Cerebellum estimates the torque (F1(θ )− F2(θ ))E
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as a prediction of the real generated torque by these motor,
given the estimated states of the muscles. The current move-
ment is predicted not to be large enough if:

(F1(θ )− F2(θ ))E < (F1(θ )− F2(θ ))C

The anticipated error is thus: 1C = (F1(θ )− F2(θ ))C −
(F1(θ )− F2(θ ))E > 0. Signal which is sent from the Cere-
bellum to the EBNs would be a signal proportional to 1C
that is able to prevents a movement error.

2) HYPOTHESIS II: THE CEREBELLUM CONTAINS
PREDICTIVE MODELS OF BIOMECHANICAL FUNCTIONS
The torque estimated in the Cerebellum is denoted, with the
negative sign:

−(F1(t)− F2(t))E = Ks.
(
(θD(t)− yE1 (t))

+ (θD(t)− yE2 (t))
)

(20)

In equation (20), the signal θD(t) is the sum of all copies
of motor signals that activate EBNs and which are sent
to the Fastigial nucleus. Predictive signals are assumed to
encode the shortening yE1 (t) of tendons and muscle 1, and the
lengthening yE2 (t) of tendons and muscle 2. They are likely
calculated in the neural networks of lobules VI and VII of the
Vermis, which receive sensory and motor signals before and
during movements.

3) HYPOTHESIS III: THE DIFFERENTIAL SIGNALS ARE
CALCULATED BY NEURONS IN THE FASTIGIAL NUCLEI
Assuming that the input signals to the EBNs have the physical
dimension of an angle, the signal sent from the Cerebellum to
the EBNs, as well as to the contralateral Fastigial and NRTP
in Laplace domain is calculated as follows (z is decomposed
to z1 and z2 to show the effect of two sides, contralateral and
ipsilateral):

z = z1 + z2 =
1
Ks
.1C

=
1
Ks

(
gC (θ, sθ, s2θ )+ (θD − yE1 )+ (θD − yE2 )

)
(21)

Now, if motor commands reached symmetrically both sides
during a saccade, activities of EBNs could be, in Laplace:

EBN1 = 0.5.
s

1+ s.τ

(
θD + kc.(θD − θC )

+ kf .
1

1+ s.δ
.
(
gC (θ, sθ, s2θ )+ 2.(θD − yE1 )

))
EBN2 = 0.5.

s
1+ s.τ

(
θD + kc.(θD − θC )

+ kf .
1

1+ s.δ
.
(
gC (θ, sθ, s2θ )+ 2.(θD − yE2 )

))
(22)

where kc and kf are two positive gains, δ is the transfer delay.
But, due to the inhibition of neurons on the side contralateral
to the saccade, the activities of EBNs are, for the almost entire

duration of a saccade to the left:
EBN1 =

s
1+ s.τ

(
θD + kc.(θD − θC )

+ kf .
1

1+ s.δ
.
(
gC (θ, sθ, s2θ)+ 2.(θD − yE1 )

))
EBN2 = 0

(23)

By expressing explicitly gC (θ, sθ, s2θ ) and noting1 as the
transmission delay from the PH to the Cerebellum, the motor
signal issued from EBN1 can be expressed in turn as:

EBN1 = HEBN .
(
(θD + kc.(θD − θC )).(1+ s.δ)

+ kf .(θD − yE1 + θ
D
− yE2 )

)
(24)

where, the transfer functionHEBN is a second order high-pass
filter expressed as:

HEBN =
s.Ks
H (s)

H (s) = (1+ s.τ ).(1+ s.δ).Ks
− kf .(1− s.1).

(
(Bp + Bo).s+ Kp + Ko

)
(25)

Thus, the signal EBN1 has the physical dimension of an
angular velocity, which is expected [46].

4) HYPOTHESIS IV: IDENTICAL CALCULATIONS ARE NOT
MADE TWICE IN THE NERVOUS SYSTEM
Each Fastigial nucleus, on the side i,(i=1 or 2), sends to
contralateral EBNs a signal zi(t) which could be written
generally as follows:
z1(t)=

1
k
.

(
a
Ks
.gC (θ, θ̇ , θ̈ , t)+(θD−yE1 )+c.z2(t − δ)

)
z2(t)=

1
k
.

(
1−a
Ks

.gC (θ, θ̇ , θ̈ , t)+(θD−yE2 )+c.z1(t−δ)
)
(26)

where k ,c and a are constant coefficients. The coefficient a is
in (0,1). In the Laplace domain, a short delay is represented by
a decreasing exponential e( − δ.s) and these equations could
be rewritten in Laplace domain as follows:
z1 =

1
k
.

(
a
Ks
.gC (θ, s.θ, s2.θ )+ (θD − yE1 )+c.z2.e

−δ.s
)

z2=
1
k
.

(
1−a
Ks

.gC (θ, s.θ, s2.θ )+(θD−yE2 )+c.z1.e
−δ.s

)
(27)

Sum of z1 and z2 which is the final effect of the cerebellum,
based on the approximation according to the Taylor expan-
sion e−δ.s ≈ 1− s.δ:

z = z1 + z2 =
1

k − c+ c.s.δ

(
1
Ks
.gC (θ, s.θ, s2.θ )

+ (θD − yE1 )+ (θD − yE2 )
)

(28)
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To have a stable format (all polls are one the left hand side of
s-plan), assume a general form for k: k = d + s.τ where τ is
the time constant value, we have:

1
k − c+ c.s.δ

=
1

(d − c)+ (τ + c.δ).s
.

If these coefficients are chosen to have d − c = 1 and
τ + c.δ = T (T is an arbitrary time constant), equation (27)
would be rewritten as follows:

z = z1 + z2 =
1

1+ s.T

(
1
Ks
.gC (θ, s.θ, s2.θ )

+ (θD − yE1 )+ (θD − yE2 )
)

(29)

which is a stable low-pass filter if T ≥ 0, and as a result:
1
k =

1
d .

1
1+s.τ/d . Therefore, by replacing this new k is equation

(27 we have:

z1 =
1
d

1+ s. τd
.

(
a
Ks
.gC (θ, s.θ, s2.θ )

+(θD − yE1 )+ c.z2.e
−δ.s

)
z2 =

1
d

1+ s. τd
.

(
1− a
Ks

.gC (θ, s.θ, s2.θ )

+(θD − yE2 )+ c.z1.e
−δ.s

)
(30)

To have T = 0 (an ideal form which is not a low-pass
filter), we should set d = 1 + c and τ = −c.δ. Therefore,
by considering time constant τ as a positive value, c must
be a negative value. In this case, an interneuron is assumed to
inhibit the contralateral Fastigial Nucleus. A possible solution
is c = −0.5 and a = 0.5:

z1 =
2

1+ s.δ
.

(
1

2Ks
.gC (θ, s.θ, s2.θ )

+(θD − yE1 )− 0.5.z2.e−δ.s
)

z2 =
2

1+ s.δ
.

(
1

2Ks
.gC (θ, s.θ, s2.θ )

+(θD − yE2 )− 0.5.z1.e−δ.s
)

(31)

where in this equation:
• gC (θ, s.θ, s2.θ ): Efference Copy of the current motor
command calculated in PH;

• yE1&y
E
2 : Predicted consequences calculated in Vermis

and received by Purkinje cells;
• θD: Desired Consequence received by Mossy Fibers;
• z1&z2: Compensating signals calculated in Fastigial
nuclei of different sides;

• δ: The transmission time delay between Fastigial nuclei
in different sides

Therefore, the Vermis, based on learned internal model of
eye biomechanics and an efference copy of motor command,
predicts the consequences of the current motor command.
Next, Fastigial nuclei calculate the compensation signal by
receiving the prediction of consequences by the Purkinje cell

and the desired consequence by Mossy fibers. Each Fastigial
nucleus, on the side i,(i=1 or 2), sends to contralateral EBNs
a signal zi(t) which are defined in the Laplace domain as
equation 31.

The whole processing computes an approximate inverse
function of muscles biomechanics. Fig. 2 shows the unilateral
and abstract block diagram of themodel. The proposedmodel
is a bilateral model, composed of two sides, either involved
in controlling movements in one direction. Fig. 3 shows the
complete bilateral model, proposed and implemented in this
article, realizes the anatomical structure and connections of
the oculomotor circuit.

5) PATHWAYS VIA EBN, IBN, AND OPN
The Excitatory Burst Neurons (EBNs) receive inputs issued
from contralateral regions, via three pathways:
• A direct or indirect by Long-Lead Burst Neu-
rons (LLBN) pathway from theOculomotor Cortex [46];

• An indirect pathway from the Superior Colliculus (SC),
which conveys an estimated position error;

• An indirect pathway from the Fastigial Nucleus, which
conveys an anticipated error of lengthening or shorten-
ing of the muscles, calculated from a torque error.

The sum θD of the input signals received via these three
pathways is processed by the function of the EBNs, modeled
as: s/(1 + s.τ ) as expressed by equations (19) and (23). The
gain (Bp+Bo) of the pathway from the EBNs to the motoneu-
rons is equal to the sum of the coefficients of viscosity of
the muscles and connective tissues. Moreover, EBNs activate
IBNs neurons, which send inhibitory signals to the neurons
of the contralateral eye motor pathways.

Furthermore, when a saccade is decided, Omni Pause Neu-
rons (OPNs) are inhibited directly by neurons in the SC, and
indirectly by the EBNSs, via the latch neurons. The saccade
starts and lasts till the motor error becomes smaller than a
threshold value so that the inhibition is released. OPNs are
modeled by empirical equations, in which γ is an activation
threshold and f (x) is a sigmoid function (here OPNmax is a
constant value that shows the OPN output when it is active
and kc is a constant coefficient shows the effect of Superior
Colliculus (SC)):

f (x) =
OPNmax
1+ e−x

EBNi(x) =


s

1+ s.τ
(x) Ipsilateral side

0 Contralateral side

IBNi = EBNj

SCi =

{
kc.(θD − θC ) Contralateral side
0 Ipsilateral side

Tri = f (SCi − γ )
OPN = OPNmax − EBN1 − EBN2 − Tr1 − Tr2

(32)

where i, j ∈ 1, 2.
Fig. 4 shows the block diagram of functions of Superior

Colliculus (SC) and EBN.
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FIGURE 2. A lumped representation of the command circuit of the eye, with a simplified anatomical
interpretation. (a) The whole functional command circuit of the model assumed to take place in the CNS.
(b) The biomechanics of the eye. K : the sum of Kp and Ko, B: the sum of Bp and Bo. Frames delimited by red
interrupted lines indicate anatomical interpretations. The biomechanics of the eye is denoted g, and the
inverse function g−1, delimited by black dotted lines, is assumed to be computed in oculomotor pathways.
The input to the PH denoted V is issued from the Vestibular Nuclei and encode the desired velocity stabilizing
the gaze in space. Here, ’D’, ’A’, ’C’ stand for ‘‘Desired’’, ‘‘Actual’’, and ‘‘Calculated’’ values.

FIGURE 3. The bilateral connectivity of the circuit. K : the sum of Kp and Ko, B: the sum of Bp and Bo, LN : Latch Neuron, IIN : Internal Inhibitory Neuron;
Vi : signals encoding velocity; Pi : signals encoding position..
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FIGURE 4. Function and connectivity simulated for two regions: (a) SC,
(b) EBN; HPF: High-pass filter.

FIGURE 5. Function and connectivity simulated for PH.

6) PATHWAYS VIA THE PREPOSITUS HYPOGLOSSI NUCLEUS
Input signals to the Prepositus Hypoglossi (PH) are copies
of velocity signals sent to the motoneurons from the EBNs
and the IBNs, and from the Vestibular Nuclei (which is not
considered in this study). The sum of these signals together
encodes the desired eye velocity. PH neurons are assumed to
compute signals encoding eye velocity and position, which
are sent not only to the motoneurons but also to the Superior
Colliculus, the NRTP, and the Cerebellum. Therefore, it is
necessary to have an integration mechanism in PH.

Anatomical studies show the existence of reciprocal inter-
action between PH nuclei in two sides. Here, we con-
sider this reciprocal interaction as a mechanism to integrate
received desired angular velocity for calculating the angular
position.

The velocity command signals issued from the EBNs are
integrated into looped circuit, endowed with short delays δ,

between the PH nuclei of the two sides, as shown in Fig. 5.
In Laplace notation, equations are very simple:{

P1 = δ.(EBN1 − IBN2)+ P2.e−δ.s

P2 = δ.(EBN2 − IBN1)+ P1.e−δ.s
(33)

In VI it is shown that these equations approximate an
integrator.

IV. SIMULATION
A. SIMULATION SETUP
The proposed model is used to simulate the command of a
simulated eye with two antagonistic muscles. For these sim-
ulations, MATLAB 2018 and Simulink are used. Most fig-
ures below show results for saccades of amplitudes of 10 and
20 degrees.

Detailed neuronal dynamics are not modeled: for instance,
in equation (23) activation of each neuronal type are repre-
sented by a summing element followed by a low-pass filter
endowed with a time constant set between 5 and 15 ms.
Similar results were obtained whatever the precise value of
this time constant. Adding stochastic noise at several sites
was checked, but did not change the results, since looped
circuits ensure stability and reduce noise. Values of different
parameters of the model are determined in Table 1 [74].

B. SIMULATION RESULTS
Figures 6 to 14 show simulations of experimental results,
which match with the observations summarized in the bib-
liographic survey. Indeed, the time-courses of the simulated
signals in elements of the circuit are similar to the mean neu-
ronal activitiesmeasured experimentally in the corresponding
sites of the brain.

1) NEURONAL ACTIVITIES OF THE DIFFERENT PARTS OF THE
MODEL
Simulated eye movement variables and neuronal activities
during saccades from the rest position (while looking for-
ward) to 10 (black lines) and 20 degrees (red lines) to the
left are shown in Fig. 6.
Fig. 6-a, the simulated curves reproduce the time-courses

of changes of eye position in the orbit, for two saccades
of 10 and 20 degrees. Fig. 6-b, the velocity time-courses of
the eye for these two movements are shown. Note that, for
the fastest movement, the acceleration is greater than the
deceleration, as in actual saccades. Two dashed vertical line
represent the end-time of these movements. It is important to
note that the profile of actual velocity is not symmetric and
the duration of movements with different amplitudes are not
equal, movements with higher amplitudes have longer dura-
tion, here about 15 ms (see Fig. 6-a and 6-b). It is shown that
the deceleration time is longer for larger movements (about
15 ms). These results are in accordance to the experimental
results on monkeys [78].

Fig. 6-c, shows the time-course of activity of one neuronal
type in the Superior Colliculus encoding the motor error i.e.

VOLUME 8, 2020 110869



C. Darlot et al.: Computational System-Level Model of Oculomotor Pathways Accounting

TABLE 1. Parameters values for simulations.

FIGURE 6. Time-courses of activities in various sites of the circuit from the rest position (while looking
forward) to 10 (black lines) and 20 degrees (red lines) to the left. Tow vertical dashed lines in (a) and
(b) represent the end-time of saccades, the black line for 10 deg (finished at 0.204 s) and the red line for
20 deg movements (finished at 0.218 s). The difference between these two lines is about 15 ms. In this
figure, ‘‘gf’’ is ‘‘gram-force’’, a unit of measuring force.

the difference between the desired and estimated eye angular
positions in the orbit. Note that this activity characterizes only
one type of collicular neuron in the deep layer since super-
ficial layers contain various neuronal types (visual, quasi-
visual, etc.).

Fig. 6-d, the time-courses of activities of the EBNs
are shown. Bursts of activity are followed by progressive
declines.

Figs. 6-e and 6-h, show the time-courses of the mean
activity in the contralateral and Ipsilateral Fastigial nuclei,
respectively. The time-shift between the activities in the

contralateral Fastigial nuclei is due to the transmission delay
from one side to the other.

Fig. 6-f, shows the pulse-step activity profiles of the ipsilat-
eral motoneurons and the reduction of activity of contralateral
motoneurons: note that it is clipped to zero during large
saccades due to the inhibition exerted by the IBNs. Simi-
larly, Fig. 6-i shows the profile of muscular force, generated
based on the appliedmotor commands. Consequently, Fig. 6-l
shows the profile of changing muscles length due to applying
the generated force. Note that the muscles slacken at the
beginning of fixations.
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FIGURE 7. Different inputs from different sources to the EBN. Since the
inputs are assumed to have the physical dimension of an angle, they are
expressed in degrees.

Fig. 6-g, the simulated curves show the activities in the
oculomotor Vermis. Note that the timescale is different is this
case.

Fig. 6-j, OPN neurons stop firing during saccades, due to
their inhibition by neurons of the Superior Colliculus.

Fig. 6-k, PH neurons integrate the velocity signal into
a position signal, sent to the motoneurones, the Superior
Colliculus and the Cerebellum.

Fig. 7 shows the time-courses and relative amplitudes of
the various input signals to the EBNs expressed in degrees
since these input signals have the physical dimension of an
angle. Note that the magnitudes of the signals issued from
different origins are comparable.

On fig. 8, the left diagram shows the eyemovements during
saccades for amplitudes10, 15, 20, and 25 degrees. The right
diagram shows, the amplitude/velocity relationship. These
results match the experimental results published by Optican
and Miles (Fig. 11 in [79]).

2) LESION STUDY
In this part, we simulate the lesions in different parts of ocu-
lomotor circuit by removing the corresponding connections
in the model, to show and evaluate the effect of different
lesions by reproducing the experimental studies. Here lesions
in Fastigial, Superior Colliculus, and Prepositus Hypoglossi
are studied.

Eye movements in healthy conditions and after a lesion,
either in the contralateral or ipsilateral Fastigial, are shown by
the three curves on Fig. 9-a. The eye movements in healthy
conditions and after a lesion either in the contralateral or in
the ipsilateral Vermis are compared on Fig. 9-b. The results
of these simulations reproduce qualitatively the experimental
results recalled above in the bibliographic survey

Fig. 10 compares the eye movements in healthy condi-
tions and after lesions in the output pathways of the Supe-
rior Colliculus. As expected, the lack of the signal issued
from the Superior Colliculus reduces slightly the ampli-
tudes of the saccades. Finally, Fig. 11 shows the lack of
velocity integration which results from a lesion in the PHs
nuclei.

3) STIMULATION STUDY
In this section the effects of stimulation of different parts,
including Superior Colliculus and OPN are studied to eval-
uate the model.

Fig. 12, reproduces the effects of stimulations of the super-
ficial layers of the Superior Colliculus by electrical pulses
lasting for 5, 10 or 15 ms. The amplitude of the movement
increases with the duration of the stimulation. These layers
are also activatedwhen sensory cues indicate the sudden entry
of a target of interest in the visual or auditory surrounding.

Fig. 13 reproduces, on the upper row, the effects of stimu-
lating the OPNs during the first half of the saccades, bymeans
of electrical pulses lasting respectively for 5, 10 or 15 ms.
Stimulations in the course of the first half of saccades, shown
on the upper row, perturb more the movements than stimula-
tions in the course of the second half. This matches the exper-
imental results recalled above in the bibliographic survey.

4) MAIN SEQUENCE STUDY
The relationship between saccade velocity and amplitude
is termed ‘‘main sequence’’ [80], [81]. Figure 14 plots the
relationships (main-sequence) between peak velocities of the
saccades (a), duration of the saccades (b) and their product
(c) with their amplitudes. On figure 14-c, the slope of the
regression line (red line), which could be interpreted as the
ratio of peak velocity to mean velocity, is equal to 1.4 which
is close to the estimated range of 1.54-1.80 from experimental
data (Harwood et al. 1999 [82]). It is important to not that the
sketch is in logarithmic scale. The results are also similar to
the experimental results published in [81].

5) TRACKING MOVEMENT STUDY
Another interesting issue is to study model’s behavior in
performing slow movements including tracking a moving
stimulus. Previous experimental studies showed that the typi-
cal oculomotor behavior of a naivemonkey tracking amoving
visual target with a constant speed, would be a sequence of
saccades [83], [84]. This behavior would become smoother
incrementally by training monkeys [83], [84].

Fig. 15 shows the study of oculomotor behavior as a
response to tracking a visual target moving by 20 deg/s con-
stant velocity ( [83], [84]). Since learning is not considered
in this study directly and the synaptic gains are determined as
fixed values obtained from mathematical analysis, to exhibit
the effect of learning, synaptic weight of trainable synapses
(including Parallel Fibers to Purkinje Cell and Fastigial nuclei
outputs) are set initially to some other values.

As it is shown in Fig. 15, the tracking movement is initially
a sequence of saccades. By learning the mentioned synaptic
weights (which are adaptive weights), the movement become
smoother and tends to saccade free movement.

V. DISCUSSION
The purpose of this section is to focus on model’s predictions,
their interpretations in terms of physiology and engineering
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FIGURE 8. Times courses of eye position, and position/velocity diagram, during saccades of different amplitudes. These
simulations reproduce the measures made experimentally.

FIGURE 9. Effects of lesions in cerebellar pathways: (a) Lesions in the
contralateral or ipsilateral Fastigial nucleus. (b) Lesions in the
contralateral or ipsilateral Vermis. These simulations reproduce the
experimental results.

issues, and comparing the results and predictions to predic-
tions of the other hypotheses and models.

A. PROPORTIONAL CONTROL
In this model, the two error signals used for control are
the differences between desired and estimated values of eye
position (which is calculated by SC) and of torque (which is
calculated by Cerebellar pathways).

1) EYE POSITION MOTOR ERROR COMPUTED IN THE
SUPERIOR COLLICULUS
The Superior Colliculus (SC) and the Prepositus Hypoglossi
nuclei (PH) are active during all movements including slow

FIGURE 10. Effects of lesions in the connections between the Superior
Colliculus and the EBNs. After such a lesion, the error position signal no
longer reaches the EBNs, and the amplitude of the saccades are reduced.

FIGURE 11. Effects of lesions in the PHs: as expected, the integration
disappears.

and fast ones. Signals encoding angular velocity and angular
position are issued, via long feed-back loops, from the PHs
which receive and integrate copies of the motor signals of the
EBNs (and also of head and gaze velocity command signals,
from the Vestibular nuclei and from the head motor path-
ways; not modeled here, since the head remains immobile).
An angular motor error based on the difference between the
desired final gaze orientation (target direction) and the cur-
rent estimated orientation, is continuously calculated, likely
in a motor map located in the deeper layers of the SC.
In addition, the sudden activation of the sensory, superfi-
cial, layers is schematically modeled by an activation of the
Colliculus.
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FIGURE 12. Effects of stimulating the SC. This stimulation mimics an express saccade launched by an electrical stimulation or the
sudden entry of an object of interest into the visual field. The amplitude of the saccade is proportional to the duration of the
simulated stimulation.

FIGURE 13. Effects of stimulating OPNs: First row: during acceleration, Second row: during deceleration Duration of the stimulation:
(a,d): 2 ms, (b,e): 5 ms, (c,f): 10 ms. As experimentally observed, the braking effect is greater the OPNs if stimulated during the
acceleration than during the deceleration.

The function of the SC shows two important features:
• Motor errors are encoded in layers mapping the sur-
rounding. Extensive variables are encoded in cortices;

• Since rotations are not commutative, the calculation at
each instant of the difference between the scheduled and
estimated movements is necessary to synchronize the
contractions of the pairs of recti muscles.

2) TORQUE MOTOR ERROR COMPUTED
IN THE CEREBELLUM
The Cerebellar Cortex is assumed to embed internal predic-
tive models of the biomechanics of the muscles, and to com-
pute anticipated values of the torques [46]. Representations
of the biomechanical functions are likely acquired by motor
learning, and stored in the neuronal connectivity, not detailed
here. Since several sets of muscle fibers are active during a
movement, estimating the torque is an extensive calculation
and accordingly takes place in the Cerebellar Cortex of the
Vermis.

A torque error, which is the difference between the torque
to be exerted and the estimation of the actual torque that
the motor commands can drive, is proposed to be calculated
in the Cerebellar Fastigial Nucleus. An important result of
this study is to establish a correspondence between signal
computation (equation (31)) and exchange of signals between
Fastigial nuclei on each side, via short neuro-anatomical
closed loops passing by the contralateral NRTP. Since a
torque error is an intensive variable, its calculation takes place
in a nucleus.

After an experimental unilateral lesion of one Fastigial
nucleus, saccades toward the side contralateral to the lesion
increase, and saccades towards the side ipsilateral to the
lesion decrease. Computer simulations allow to reproduce
normal saccades accurately, either with positive or negative
projections from one Fastigial nucleus to the contralateral
one, but the effects of lesions cannot be reproduced with
positive reciprocal projections. A prediction of the model is
therefore that inhibitory interneurones, denoted IN on Fig. 3
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FIGURE 14. The main sequence. Figures (a) and (b) are sketched in logarithmic scale and Figure (c) in linear scale. a: The relation of peak of
velocity (PV) with Amplitude of the saccades, b: The relation of duration of saccades with their amplitudes, c: The relation between the product of
PV and duration of saccades with their amplitudes.

FIGURE 15. The oculomotor behavior of the model during a visual target tracking task. a: The behavior without learning in Cerebellar Cortex
(Purkinje cell gain = 0.8, Fastigial nuclei output = 0.5), b: The behavior with obtained parameters of the model based on mathematical analysis
(Purkinje cell gain = 1, Fastigial nuclei output = 0.5), c: The behavior without learning in Fastigial nuclei (Purkinje cell gain = 1, Fastigial nuclei
output = 1).

and likely located in the NRTPs, would exert a reciprocal
inhibition between the two Fastigial nuclei.

In this circuit, two sites of comparison act as proportional
controllers, where possible errors are anticipated and actu-
ally prevented by means of corrective signals sent to EBNs.
At variance, the visual pursuit circuit (not modeled here)
would act as a ‘‘proportional integrative controller’’ since it
receives a velocity signal computed from the foveal retinal
slip, and triggers a corrective saccade whenever the cumu-
lative eye drift resulted in a position error harmful for neat
vision.

B. COMPARISON WITH OTHER MODELS
OF COMMAND OF SACCADES
In early models, different areas of the Cerebellar Cortex
were assumed to calculate either direct or inverse function
[21]–[24]. But neuronal connectivity is identical over the
whole Cerebellar Cortex, whatever the part of the body that
each part of the Cerebellum controls, and no area is spe-
cialized in computing direct or inverse functions. Mathe-
matically, computing inverse functions can be avoided by
assuming that a feedback loop comprises an ‘‘observer’’,
i.e. an element of a circuit able to predict some effect of
the motor command. The neuronal network constituting this

predicting element would behave like a direct, and therefore
deterministic, internal model of a biomechanical function
located in the Cerebellar Cortex [16], [18]–[20], [23]–[27].

The two sites of comparison, which exist in the Supe-
rior Colliculus and the Fastigial Nucleus are considered in
some previously proposed models of the saccadic pathways
as ‘‘dual drive architecture’’ [29], [85]–[88]. Nevertheless,
the basic assumptions of these previous models are different
from the considered principles proposed in our model, as can
be seen in the following comparisons:

1) Both the Cerebellar Cortex and Fastigial nuclei were
assumed to contain motor maps, coding at different
scales the motor commands necessary to drive eye
movements. Although they are actually compact, in the
previous models Fastigial nuclei were assumed to con-
tain topographically organized maps. On the contrary,
in the present model, Fastigial Nuclei are not assumed
to contain extensive motor maps but to compare inten-
sive force signals;

2) According to previous models, the earlier start and
peak of activity in the Fastigial nucleus contralateral
to the saccade than in the Fastigial nucleus ipsilateral
with the saccade would reveal the spread of a wave of
activity diffusing from the Fastigial nucleus on one side
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TABLE 2. Comparison with other models based on modeling the role of different parts of oculomotor pathways and different types of eye movements.

to the contralateral homologous nucleus, via crossed
topographic connections whose existence can be ques-
tioned [89]. In the present model, this fact results from
an exchange of signals via the NRTPs and Fastigial
nuclei, expressed by equation (31).

3) The Cerebellum was assumed to integrate a velocity
feed-back signal and stop the movement when the
Cerebellar Cortex inhibits the Cerebellar Nucleus. The
proposed model contains two proportional controllers,
acting respectively on eye position and muscles forces.
The Superior Colliculus is assumed to compare desired
and current positions, to trigger, reorient and stop
the movement. The Cerebellar Vermis is assumed to
embed, in its connectivity, inner models of the biome-
chanics of the muscles, acting as ‘‘observers’’ or ‘‘pre-
dictors’’, which anticipate the values of the torques
exerted by the muscles. The Fastigial Nuclei calculate
the algebraic sum of their input signals, and act together
as a proportional controller issuing corrective signals
which set the forces exerted by the antagonist muscles.

4) Elements of the circuit contained equations defined ad
hoc to reproduce neuronal activities, and the biome-
chanics of the muscles were not embedded in a precise
site. In the present model, the functioning of the neu-
rons reproduces biomechanical equations (7) to (15).
Only equations describing the function of the OPNs
in equation (32) are, up to now, empirical, and added
on purpose to reproduce the results and match the
anatomical connectivity.

A brief comparison of anatomical coverage of different
models are presented in Table 2. Here, we restricted this
comparison to some previously proposed models and it is
concentrated on the different parts of oculomotor pathways
included in models and also different types of movements
(saccadic and smooth pursuit eye movements).

C. MODEL SUGGESTIONS
The computational study in this article proposes existence
of two connections: 1- projection from SC on OPN, and
2- projection between two Fastigial nuclei. These suggestions
are made based on the mathematical constraints of the model
which are new in comparison to the previously proposed
models.

In this model, the error between the desired and current
eye position is calculated by the SC which is in accordance to
some experimental studies [41], [42]. Therefore, when there
is an error (difference between desired and current position),
it would be necessary to move to reduce this amount of error

by reaching the target point. Generally, OPN prevents eye
movement, therefore to have a movement, it is necessary
computationally to inform OPN about the presence of error
to reduce inhibition. It could be performed by a connection
from SC to OPN. Such a connection is proposed by this
model based onmathematical constraints. There is no positive
nor negative anatomical argument on a connection between
the two Fastigial Nuclei. It would not be unexpected that
so close nuclei, each located on one side of the symmetry
plane, have reciprocal connections. This is surprising that
reciprocal connections have been described for long between
the two Prepositus Hypoglossi nuclei, which are also close
to the symmetry plane. In the proposed model Inhibitory
Inter Neuron (IIN) are postulated for stability. Functionally,
the significant fact is that a signal encoding the expected force
exerted by one muscle (length in the case of eye movements
command) is postulated to be sent to the control circuit of the
opposite muscle. This piece of information could be issued
from another part of the brain, and this postulated connection
might be modified in a more developed model including the
head movement command circuit. This issue should become
more precise in future modelling studies, and perhaps eventu-
ally submitted to the sagacity of competent neuro-anatomists.

VI. CONCLUSION
In this article, a new and comprehensive mathematical model
of oculomotor circuit is presented. The new insight in the
oculomotor system that this study brings is that a cerebellar
control is necessary, even at short-term, and this is demon-
strated by means of the mathematical analysis.

This model is the first one to derive both the cerebellar
function and the bilateral connectivity of the cerebellar path-
ways from calculations based on physical hypotheses. Inmost
of previous models, the cerebellar pathways were drawn to
match the anatomical connectivity and added to an already
existent circuit mimicking saccadic pathways [5], [19], [26],
[31], [66], [79], [90]. On the contrary, the connectivity of the
cerebellar pathways is deduced here from the mathematical
study. Of course, this does not mean that only one connec-
tivity pattern would perform the necessary processing, but it
shows that the actual neuro-anatomical pathways match the
requirements for an iterative mathematical processing. More
generally, it suggests that the CNS actually performs step by
step calculations by means of looped circuits. This study not
only sheds light on the cerebellar pathways controlling eye
movements but also to the general function and connectivity
of the Cerebellum.
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In conclusion, this study shows that:
1) The method of analysis of a set of differential equa-

tions describing a dynamic system, commonly used
by physicists, can be used to study motor command
circuits. It could be used, in the future, to study the
command of a limb, for which an engineering approach
is not sufficient;

2) Calculations allow deducing a command circuit. Since
the nonlinear equations describing the biomechanics
of the muscles cannot be inverted (the inverse func-
tion is not a unique function [5], [7], [16], [18]–[23],
[25]–[28]), a predictive control is necessary. The whole
computation is equivalent to an approximate inverse
calculation of biomechanical functions;

3) The structure of this command circuit can be identified
to the actual neuronal connectivity. This shows the
pertinence of the method and suggests that the central
nervous system actually performs iterative computation
according to the laws of classical mechanics. Biome-
chanical equations are computed in circuit elements
exchanging signals via connections, which determine
a structure comparable to the connectivity of saccadic
oculomotor pathways. Extensive variables are com-
puted in cortices and intensive variables combined in
nuclei;

4) The Cerebellar Cortex of the Vermis embeds internal
models of muscle biomechanics and computes predic-
tive signals encoding the expected tensions muscle and
lengths;

5) There are two sites of comparison function as propor-
tional controllers: in the Superior Colliculus the desired
and calculated gaze positions are compared and in the
Fastigial Nuclei the difference between the desired and
calculated muscle lengths are calculated;

6) Corrective signals sent to premotor neurons can pre-
vent possible errors. Altogether, motor commands are
calculated in a closed loop, although the biomechanical
system is commanded in ‘‘open loop’’ by the whole
circuit, from the Cerebral Cortex to the motoneurons;

7) The command pathways are under continual paramet-
ric adjustment, mostly under a cerebellar control. The
present study shows which variables the Cerebellum
controls. In the rare models which deal with cerebellar
control, the cerebellar pathways are added to the direct
command pathways, according to neural connectiv-
ity. On the contrary, this study demonstrates what the
function of the Cerebellum is, and how the cerebellar
pathways are articulated with the direct pathways. This
can be deduced from physical calculations;

8) Neuronal activities and effects of lesions are repro-
duced. This validates themethod of study of motor con-
trol, based on the laws of classical mechanics, which
could be applied to the limb motor pathways.

In summary, assuming that motor signal processing fol-
lows classic mechanical laws, a physical analysis allows both
to deduce the structure of the command pathways and the

function of the Cerebellum. The results of the simulations val-
idate this method of study of motor control, which proposes a
rationale for the organization of the eye motor pathways, and
could be extended to the study of limb motor circuits.

Presenting a more biologically plausible model by reduc-
ing the level of model and adding details of neuronal activities
based on using Spiky Neural Networks (SNN) is proposed as
the main future work of this study. For example, by modeling
the Superior Colliculus based on population of spiky neurons,
it would be possible to have caudal and rostral parts encoding
error related to saccades with different amplitudes. Further-
more, extending model to control vertical and horizontal sac-
cade simultaneously is suggested as another possible future
study. Finally, utilizing the idea to propose a model able to
control limb movements is proposed as next future work of
this study.

APPENDIX
PREPOSITUS HYPOGLOSSI NUCLEI AS AN INTEGRATOR
Here, we show that the mathematical model proposed for
Prepositus Hypoglossi (PH) in equation (33) can represent
an integrator. The Taylor expansion e−δ.s ≈ 1− s.δ allows an
approximation, which gives us:

P1 + P2 = δ.(EBN1 − IBN2)+ P2.(1− δ.s)

+ δ.(EBN2 − IBN1)+ P1.(1− δ.s)

= δ.(EBN1 − IBN2 + EBN2 − IBN1)

+ (1− δ.s)(P1 + P2)

⇒ P1 + P2 =
1
s
.(EBN1 − IBN2 + EBN2 − IBN1)

Which is an integrator. Now, if EBN2 − IBN1 = 0 and
IBN2 = 0, the sum P1 + P2 estimates the angular position
of the eye to the left:

P1 + P2 = θC =
1
s
.EBN1
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