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ABSTRACT The study focuses on the artificial intelligence empowered road vehicle- train collision risk
prediction assessment, which may lead to the development of a road vehicle-train collision avoidance system
for unmanned railway level crossings. The study delimits itself around the road vehicle-train collisions at
unmanned railway level crossings on single line rail-road sections. The first objective of the study revolves
around the rail-road collision risk evaluation by the development of road vehicle-train collision frequency
and severity prediction model using Poisson and Gamma-log regression techniques respectively. Another
study objective is the collision modification factor implementation on predicted risk factors, to reduce the
road vehicle-train collision risk at the crossings. The collision risk has been predicted to be 3.52 times higher
and 77% lower in one direction while in other directions it is 2.95 times higher and 80% lower than average
risk at all unmanned railway level crossings. With collision modification factor application on higher risk
contributing factors i.e. ‘crossing angle’ and ‘train visibility, it predicts to reduce the road vehicle-train
collision risk to 85% approximately.

INDEX TERMS Artificial intelligence, unmanned railway level Crossings, road vehicle-train collisions,

frequency, severity, regression, collision modification factor (CMF).

I. INTRODUCTION

A railway level crossing is a place where rail and road cross
each other at the same level. The approaching train has
a higher priority to pass over the unmanned railway level
crossings in comparison to the road vehicles and pedestri-
ans approaching the railway crossings. However, there is
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no control over road vehicle-train collisions at unmanned
railway level crossings. The level crossing accidents per
million train km has been 4 times higher than the level
crossing accidents per million train km statistics of France,
while it is 2 times higher in comparison to the level crossing
accidents per million train km in Japan [1]. The Indian
accident scenario goes to the worst possible statistics with
deaths per level crossing being 14 times and 7.58 times higher
in comparison to deaths per level crossing in France and Japan
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respectively [1]. The railway level crossings contribute 43%
(50 out of 117) of all consequential train accidents and 67%
fatalities (101out of 149) of total fatalities. The railway level
crossings are of two types viz. manned railway level cross-
ings and unmanned railway level crossings. Indian Railways
network [2] had 30,348 level crossings (as on 01.04.2014) out
of which, 18,725 (62%) were manned railway level crossings
and 11,563 (38%) were unmanned railway level crossings [3].
According to Indian Railways, out of 11563 unmanned rail-
way level crossings, 730 unmanned railway level crossings
were targeted to be eliminated in the year 2014 [4].

Therefore, the study focuses on Al-empowered road
vehicle- train collision risk assessment, which may further
help in the development of a cost-effective and reliable
road vehicle-train collision avoidance system for the pro-
tection of unprotected railway level crossings. The moti-
vation of the study comes from the fact that to partially
improve road user safety, it is necessary to assess the road-
vehicle train collision risk factors at unmanned railway
level crossings. The continuous road vehicle-train colli-
sions at unmanned railway level crossings is a major prob-
lem faced in the present scenario especially in villages
and small cities. Therefore, to improve driver safety, it is
necessary to assess the high-risk factors contributing to
the road-vehicle train collisions at unmanned railway level
crossings.

The primary objective of the research is to develop an
Al-based road vehicle-train collision risk prediction model
and its countermeasure implementation for the avoidance of
accidents at unmanned railway level crossings. To achieve
this, the study includes the following sub-objectives-The the
first objective of the study lies in the development of a
rail-road collision risk assessment model on collision prone
unmanned railway level crossings. Therefore, a risk predic-
tion system is to be modeled by developing a road vehicle-
train collision frequency and severity prediction model using
Poisson regression and Gamma-log regression techniques
respectively. Another objective is to apply a collision reduc-
tion countermeasure on high collision risk factors to reduce
the road vehicle-train collisions at the crossings.

The main contributions of the study areas-

o The train visibility and crossing angle have been found
to most significant parameters for road vehicle collision
risk prediction.

o The road-vehicle train collision risk has been predicted
to be 3.52 times higher on C-140 and the lowest risk
(C-87) has been observed to be 77% (approx.) lower than
average risk at all unmanned railway level crossings in
direction 1. While, in direction 2, C-136 is 2.95 times
higher and C-87 has 80% (approx.) lower predicted
risk than average risk at all unmanned railway level
crossings.

o When Collision Modification Factor (CMF) is being
implemented on train visibility, crossing angle, Average
Daily Traffic (ADT) of minibus/bus, scooter/motorcycle,
rickshaw and number of trains, train visibility, PCR,
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road width, and crossing angle, the road vehicle-train
collision risk predicts to decrease to 85% (approx.).
The paper has been organized into five sections. Section I
discusses the focus, motivation, problem, objectives, defini-
tions, and main contributions of the study. Section II reviews
the studies done in the past related to the work. Section III
talks about research methodology, it is being organized into
three sections- data collection and modeling and validation.
Section IV presents the results and discussion of the proposed
work. The last section discusses the conclusions and further
research opportunities for the proposed study.

Il. RELATED WORK
In this section, the study discusses the existing rail/road col-
lision risk prediction techniques developed over the world.
Gitelman et al. [5] evaluated the rail/road collision risk pre-
diction modeling for Israeli 186 railway level crossings. The
modeling was being done using the Israeli accident limited
data of six years. The accident data was modeled with the
help of crossing types defined by various crossing character-
istics. The collision prediction study resulted in estimation
for the need for rail/road collisions countermeasure i.e. grade
separation to avoid rail/road collisions. Anderson et al. [6]
estimated the risk of road vehicles approaching the railroad
crossing. Therefore, the probability of the derailment of the
road vehicle from the road due to train approaching informa-
tion was calculated by Eqn. (1)-

Pr (der) = Z Rim; (1)

where R; = derailment rate per mile for class ‘i’ track and
m; = mileage traversed on the class ‘i’ track.

Lee et al. [7] developed a road vehicle-train collision
frequency model using one hundred collision prone railway
grade crossings of Korea. The regression techniques were
used to model the accident frequency using Zero-inflated
modeling techniques. The regression was done for two states—
firstly, the Poisson accident state and the other one is the zero-
accident state. In Poisson accident state, the grade crossing
characteristics viz. building indicator (1 if the presence of
buildings,0 otherwise), guardrail indicator (1 if the presence
of guardrails, 0 otherwise), hump indicator (1 if the presence
of humps, 0 otherwise), number of lanes, stop sign indicator
(1 if the presence of stop signs, 0 otherwise) and grade
crossing characteristics viz. angle (degrees), control device
indicator (1 if the presence of control devices, 0 otherwise),
management indicator (1 if the KNR manages, 0 otherwise),
number of tracks right clearing sight distance (in meters),
right grade indicator (1 if the presence of right grades,
0 otherwise) and warning time (in a sec) were found to
be most statistically significant variables for accident fre-
quency prediction. In accident state, the Annual Average
Daily Traffic (AADT), building indicator (1 if the presence of
buildings, 0 otherwise) was found to be the most significant
variable. The marginal effects of these factors were computed
to indicate the effectiveness of potential countermeasures.
The marginal effect analysis of all significant variables in
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the Poisson accident state suggested that less sight distance,
incorrect grade indicator, right grades, and urgent stop of
vehicles on tracks, larger warning time tended to increase the
accident frequency at railroad crossings. The zero-accident
state suggested that a rise in AADT, wide lanes also predicted
to rise with accident frequency increase at railroad crossings.
In [8], a negative binomial regression-based collision predic-
tion model was developed for American railway level cross-
ings. The significant factors viz. drunk driving and emergency
medical response improvement, approximately 40% colli-
sions at unmanned railway level crossings were predicted to
decrease. The traffic control measures improvement helped in
decreasing the collisions to 20%. Oh, et al. [9] developed an
accident frequency model using the gamma probability model
for the United States railway level crossings. The railway
level crossing safety elements were obtained and evaluated
using Korean data. The study indicated that with an increase
in total traffic volume and average daily train volumes, there
was arise in railroad accidents. The railroad accidents tended
to increase when railroad crossings were near to commercial
areas. It also expressed the distance of the train detector
setup, which detected the obstacles [10] i.e. if decreased,
the probability of accidents tended to increase. The time dura-
tion of warning signals and gates activation, when increased,
predicted to increase the accidents. Lee ef al. [11] developed a
railway level crossing risk models to analyze the safety aspect
of Taiwan railway level crossings using Poisson and negative
binomial regression. The study discussed the risk in terms
of a product of accident likelihood (number of accidents per
period) and the accident impact (fatalities per accident). The
parameters considered for risk assessment were road charac-
teristics, railway characteristics, and the control devices at
railway level crossings. The results indicated that Poisson
regression was the best estimator of accident likelihood;
and negative binomial regression was the best technique for
accident impact evaluation. Federal Highway Administration
[12] presented the unmanned railway level crossing accident
frequency prediction models such as the Peabody Dimmick
Formula, the New Hampshire Index, the National Coopera-
tive Highway Research Program, Hazard Index (HI), and the
US DOT’s three-stage Crash Prediction Formula.
McCollister et al. [13] developed a model to predict
road vehicle-train collision frequency, injuries, and fatali-
ties for the U.S.A. railway level crossings. The indepen-
dent variables used for the logistic regression were viz.
maximum typical train speed, trains/day, trucks percentage,
traffic per lanes, stop signs, other signs, crossbucks, acti-
vated protection, wigwags, flashing lights, angle of crossing
(0 degrees to 59 degrees), track down street, area residen-
tial/commercial/industrial and accident history. The results
indicated that accident history and traffic congestion were
found to be the most significant variables for crash frequency
and severity prediction. The model also calculated the cost per
life saved with an assumption of a discount rate of 6.1 percent
and an inflation rate of 2.2 percent. Therefore, an annual
cost of $7378 was required to enhance with flashing lights.
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Again, to upgrade from flashing lights an annual cost of $10
382 was required.

Hu et al. [14] developed a road vehicle- train colli-
sion frequency model using the NB regression model and
road vehicle- train collision severity model using the logit
regression. The road vehicle- train collision frequency mod-
eling was modeled using the daily trains, AADT while
road vehicle- train collision severity model was developed
using the train speed, daily trains, and AADT/1000. The
countermeasure evaluation was also done using the Poisson
regression model i.e. by modifying track number, transform-
ing crossing type, and regulating traffic exposure for road
vehicle- train collision reduction. Hu et al. [15] developed a
collision severity model using zero-inflated Poisson regres-
sion for 592 Taiwan railway level crossings. The number
of trains, annually-averaged daily traffic, crossing angle,
and the presence of guidance signs was significantly asso-
ciated with the collision severity model. The traffic expo-
sure, crossing angle, and traffic signage were found to be
significant effects on the accident severity model develop-
ment. Hao er al. [16] developed a railroad collision severity
model for highway-rail grade crossings using an ordered
probit model. The factors viz. crash occurred during the peak
hour, weather, visibility (meters), vehicle type, vehicle speed
in m/sec, AADT in veh/day, train speed in km/hr, driver’s
age, gender (male/female), area type and highway pavement
were found to be most significant for driver injury severity
modeling. The marginal effect analysis was done to study the
effects of each significant factor for driver injury modeling.
Hao et al. [17] performed the rail/road severity modeling for
railway level crossing using the logit model under different
weather conditions. To perform this modeling, the collision
data (2002-2011) of highway-rail grade crossing was used as
a dependent variable. The results indicated that the driver’s
injury severity was not a constant factor. It was found that the
factors viz. road vehicle speed, train speed, age of the driver,
gender, area type, external lighting, road condition, traffic
volume, and time of day significantly affected the collisions
considerably under weather conditions. Therefore, the higher
the road vehicle or train speed, the greater the crashes, and
therefore, the higher the level of collision severity. The sever-
ity predicted to rise with age. The fatality roses by 51% under
fog condition. Again, the fatality increased by 45% under rain
condition, also rose by 39% under snow condition. The injury
fatalities increased again by 28% under cloudy conditions,
and by 16% under clear weather conditions. Hu et al. [18]
developed a collision severity prediction model using 27 inde-
pendent variables from 35 parameters using logit or probit
models. The results indicated that the developed model was
the best in collision frequency prediction. Zheng et al. [19]
modeled the traffic risk of the unmanned railway level cross-
ings using the Petri nets. The risk management parameters
of the six countries viz. china, Slovakia, Poland, Morocco,
Bulgaria, and Finland were calibrated. Thereafter, the model
validation was done by the accident data (2002 and 2006) for
all six countries. The model predicted the accident rates for
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the year 2010 and also found it to be almost 95% effective for
modeling the risk at unmanned railway level crossings.

Therefore, studies revealed that there is a very small degree
of unmanned railway level crossings data collection, imple-
mentation, and analysis of road vehicle-train collision fre-
quency and severity prediction models for unmanned railway
level crossings in India.

IIl. MATERIALS AND METHODS

A. DATA COLLECTION

As evident from the previous studies, the road vehicle-
train collisions at unmanned railway level crossings are
generally caused by unawareness of road drivers about an
increased number of trains approaching the unmanned rail-
way level crossings, avoidance of railroad safety rules on
approach by road vehicles on unmanned railway level cross-
ings, wrong interpretation of approaching train speed [20] on
unmanned railway level crossings by road vehicles, improper
unmanned railway level crossings approach road geomet-
rics, unmanned railway level crossings geometric deficien-
cies, and also by environmental defects.

The study is being conducted on an Indian railway line
section of Shahdra-Shamli-Tapri (DSA-SMQL-TPZ), which
connects Shahdra (inside Indian city, Delhi) through Shamli
(a city in India) to Tapri (a town near Saharanpur City in
India). The railway line is about 165 km in length and it has
145 railway level crossings and 71 of them are unmanned
railway level crossings. The railway line connects the major
cities of Uttar Pradesh and Delhi. The unmanned railway level
crossings on this railway route are situated mostly near rural
areas i.e. (approximately 95%).

The railway route operation and maintenance are done by
Northern Railways (NR), a division of Indian Railways (IR).
The study has been conducted on 19 road vehicle-train colli-
sion prone unmanned railway level crossings situated on the
DSA-SMQL-TPZ railway route with railway line chainage
between 0 km to 165 km. The study route map is shown
in Fig. 1.

According to Safety Information Management System
(SIMS), the maximum design and booked speed on the DSA-
SMQL-TPZ section is 75 km/hr and in foggy conditions,
the maximum permissible speed of the train is 48 km/hr. The
study area details with directions are given in Table 1. The
length of the road crossing in Table 1 has been calculated from
intersection in one side to another one.

The data and its collection method are given in Table 2.

The road vehicle-train collision frequency at the DSA-
SMQL-TPZ railway route is given in Fig. 2. The road
vehicle-train collision frequency is observed to be highest i.e.
0.4 in case of unmanned railway level crossings 14-C, 16-C,
34-C, 50-C, 72-C,122-C, and 133-C, while other remaining
unmanned railway level crossings road vehicle-train collision
frequency is approximately 50% lower than these crossings.

The road vehicle- train collision severity level [21] is
decided according to what type of problem happens to a road
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vehicle-train collision occurrence victim at unmanned rail-
way level crossings. The road vehicle-train collision severity
is a combination of the total number of persons killed, having
a grievous injury, and simple injury. The road vehicle severity
levels are shown in Table 3. The description of each type of
severity is given as in Table 4.

B. DATA DISTRIBUTION TEST

Data distribution testing is the distribution of the response
variable “‘road vehicle-train collision frequency” of the
road vehicle-train collision data at unmanned railway level
crossings as shown in Table 5. The normality test using a
Kolmogorov-Smirnov test has been shown in Table 6.

In this study, the observation of the road vehicle-train
collision frequency and severity is based on the collisions that
occurred for the period (2009-2013). Therefore, it based on
the characteristics and data distribution modeling calibration
with the Kolmogorov-Smirnov test. The collision frequency
and severity possibility are very small, which means that
any vehicles passing the railroad crossings have a very small
possibility to get involved in collisions. The average col-
lision frequency is 1.43 and severity is found to be 2.21.
Therefore, the road vehicle-train collision frequencies are
about 1-2 times at one point. The Kolmogorov Smirnov test
of road vehicle-train collision frequency shows the value
of 0.397 with a p-value of 0.00. Further, the road vehicle-train
collision severity is on average 2 -3 times in a point. The road
vehicle-train collision severity Kolmogorov Smirnov test has
a value of 0.319 with a p-value of 0.00.

Therefore, it may be concluded that the data on road
vehicle-train collisions is followed by the Poisson and
Gamma distribution, which is in turn a Generalized Linear
Model (GLM) [22].

IV. THEORY AND CALCULATION

The theoretical models for Al-empowered road vehicle-train
collision frequency and severity prediction models have been
developed in the study. The prediction has been done for the
selection of the better countermeasure for avoiding the road
vehicle- train collisions at unmanned railway level crossings
[23], [24]. The variables with homogenous characteristics
viz. approach road gradient, number of lanes, track gradient,
social awareness, road signboard presence, and number of
tracks have not been included in the analysis [25].

The modeling which represents the correlation of col-
lisions at railway crossings with 27 explanatory variables
is analyzed with Poisson regression analysis. The regres-
sion techniques for prediction of collision frequency used
are Poisson-identity, Poisson-log, and Poisson-power (2nd
degree) regression techniques. Again, the Al-enabled road
vehicle- train collision severity prediction modeling is done
by using the gamma-log technique. The selected variable
consists of input and target variables. The target output
variable i.e. road vehicle- train collision frequency and
road vehicle-train collision severity at unmanned railroad
crossing has been determined by the 27 input variables
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FIGURE 1. Study route map of DSA-SMQL-TPZ (Google Earth Imagery).

with 167 data samples namely Average Daily Traffic (ADT)
of car/jeep/van, minibus/bus, scooter/motorcycle, mini-
truck/truck, tractor/trailer, auto-rickshaw, rickshaw and
pedestrian, train speed in m/sec, number of trains, train
visibility in meters, Approach Road Gradient (ARG), Pave-
ment condition rating (PCR), number of lanes, road width
in meters, number of tracks, crossing angle in degrees,
track gradient (%), social awareness, driving style (nonag-
gressive/ aggressive), licensed (yes/no), driver impairment
(yes/no), literate (yes/no), road vehicle speed in m/sec, road
signboard (presence/absence) and number of tracks. The
explanatory and independent variables for road vehicle-train
collision frequency and severity prediction modeling are
shown in Table 7.

A. SYSTEM MODEL

1) ROAD VEHICLE-TRAIN COLLISION FREQUENCY
MODELING

The covariates have been modeled using three Poisson
regression techniques. The Wald Chi-square test has been
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conducted in each combination. The p-value statistics were
tested for significance i.e. p should be less than 0.05. 2 out
of 28 independent variables viz. train visibility (meters) and
crossing angle (degrees) were found to be significant. The
regression coefficients for road vehicle- train collision fre-
quency prediction using Poisson-identity, Poisson-log, and
Poisson-power (2" degree). The Poisson-identity, Poisson-
log, and Poisson power (2" degree) models are shown in
Eqns. (2) to (4).
Model A:
YPoisson—Identity = —0.005 * Train Visibility + 0.007

*Crossing Angle 4 7.755 (2)

Model B:
YPoisson—Log = €Xp(—0.003 * Train Visibility + 0.005
xCrossing Angle + 4.512) (3)
Model C:
YPoisson—Power(2) = (—0.014 x Train Visibility 4+ 0.019
xCrossing Angle + 20.933)% (4)
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TABLE 1. Details of selected rail/road collision prone unmanned railway level crossings.

S. Unmanned
No. Railway Road passing over unmanned railway level crossing
Level
Crossing
Length of road
Number Block section Directionl Direction 2 crossing the
(UP) (DN) unmanned railway
level crossing
(in km)
1 14-C Noli Delhi-Tapri Gotra/Mandula to  Fakharpur to 3.633
(NO-KEX) Fakharpur Gotra/Mandula
2. 16-C Noli Delhi-Tapri Khekra to Fakharpur to 1.823
(NO-KEX) Fakharpur Khekra
3. 17-C Noli Delhi-Tapri Khekra to Basi/Khekra to 1.823
(NO-KEX) Fakharpur Sunhera
4. 21-C Khekra-Baghpat Sunhera to Basi/Khekra to 3.541
(KEX-BPM) Basi/Khekra Sunhera
5. 34-C Baraut- Baghpat Saroorpur Kalan ~ Gaadhi to 4.293
(BTU-BPM) to Gaadhi Saroorpur Kalan
6. 35-C Baraut- Baghpat Saroorpur Kalan  Sujra to Saroorpur
(BTU-BPM) to Sujra Kalan 3.222
7. 43-C Baraut- Baghpat Irdispur to Badka Irdispur to Badka  1.669
(BTU-BPM)
50-C Baraut-Quasimpur Baoli to Latifpur ~ Sabha Kheri to
8. Kheri to Sabha Kheri Baoli to Latifpur 1.432
(BTU-KPKI)
9. 67-C Quasimpur Kheri — Ramala to Budhpur to 5.356
Baraut Budhpur Ramala
(KPKI-BTU)
10. 72-C Quasimpur Kheri- SH-57 to Ailum  Ailum to SH-57 0.557
Kandhla
(KPKI-KQL)
11. 82-C Kandhla-Shamli PanjaKhara to Jasala to 1.135
(KQL-SMQL) Jasala PanjaKhara
12, 87-C Kandhla-Shamli Lilion to Balwa Balwa to Lilion 1.710
(KQL-SMQL)
13 93-C Shamli-Heend Gohrani to Karodi to Gohrani  2.7772
(SMQL-HID) Karodi
14. 103-C Heend-ThanaBhawan  Raseedgarh to Hararfatehpur to 2.956
(HID-THBN) Hararfatehpur Raseedgarh
15. 110-C Thanabhwan-Nanauta ~Ambeta Jalabad to Ambeta  3.448
(THBN-NNX) YakubPur to YakubPur
Jalabad
16. 122-C Rampur Maniharan- Tipra to Sambhalkheri to 2.624
Nanuta Sambhalkheri Tipra
(RPMN-NNX)
17. 133-C Rampur maniharan- Jhandera to Nalhera to 3.676
Manani Nalhera Jhandera
(RPMN-MNZ)
18. 136-C Manani-Tapri Chunneti to NainKhera to 2.085
(MNZ-TPZ) NainKhera Chunneti
19. 140-C Manani-Tapri Fatehpur to Mavikhurd to 1.023
(MNZ-TPZ) Mavikhurd Fatehpur
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TABLE 2. Data collection method.

S. No. Data collection method Data collected
1. Visual examination Numbers of tracks
Numbers of lanes
Numbers of trains
Road sign board presence/absence
Weather, obstruction, and construction
2. Speed radar gun Train speed (spot speed)
Speed of road vehicles
3. SIMS railway official website Track gradient
Approach road gradient (ARG)
Tally method Road traffic volume (both directions of selected unmanned
railway level crossings for seven days)
4. Measuring Tape Road width
5. Other methods of data collection Road type
6. Spatial images from Google Earth Crossing type (Y or T-type)
7. Road Driver survey Social awareness
Driving style
License
Impairment
Literacy
8. Road-vehicle collision data Traffic Inspector (TI) office of Shamli railway station
0.5
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FIGURE 2. Road vehicle-train collision frequency at unmanned railway level crossing.

YPoisson—identity = Road vehicle-train Poisson-identity colli-
sion frequency Poisson prediction output variable

YPoisson—log = Road vehicle-train Poisson collision fre-
quency prediction output variable Poisson prediction output
variable

YPoisson—power(2) = Road vehicle-train Poisson-power
(2" degree) collision frequency Poisson prediction output
variable.

2) AI-ENABLED ROAD VEHICLE- TRAIN COLLISION

SEVERITY MODELING

The gamma-log regression was conducted again on 27 inde-
pendent variables, 9 out of 28 independent variables viz. ADT
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(Mini Bus/Bus), ADT (Scooter/Motorcycle), ADT (Rick-
shaw), train speed in m/sec, number of trains, train visibility
in meters, PCR, road width in meters and crossing angle
in degrees are found to be significant and equation of road
vehicle- train collision severity prediction model is shown in
Eqn. (5)

Yem = €xp(4.725 — 0.005 * ADT (MiniBus/Bus) + 0.001
*ADT (Scooter/Motorcycle) — 0.006 + ADT (Rickshaw)
+0.074 % Train Speed—0.219 « Number of Trains—0.003
xTrain Visibility 4+ 0.065 % PCR — 0.33 « Road Width
+0.004 * Crossing Angle) @)
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TABLE 3. Road vehicle- train severity.

Unmanned railway Injuries Road vehicle-train
level crossing Killed Grievous (24%) Simple ;;’itii‘t’;‘
0, 0,
(32%) (16%) (during 5 years)
14-C 1 8% 0 0% 3 19% 4
16-C 0 0% 0 0% 0 0% 0
17-C 1 0% 0 0% 2 0% 3
21-C 0 8% 0 0% 0 13% 0
0 0% 0 0% 0 0% 0
34-C 2 0% 0 0% 5 0% 7
35-C 2 17% 0 0% 5 31% 7
43-C 0 17% 0 0% 1 31% 1
50-C 0 0% 0 0% 0 6% 0
3 0% 2 0% 0 0% 5
67-C 0 25% 0 22% 0 0% 0
0 0% 0 0% 0 0% 0
72-C 1 0% 0 0% 0 0% 1
0 8% 0 0% 0 0% 0
82-C 1 0% 0 0% 0 0% 1
87-C 1 8% 0 0% 0 0% 1
93-C 0 8% 0 0% 0 0% 0
103-C 0 0% 0 0% 0 0% 0
110-C 0 0% 5 0% 0 0% 5
122-C 0 0% 2 56% 0 0% 2
133-C 0 0% 0 22% 0 0% 0
136-C 0 0% 0 0% 0 0% 0
140-C 0 0% 0 0 0 0 0
TABLE 4. Road vehicle- train collision severity statistics.
S. No. Road-vehicle collision severity Description
1. Simple injury An injury which is no threat to life
2. Grievous injury An injury which is a threat to life
3. Killed Death of the road drivers

where, ysm = Road vehicle-train gamma-model collision
severity prediction output variable.

B. VALIDATION

1) VALIDATION OF AI-EMPOWERED ROAD VEHICLE- TRAIN
COLLISION FREQUENCY PREDICTION MODELS

The validation is being performed on 5 unmanned railway
level crossings viz. 110-C, 122-C, 133-C, 136-C, and 140-C
with 48 samples. The R? calculated for Poisson—identity,
Poisson-log, and Poisson-power (2" degree) road vehicle-
train collision frequency prediction models are- 0.531,0.719,
and 0.693 respectively, which is nearer to the significance
level of 1 and thereby proves the model to be signifi-
cant. Further, validation of the model has been performed
using the goodness of fit statistics [26] on Poisson-identity,
Poisson-log, and Poisson-power (2nd degree) models as
shown in Table 8 and 9
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1. The deviance and scaled deviance of the Poisson-log
model shows that road vehicle—train collision frequency
prediction is the lowest of all three Poisson models.
Therefore, the Poisson log road vehicle—train colli-
sion frequency prediction model is the most effec-
tive model for road vehicle-vehicle collision frequency
prediction.

2. The Pearson Chi-Square test and scaled Pearson Chi-
Square test again suggest that it is lowest in the case of
the Poisson-log road vehicle—train collision frequency
prediction model in comparison to other Poisson mod-
els. Therefore, it results in the best model for road
vehicle-vehicle collision frequency prediction.

3. The log-likelihood value of the Poisson-log road
vehicle—train collision frequency prediction model is
the greatest in comparison to other Poisson mod-
els. Therefore, the Poisson-log model for the road
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TABLE 5. Data distribution test.

Road vehicle-train collision frequency

Road vehicle-train collision

(2009-13) severity
(2009-13)

Statistic Std. error Statistic Std. error
Mean 1.43 .048 221 205
95% Confidence Interval Lower Bound 1.33 1.81
for Mean Upper Bound 1.52 2.62
5% Trimmed Mean 1.37 2.02
Median 1.00 1.00
Variance 0.390 7.068
Std. Deviation 0.625 2.658
Minimum 1 0
Maximum 3 8
Range 2 8
Interquartile Range 1 4
Skewness 1.170 0.187 1.044 0.187
Kurtosis 0.288 0.373 -0.304 0.373

TABLE 6. Normality test.

Kolmogorov-Smirnov

Statistic df p-value
Road vehicle-train collision frequency (2009- 0.397 168 <<0.05
13)
Road vehicle-train collision severity (2009- 0.319 168 <<0.05

13)

vehicle-vehicle collision frequency prediction is most
effective of all Poisson models.

4. The AIC, AICC, BIC, and CAIC of the Poisson-log
road vehicle—train collision frequency prediction model
is again the lowest of all other Poisson models. This
outputs the Poisson log road vehicle-train collision fre-
quency model to be the best model in comparison to
other Poisson models.

Therefore, the R? and goodness of fit statistics viz
Deviance, scaled Deviance, Pearson Chi-Square [27], Scaled
Pearson Chi-Square, Log-Likelihood, Akaike’s Information
Criterion (AIC) [28], [29], Finite Sample Corrected AIC
(AICC) [30], Bayesian Information Criterion (BIC), Consis-
tent AIC (CAIC) is being calculated indicated the- Poisson-
log model to be most significant for road vehicle-train
collision frequency prediction.

2) VALIDATION OF AI-BASED ROAD VEHICLE-TRAIN
COLLISION SEVERITY MODELS

The actual road vehicle- train collision frequency has been
fitted with road vehicle- train collision severity predicted and
R? is found to be 0.739 which is close to 1 as shown in Fig. 3,
which is again nearer to the significance level of 1 and thereby
proves the model to be significant.
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The goodness of fit for the gamma-log model road
vehicle- train collision severity prediction model is shown
in Table 10.

V. RESULTS AND DISCUSSIONS

A. RANK ANALYSIS

The comparison of the rank based on Al-empowered road
vehicle-train collision frequency and road vehicle-train
collision rate is given in Table 11. There was no change in
unmanned railway level crossings viz. 17-C, 34-C, 72-C,
93-C, 103-C, and 136-C. Other, remaining road vehicle-
train collision unmanned railway level crossings differed
in ranking status because ranking method based on road
vehicle-train collision rate is dependent on ADT (veh/hr)
and these road vehicle-train collision unmanned railway
level crossings ADT. The rank status based on road vehicle-
train collision rate increases in comparison to rank based on
road vehicle-train collision frequency in case of 17-C, 34-C,
35-C, 50-C, 67-C, 72-C, 93-C, 103-C, 110-C, 122-C, 133-C,
136-C, and 140-C road vehicle-train collision unmanned rail-
way level crossings, while it decreases in case of road vehicle-
train collision unmanned railway level crossings viz. 14-C,
16-C, 21-C,43-C, 82-C, and 87-C. In Table 11, the negative
sign indicates the decrease of rank based on road vehicle-
train collision rate compared to rank based on road vehicle-
train collision frequency, while positive sign indicates the
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TABLE 7. Road vehicle-train risk prediction modeling variables.

Minimum Maximum  Mean Std. dev.
Dependent  Road vehicle-train collision 1 3 0.625 0.625
variable (2009-13)
covariate(s) ADT (Car/Jeep/Van) 46 461 114958 114.958
ADT (Minibus/Bus) 10 98 18.986 18.986
ADT (Scooter/Motorcycle) 185 951 204.632 204.632
ADT (Minitruck/Truck) 7 43 10.776  10.776
ADT (Tractor/Trailer) 126 471 100.213  100.213
ADT (Auto Rickshaw) 2 119 21.110  21.110
ADT (Rickshaw) 6 84 25498 25498
ADT (Pedestrian) 200 401 69.678  69.678
Train Speed (m/sec) 6 13 1.725 1.725
No of trains 8 10 0.747 0.747
Train visibility (meters) 800 1000 81.759  81.759
ARG (%) 0 0 0.000 0.000
PCR 1 5 1.650 1.650
Number of lanes 1 1 0.000 0.000
Road width (meters) 3 4 0.496 0.496
Number of tracks 1 1 0.000 0.000
Crossing angle(degrees) -55 90 49427 49427
Track gradient 0 0 .000 0.000
Social awareness 1 1 .000 0.000
(Yes-1/No-1)
Driving style 0 1 0.489 0.489
(Non-Agressive-1, Aggressive-0)
Licensed 0 1 0.485 0.485
(Yes-1,No-0)
Impairment 0 1 0.269 0.269
(Yes-1,No-0)
Literate 0 1 0.499 0.499
(Yes-1, No-0)
Road vehicle speed 2.70 8.03 1.08263 1.08263
(m/sec)
Road sign board presence 1 1 0.000 0.000
Number of tracks 1 1 0.000 0.000
3
2
—
5 25 *
z 400000
9]
2z 2
ek
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FIGURE 3. Road vehicle- train collision severity vs. Road vehicle- train collision severity predicted.
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TABLE 8. The goodness of fit for Poisson-identity and Poisson-log road vehicle- train collision frequency prediction model.

Poisson identity model

Poisson-log model

Value df
Deviance 13.698 147 .093
Scaled deviance 13.698 147
Pearson Chi-Square 13.141 147 .089
Scaled Pearson chi- 13.141 147
square
Log-Likelihood -194.22
AIC 428.44
AICC 434.19
BIC 490.80
CAIC 510.80

Value
/df

Value Df Value/df
11.525 147 .078
11.525 147

11.191 147 .076
11.191 147

-193.14

426.27

432.01

488.63

508.63

TABLE 9. The goodness of fit for poisson power (2" degree) model road vehicle- train collision frequency prediction model.

Poisson power (2™ degree) model

Value df Value/df
Deviance 15.882 147 0.108
Scaled deviance 15.882 147
Pearson Chi-Square 15.175 147 0.103
Scaled Pearson chi-square ~ 15.175 147
Log-Likelihood -195.314
AIC 430.629
AICC 436.382
BIC 492.988
CAIC 512.988
TABLE 10. The goodness of fit for road vehicle- train collision severity prediction model.
Gamma-log model
Deviance Value df Value/df
Scaled deviance 8.253 149 .055
Pearson Chi-Square 168.364 149
Scaled Pearson chi-square 7.612 149 .051
Log-Likelihood 155.293 149
AIC -32.288
AICC 102.576
BIC 107.746
CAIC 161.818

increase of rank based on road vehicle-train collision rate
compared to rank based on road vehicle-train collision
frequency.

B. SENSITIVITY ANALYSIS

The sensitivity analysis of Al-empowered road vehicle-train
collision frequency modeling results revealed that, if train
visibility decrease reaches 20%, the Poisson-identity road
vehicle- train collision frequency model is predicted to
increase by 172%. If crossing angle is increased to 460%,
the Poisson-identity road vehicle- train collision frequency
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is predicted to increase to 163%, while Poisson-log road
vehicle- train collision frequency model is predicted to
increase to 99% and Poisson-power (2" degree) road vehicle-
train collision frequency models tend to increase the road
vehicle- train collision frequency to 4%.

C. RISK EVALUATION BASED ON POISSON FREQUENCY
AND GAMMA_LOG SEVERITY MODEL

The risk is defined by [31] is being calculated by multiplying
the predicted frequency values based on Poisson models with
predicted severity values based on the gamma-log model as
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TABLE 11. Percentage (%) change rank based on road vehicle-train collision frequency and train collision rate.

Unmanned Road- Rank based Road- Rank % Change Std.

railway level vehicle on road vehicle based on  (road vehicle- deviation

crossing collision vehicle- collision road train collision (road

road vehicle- frequency train rate vehicle- frequency vs. vehicle-train

train collision train road vehicle-  collision

collision frequency collision train collision frequency

location rate rate) vs. road
vehicle-train
collision
rate)

14-C 0.4 1 17.38 -86% 4.2

16-C 0.4 2 11.96 -82% 6.4

17-C 0 19 0 19 0% 0.0

21-C 0.2 8 16.42 -11% 0.7

34-C 0.4 3 32.02 3 0% 0.0

35-C 0.2 9 17.02 8 13% 0.7

43-C 0.2 10 10.08 16 -38% 4.2

50-C 0.4 4 34.29 2 100% 1.4

67-C 0.2 11 14.4 10 10% 0.7

72-C 0.4 5 23.35 5 0% 0.0

82-C 0.2 12 11.25 13 -8% 0.7

87-C 0.2 13 9.26 18 -28% 3.5

93-C 0.2 14 11.21 14 0% 0.0

103-C 0.2 15 10.78 15 0% 0.0

110-C 0.2 16 11.78 12 33% 2.8

122-C 0.4 6 28.44 4 50% 1.4

133-C 0.4 7 39.94 1 600% 4.2

136-C 0.2 17 9.53 17 0% 0.0

140-C 0.2 18 19.54 6 200% 8.5

shown in Table 12. The risk analysis revealed that road-
vehicle train collision risk has been predicted to be 3.52 times
higher on risk has been predicted to be 3.52 times higher on
C-140 and lowest risk (C-87) has been observed to be 77%
lower than average risk at all unmanned railway level cross-
ings in direction 1. While, in direction 2, C-136 is 2.95 times
higher and C-87 has 80% lower predicted risk than average
risk at all unmanned railway level crossings.

D. MARGINAL EFFECT ANALYSIS

Individual road vehicle-train collision frequency and severity
prevention countermeasure here is done by the use of CMF
[32]-[34]. The CMF here uses prevention factors for both
significant Poisson road vehicle-train collision frequency pre-
diction and therefore reduces collisions [35]. CMF is the ratio
of the predicted number of collisions after countermeasure
application over a predicted number of collisions before the
countermeasure application.

1. When CMF is implemented on the train visibility
Poisson-log road vehicle-train collision frequency pre-
diction model component, there is an 87.4 % decline in
road vehicle-train collision frequency.
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2. With CMF implementation on crossing angle compo-
nent of the Poisson-log road vehicle-train collision fre-
quency prediction model, there is an 89.9% decrease in
road vehicle-train collision frequency.

Table 13 shows the individual CMF implemented an Al-based
road vehicle- train collision frequency prediction model.

When road vehicle- train collision severity countermea-
sure is applied on gamma-log road vehicle-train collision
severity prediction model significant parameters according to
Table 14.

Table 14 shows the individual CMF implemented an
Al-empowered road vehicle- train collision severity pre-
diction model. ADT (Mini Bus/Bus) tends to decrease
road vehicle- train collision severity to 85.7%, ADT
(Scooter/Motor Cycle) countermeasure tends to decrease
road vehicle- train collision severity to 89.59% (approx.),
ADT (Rickshaw) tends to decrease it to 82.4% (approx.), train
speed decreases road vehicle- train collision severity to 85.8%
(approx.), the number of trains changes by countermeasure
tends to reduce it to 84.7% (approx.) respectively. Train visi-
bility, PCR, road width, and crossing angle countermeasure
tends to decrease road vehicle- train collision severity by
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TABLE 12. Risk evaluation based on poi freq y and Gamma-log severity model.
Unmanned railway Road vehicle-train Road vehicle-train  Predicted Predicted
level crossing collision Poisson- log  collision Poisson- risk-based on risk-based on
(Directionl- D1, frequency prediction log frequency Poisson-log a Poisson
Direction 2-D2) model prediction model prediction model power
prediction
model
14-C 12 1.1049 13.287 137.56
16-C 12 1.3659 16.425 170.05
17-C 12 1.4448 17.373 179.87
21-C 12 1.5472 18.605 192.63
34-C 5.27 0.8512 4.4859 47.921
35-C 5.27 0.7592 4.0006 42.736
43-C 5.27 0.6796 3.5815 38.259
50-C 5.27 0.6135 3.2329 34.536
67-C 6.7 1.1087 7.4272 85.952
72-C 6.7 1.0785 7.2255 83.617
82-C 5.77 0.6048 3.4874 39.73
87-C 5.77 0.6995 4.0334 45.951
93-C 8.26 1.0672 8.8198 93.154
103-C 8.26 1.2175 10.062 106.27
110-C 8.26 1.0382 8.5801 90.622
122-C 8.26 1.2259 10.132 107.01
133-C 10.4 1.3208 13.739 148.6
136-C 10.4 1.2734 13.246 143.26
140-C 10.4 2.0067 20.874 225.77
14-C 10.4 1.6278 16.933 183.15
16-C 4.65 0.9177 4.268 48.745
17-C 4.65 0.9023 4.1961 47.924
21-C 3.45 0.4882 1.6821 16.927
34-C 3.45 0.773 2.6632 26.799
35-C 7.48 0.9862 7.3751 86.272
43-C 7.48 0.6129 4.5834 53.616
50-C 7.48 0.5986 4.4762 52.362
67-C 7.48 0.7618 5.6967 66.639
72-C 5.7 0.6438 3.6571 78.453
82-C 5.7 0.4165 2.3658 50.751
87-C 5.7 0.469 2.6639 57.146
93-C 5.7 0.3693 2.0976 44.997
103-C 8.1 1.4328 11.665 232.39
110-C 8.1 1.7886 14.562 290.1
122-C 7.2 2.576 18.601 383.59
133-C 7.2 2.4926 17.999 371.18
136-C 11.2 1.8409 20.537 370.18
140-C 11.2 2.2781 25.415 458.1
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TABLE 13. Individual CMF implemented road vehicle- train collision frequency prediction model.

Road vehicle-train collision frequency countermeasure Train Visibility Crossing angle
Coefficient -0.003 0.005
Increase/Reduction factor 8.800 0.250
CMF 0.974 0.999

TABLE 14. Individual CMF implemented a gamma-model road vehicle- train collision severity prediction model.
Road vehicle- ADT ADT ADT Train  Number  Train PCR  Road Crossing
train collision minibus/bus  scooter/ rickshaw  speed of trains  visibility width angle
severity (veh/ motorcycle  (veh/ (veh/ (m/sec) (meters) (degrees)
countermeasure day) (veh/ day) day)

day)

Coefficient -0.005 0.001 -0.006 0.074 -0.219 -0.003 0.07 -0.330 0.004
Increase/ 8.800 4.140 13.170 0.58 0.25 0.25 0.8 0.40 0.82
Reduction
factor
CMF 0.957 0.996 0.924 0.96 0.95 0.99 0.9 0.88 0.99

89.92% (approx.), 84.93% (approx.), 77.64 %(approx.) and
89.68 % (approx.) respectively.

VI. CONCLUSION AND FUTURE RESEARCH
OPPORTUNITIES

A. CONCLUSION

In this paper, the road vehicle-train collision risk prediction
assessment model based on Al has been developed for acci-
dent avoidance of road vehicles approaching the unmanned
railway level crossings. These vehicles are under a high risk
of collisions with passing trains over the crossings. To allevi-
ate this problem, a road vehicle-train collision risk prediction
assessment has been performed by collision frequency and
severity prediction modeling using Poisson and Gamma-log
regression techniques respectively. The rank analysis con-
ducted based on road vehicle-train collision rate revealed
that approximately 68% of the crossings predicted a rise in
the rank as compared to accident frequency and it tends to
decrease on remaining number of crossings. Further, the sen-
sitivity analysis revealed that train visibility and crossing
angle are the highest contributing factors in risk escalation
of road vehicle-train collisions at these crossings. The risk
analysis revealed that road-vehicle train collision risk has
been predicted to be 3.52 times higher and 77% (approx.)
lower in one direction whereas, in other direction, it is
2.95 times higher and 80% (approx.) lower than average risk
assessed at all unmanned railway level crossings. Thereafter,
the marginal effect analysis indicates that using collision
modification factor implementation on ‘crossing angle’ and
‘train visibility’, it predicts to reduce the road vehicle-train
collision risk to 85% approximately. Therefore, the presented
model is a good solution to provide reliable risk assess-
ment prediction for avoiding road vehicle-train collisions at
unmanned railway level crossings.

B. FUTURE RESEARCH OPPORTUNITIES
The future research opportunities that may help in the
improvement of the road risk assessment and avoidance are
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1. The methodology can be extended to different climatic
conditions (like heavy fog conditions).

2. Use of Al-empowered road vehicle- train collision risk
prediction assessment model can be extended to multi-
ple railway line sections

3. Web-based software development or Al implementa-
tion technique like clustering for accident hotspot iden-
tification at unmanned railway level crossings.
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