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ABSTRACT Machine learning (ML) offers a wide range of techniques to predict medicine expenditures
using historical expenditures data as well as other healthcare variables. For example, researchers have
developed multilayer perceptron (MLP), long short-term memory (LSTM), and convolutional neural net-
work (CNN) models for predicting healthcare outcomes. However, recently proposed generative approaches
(e.g., generative adversarial networks; GANs) are yet to be explored for time-series prediction of medicine-
related expenditures. The primary objective of this research was to develop and test a generative adversarial
network model (called ‘‘variance-based GAN or V-GAN’’) that specifically minimizes the difference in
variance between model and actual data during model training. For our model development, we used
patient expenditure data of a popular pain medication in the US. In the V-GAN model, we used an LSTM
model as a generator network and a CNN model or an MLP model as a discriminator network. The
V-GAN model’s performance was compared with other GAN variants and ML models proposed in prior
research such as linear regression (LR), gradient boosting regression (GBR), MLP, and LSTM. Results
revealed that the V-GAN model using an LSTM generator and a CNN discriminator outperformed other
GAN-based prediction models, as well as the LR, GBR, MLP, and LSTM models in correctly predicting
medicine expenditures of patients. Through this research, we highlight the utility of developing GAN-based
architectures involving variance minimization for predicting patient-related expenditures in the healthcare
domain.

INDEX TERMS Generative adversarial network, long short-term memory, medicine expenditures, multi-
layer perceptron, regression, time-series prediction, variance minimization.

I. INTRODUCTION
According to the Centers for Medicare and Medicaid Ser-
vices, the National Health Expenditure in the United States
reached $3.2 trillion in 2015, which makes it $9,990 per
person per year [1]. Such huge expenditures on health-
care may not lead to affordable healthcare to patients [2].
Therefore, it is crucial to predict the likely future
patient-related expenditures to help patients better manage
their huge healthcare costs. Predicting the healthcare expen-
diture may also be useful for various other stakeholders that
include drug manufacturers, health insurers, pharmacies, and
hospitals. Here, developing accurate healthcare expenditure
models may help patients to choose appropriate insurance
plans and may help healthcare delivery systems in better
business planning [3].
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Healthcare datasets mostly contain hundreds of vari-
ables such as demographic information, health-plan related
information, medicine purchase information, diagnoses, and
procedure codes [4]. Therefore, choosing the right set of
healthcare variables and predicting the healthcare expendi-
tures accurately is a challenging problem. Prior researchers
have performed healthcare expenditure predictions by devel-
oping regression [5]–[7] and classification techniques [8], [9].
Most of the prior studies have used classical data mining
approaches such as decision tree [10], random forest regres-
sion [11], multiple linear regression [11], clustering [8],
bagging [10], and gradient boosting [10] for healthcare
expenditure predictions. Here, some of the prior studies have
relied upon the specific patient population (whichmay lead to
non-generic results), used uncorrelated healthcare variables,
or variable with very limited predictive accuracy [12]–[14].

Some of the recent studies in the healthcare domain have
addressed prediction problems as time-series forecasting
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problems [15]–[18]. Here, researchers have shown that sta-
tistical time-series methods like autoregressive integrated
moving average (ARIMA) models do not work for predicting
healthcare data [18]. A likely reason is the pre-assumption of
linearity in the underlying time-series by these methods [19].
Since time-series variables may depict non-stationary and
non-linear behavior, neural networks may be considered
as a preferred choice for time-series predictions in practi-
cal scenarios [19]. That is because neural networks, with
different assumptions on activation functions and hidden
layers, may account for the non-stationary and non-linear
behavior in time-series variables [19]. Recently, certain
neural network architectures such as multilayer perceptron
(MLP), long short-term memory (LSTM), and convolutional
neural network (CNN) have been proposed for predicting
time-series involving healthcare expenditures with some
success [15]–[18].

Furthermore, a class of generative neural network models
called generative adversarial network (GAN) has been pro-
posed in the literature [20]. GANs are trained as a min-max
game, where a discriminative neural network learns to distin-
guish whether the supplied data instance is real or fake, and a
generative neural network learns to confuse the discriminator
by generating high-quality fake data [20], [21]. One seeks the
convergence of the combined generator-discriminator model
by minimizing a chosen loss function [21].

Mostly, binary cross-entropy (also called as log loss) has
been used as the loss function to train GAN models [21].
However, the binary cross-entropy loss function may not
provide a sufficient gradient for the generator model to learn
as quickly as the discriminator model [20]. Therefore, alter-
nate loss functions like the least-square loss [22] and the
Wasserstein loss [23] have been proposed in the literature.
Recent research has shown that the least-square loss may
lead to the problem of vanishing gradients when updating the
generator model [22] and the Wasserstein loss (calculated as
the distance between two probability distributions in terms
of the cost of turning one distribution into another) shows
better properties of convergence compared to the least-square
loss [23].

By relying upon different loss functions for the genera-
tor and discriminator models, GANs have been successfully
developed for a wide range of applications such as semantic
segmentation [24], image inpainting [25], stock market pre-
diction [26], and video prediction [27], [28]. However, to the
best of authors’ knowledge, the development of GANs and
its variants for performing time-series prediction of future
healthcare expenditures has not yet been explored in liter-
ature. We overcome this literature gap in this research by
proposing a novel GAN architecture called variance-based
GAN (or V-GAN) for the time-series predictions of health-
care expenditures.

Different from prior studies, we introduce a variance term
in the V-GAN’s loss function that explicitly minimizes the
difference in the variance between patient data and model
data during model training. Thus, in the new V-GAN model,

we train the generator network using a different and novel
combination of loss functions, which includes root mean
square error (RMSE) loss, binary cross-entropy loss, vari-
ance loss, and their combinations. For the discriminator
network in the new V-GAN model, we experiment with
binary cross-entropy loss function, Wasserstein distance loss
function [23], and a novel combination of both these loss
functions.

For comparing the performance of the V-GAN architec-
ture, we use the followingmachine learningmethods: an ordi-
nary least square linear regression (LR)model [29], a gradient
boosting regression (GBR) model [29], an MLP model [18],
and an LSTM model [15]. Since the V-GAN model can learn
the approximate distributions in training data, we expect the
V-GAN model to be able to generate accurate time-series
predictions of the healthcare expenditures better than other
existing models like GANs, regression models, MLPs, and
LSTMs.

In what follows, we first provide a brief review of related
work involving healthcare expenditure prediction and GAN
models. Then, we explain the data used in this research for
model development. Next, we explain the methodology of
the new V-GAN model, different GAN variants, and the LR,
GBR, MLP, and LSTM models. Furthermore, we present
our experimental results, and we conclude the paper by dis-
cussing the implications of this research and its possible
extensions.

II. RELATED WORK
A. HEALTHCARE EXPENDITURE PREDICTION METHODS
Based on prior research, two categories of approaches have
been proposed to predict healthcare expenditures: regression
models and classification algorithms [5], [8]. The first cat-
egory involves using classical regression approaches such
as ordinary least square (OLS) linear regression to estimate
total annual health expenditure of patients in insurance claims
data [5], [6], [30], [31]. For example, Moran et al. com-
pared generalized linear models and OLS to predict individ-
ual patient expenditures in intensive care units [30]. These
researchers obtained optimal overall performance from both
these models. Marquardt et al. used linear regression and
regression trees to develop a data-mining framework for
scalable prediction of healthcare expenditures [31]. In recent
years, researchers have developed neural network architec-
tures such as MLP, LSTM, and CNN models for predicting
patients’ expenditure data [15]–[18]. Researchers have also
compared the neural architectures with statistical time-series
methods (e.g., ARIMA model) and found that the neural net-
work models perform better compared to statistical methods
for predicting healthcare expenditures [15], [18].

The second category involves the use of classifica-
tion algorithms, where patients are classified into different
expenditure buckets/classes [8], [32], [33]. For example,
Bertsimas et al. used classification trees and cluster-
ing algorithms to classify patients into five different

110948 VOLUME 8, 2020



S. Kaushik et al.: Medicine Expenditure Prediction via a Variance-Based GAN

expenditure classes by using patients’ expenditures and
clinical information [8]. Lahiri and Agarwal performed
expenditure predictions as a binary classification task to pre-
dict whether beneficiaries’ inpatient claim amounts increased
or not between 2008 and 2009 [32]. These researchers
achieved good performance by using an ensemble of six
different classification approaches, which included condi-
tional inference tree, logistic regression, gradient boosting,
neural networks, support vector machines, and naïve Bayes.
Similarly, Guo et al. performed a predictive modeling
approach to predict patients’ transitions from one expenditure
bucket to another expenditure bucket [33]. Beyond the clas-
sical approaches described above, generative adversarial net-
works (i.e., networks that use generative and discriminative
models in amin-max game) could be developed for predicting
healthcare expenditures.

B. GENERATIVE ADVERSARIAL NETWORKS
Generative adversarial networks (GANs) rely upon two neu-
ral networks (a generator G and a discriminator D) that are
trained simultaneously in an adversarial manner [20]. The
generator model generates the synthetic or fake samples (that
can pass for real data) by estimating the data distribution,
and the discriminator model estimates the probability that a
sample came from the training data or the generator model.
Aim of G’s training process is to maximize the probability of
D making a mistake. Both G and D are trained against a static
adversary.WhenG is trained, D’s values are kept constant and
vice-versa [20], [23].

Goodfellow et al. used MLP models for training G and
D [20]. However, recently, researchers have implemented G
and D using an LSTM model [34] and a CNN model [35],
respectively, for a number of applications [26], [36], [37].
For example, Nie et al. used adversarial training to train a
convolutional network for generating computer tomography
images (CT) given medical resonance (MR) images [36].
The experimental results showed that the proposed method
was accurate and robust for predicting CT images from MR
images and could be used for medical image synthesis tasks.
Researchers have also proposed a speech enhancement gen-
erative adversarial network (SEGAN) architecture for speech
enhancement using GAN frameworks [37]. SEGAN archi-
tecture worked end-to-end by learning from different speak-
ers and noise conditions such that model parameters were
shared across these speakers and different noise conditions.
Experimental results showed that the SEGAN model was
generalizable and required no explicit assumption about the
raw data. Zhou et al. have proposed a GAN framework to
forecast high-frequency stock market data [26]. The authors
trained a GAN model using data provided by a trading
software, where G was trained using an LSTM, and D was
trained using a CNNmodel. Experimental results showed that
the proposed framework could effectively improve the stock
price’s direction prediction accuracy and reduce forecast
errors [26].

Although the literature has proposed models for healthcare
expenditure prediction, to the best of authors’ knowledge,
this paper is the first to adopt a GAN approach for pre-
dicting patients’ expenditures on medications. In this paper,
we propose a new V-GAN model and compare it with other
GAN variants, regression-based models such as LR, GBR,
and neural networkmodels such asMLP and LSTM to predict
patient-related expenditures on a medication.

III. METHOD
A. DATA
A popular pain medication’s purchase data from the Truven
MarketScan dataset [4] was used for model evalua-
tions in this paper. The selected pain medication was
among the top-ten most prescribed pain medications in
the US in 2015 [38].1 The dataset (uploaded on the
IEEE data port, DOI: 10.21227/k0mm-jb74) ranged between
2nd January 2011 and 15th April 2015 (1565 days). The
dataset between 2nd January 2011 and 30th July 2014
(1306 days) was used for model training, and the dataset
between 31st July 2014 and 15th April 2015 (259 days)
was used for model testing. On average, each day,
about 1,428 patients refilled the selected medication. The
dataset was a multivariate time-series dataset consisting
of 21 attributes, which included the daily average expen-
ditures by patients for purchasing the medication. The
20 attributes provided information regarding the number of
patients of a particular gender (male, female), the number of
patients in a particular age group (0-17, 18-34, 35-44, 45-54,
and 55-65), the number of patients from a US region (south,
northeast, north-central, west, and unknown), the number of
people in a certain health-plan (two types of health plans), and
the number of patients belonging to different diagnoses and
procedure codes (six ICD-9 codes) who consumed medicine
on a particular day. These 6 ICD-9 codes were selected using
the frequent pattern mining Apriori algorithm [39], and the
selection procedure is reported in a separate publication [40].
The 21st attribute was the average expenditure per patient for
the medicine on day t , and it was defined as per the following
equation:

Daily Average Expendituret = it
/
jt (1)

where it was the total amount spent on buying the medicine
across all patients on day t and jt was the total number of
patients who refilled the medicine on day t . We checked the
stationarity of all 21 attributes by performing the augmented
dickey fuller (ADF) test [41]. The ADF test revealed the
time-series of all 21 attributes to be stationary without any
trend or seasonal patterns (theADF statistics value for the 21st

attribute, i.e., daily average expenditure=−10.10, p< 0.05).
The time-series data had values across different scales for dif-
ferent attributes. Therefore, we standardized all 21 attributes
in the time-series before training different models [42].

1The name of the pain medication has not been disclosed due to a
non-disclosure agreement.
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Next, the daily average medicine expenditure was used
to compute the weekly average expenditure. For computing
the weekly average medicine expenditure, the daily average
medicine expenditure was summed over a 7-day block. This
resulted in the weekly average expenditure across 186 blocks
of training data (1306 days were used in training), and
37 blocks of test data (259 days were used in testing).
Fig. 1 shows the weekly average expenditure (in USD per
patient) of the 21st attribute over weekly blocks. The weekly
average expenditure (per block) was used to evaluate different
models. We used the Root Mean Square Error (RMSE) to
evaluate the performance of different models. The RMSE
was computed between model predictions and real data at the
block-level.

FIGURE 1. The weekly average expenditure (in USD per patient) over
blocks. Each block is a 7-day period.

B. PREDICTION MODEL
In this research, we developed a V-GANmodel for generating
time-series predictions about patient-related expenditures.
Since long short-term memory (LSTM) models are widely
used for time-series prediction problems [15], we chose
LSTM as a generator model (G) to generate predictions based
on an input noise. The task of a discriminator model (D)
is to estimate the probability of whether a sequence comes
from real samples or the generated (fake) samples. The D
works as a classifier that has to correctly classify the input
samples as real or fake. Since convolutional neural net-
work (CNN) models are mostly used for classification-based
tasks [43], [44], they have been used as the D. As the CNN
model is used as the D in prior literature for implementing
GAN [26], we chose a CNN model as one of the D models in
this research. Additionally, we also implemented the V-GAN
model with an MLP as the D (since an MLP was used as
the D by Goodfellow et al. [20] in the original GAN paper).
It is important to note that the architectures of G and D
could be adjusted based on the specific application and could
be fine-tuned based on underlying time-series to enhance
predictive performance.

For developing the V-GAN architecture (shown in
Fig. 2(A)) for time-series prediction, the G (an LSTM)
received an input dimension of 1 × 21 from the Gaussian

distribution. For training the G, we varied the number of
hidden layers (1, 2, and 3), the number of neurons (8, 16, 32,
and 64), activation function (ReLU, tanh, sigmoid, and leaky
ReLU), and the dropout rate for each hidden layer (20% and
30%). For training the D, we used 1 × 21 dimension input
from the real samples and 1× 21 dimension input generated
by the G. As shown in Fig. 2(A), we passed the Gaussian
noise represented as Z1, Z2,. . . , Z21, an input dimension of
1×21 in a batch size of 64 to the G, whichmade 64×1×21 as
the input shape of the G. In the fully trained V-GAN model,
the G contained one LSTM hidden layer with 32 neurons
and a ReLU activation function [45]. It was followed by a
dropout layer with a 20% dropout rate, and finally, a dense
layer with neurons equal to the input data dimension, i.e., 21.
Thus, the G’s output shape was the same as the input shape,
i.e., 1 × 21. From the G, we obtained the fake time-series
of 21 dimensions represented as ŷ1, ŷ2,...,ŷ21 in Fig. 2(A).
Next, the D was trained using both the real data and fake
(generated) data.

When CNN was used as the D, we varied the same range
of hyper-parameters as the G along with the number of filters
(32, 64, or 128) and different kernel sizes. The D received
the generated time-series represented as ŷ1, ŷ2,. . . , ŷ21 and
actual time-series represented as Y1, Y2, . . . , Y21 in a batch
size of 64. In the CNN-based D, the architecture was com-
posed of two 2D convolution layers followed by two fully
connected (FC) layers. The first convolution layer contained
32 filters of 32 × 4 kernel size, singe-stride, and the leaky
ReLU (LReLU) activation function with slope = 0.01 [45].
Second, convolution layer contained 64 filters, 64 × 4 ker-
nel size, single-stride, and LReLU activation function with
slope= 0.01. Paddingwas done in both the convolution layers
to keep the input and output shapes the same. Fig. 3 shows
the complete convolution operation (inside the D model) in
detail. As shown in Fig. 3(A), the first 2D convolution layer
received input of shape 64×1×21×1, where 64 represented
the batch size, 1 represented the height, 21 represented the
width, and 1 represented the number of channels. For the
2D convolution operation, 32 filters with a kernel size of
32 × 4 and a single stride were applied. In order to match
the kernel size (height and width), 31 rows and 3 columns
were padded, making the new data height = 32, and data
width = 24. The output shape of the first convolution layer
was 64 × 1 × 21 × 32 (batch size × height × width ×
channels). The difference in the input and output shapes was
just in the number of channels, as 32 filters were applied
in the convolution operation. Fig. 3(B) shows the second
convolution layer operation using 64 filters with a kernel
size of 64 × 4 and a single stride. Similarly, to match the
kernel size, 63 rows (assuming 32 above the actual data row
and 31 below the actual data row) and 3 columns (assuming
1 column in front and 2 columns at the end) were padded to
the data. The padding made the new data height = 64 and
data width= 24. The output shape of the second convolution
layer was 64× 1× 21× 64 (batch size × height × width ×
channels). The output of the second convolution layer was
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FIGURE 2. The V-GAN architecture. (A) The Generator model (G) was developed using an LSTM model, and the Discriminator model (D) was developed
using a CNN model. The ‘‘Conv.’’ and ‘‘FC’’ are abbreviations for the convolutional layers and a fully connected layer, respectively. (B) The Generator
model (G) was developed using an LSTM model, and the Discriminator model (D) was developed using an MLP model.

FIGURE 3. The convolution operation in the discriminator model. (A) Shows the input and output of the first 2D convolution layer, and
(B) shows the input and output of the second 2D convolution layer.

flattened (1×21×64= 1344; output shape of flatten layer=
64× 1344) and passed to the first FC layer which contained
64 neurons and the LReLU activation function with slope =
0.01 (the output shape of first FC layer = 64× 64). The first
FC layer was followed by a second FC layer with 1 neuron
and a sigmoid activation function (output shape of second FC
layer = 64× 1).

As stated above, we also developed the V-GAN architec-
ture with an MLP as the D. Fig. 2(B) shows the architecture

where V-GAN was implemented with LSTM as the G and
MLP as the D. For developing this architecture, we kept
the G (LSTM) architecture the same as described above
in Fig. 2(A). For developing the MLP-based D architecture,
we varied the number of hidden layers (1, 2, 3, and 4),
the number of neurons (8, 16, 32, and 64), activation function
(ReLU, tanh, sigmoid, and leaky ReLU), and the dropout
rate for each hidden layer (20%, 30%, and 40%). As shown
in Fig. 2(B), the final D was trained with one hidden layer
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containing 32 neurons and the ReLU activation function.
The second hidden layer contained 64 neurons and the ReLU
activation function, followed by a dropout layer with a 40%
dropout rate. The third hidden layer contained 16 neurons and
the ReLU activation function, followed by a dropout layer
with a 40% dropout rate. At last, the output layer contained
1 neuron with a sigmoid activation function.

The D’s output indicated whether the input sample was
real (supplied from the actual time-series) or fake (supplied
from the generated time-series). The G aimed to confuse the
D such that it could not guess correctly and would give a
50% probability of a sample being fake. Therefore, in the
result section, we have also shown the percentage of real-like
samples (i.e., fake samples reported as real) reported by the
D. The complete model was trained for 20,000 epochs with
64 batch size and using the stochastic gradient descent (SGD)
optimizer [46], initialized with 0.01 learning rate, and
0.9 momentum. Additionally, the GAN-based prediction
models generated all the 21 attributes on the daily-level.
However, the performance of all models was compared based
on the predictions obtained for the average daily expenditure,
i.e., the 21st attribute.

C. DIFFERENT LOSS FUNCTIONS
In this section, different loss functions used across different
models, including the V-GAN model, are discussed.

1) ADVERSARIAL LOSS (LA)
In the original GAN paper [20], the adversarial loss was used
to evaluate the distance between two probability distributions.
Adversarial loss is derived from the cross-entropy between
the real and generated distributions, defined as LA in (2)
below:

LA
(
y, ŷ
)
= −

1
N

∑N

i=1
yilog(p (yi))+ ŷilog(p

(
ŷi
)
) (2)

where yi represents real data for an attribute, ŷi represents
predicted/generated output of the same attribute, and N is
the total number of generated points (which is equal to the
number of points in a batch). The generator model could
only affect the second term in distance measure as it reflected
the distribution of the fake data. Therefore, during the gen-
erator’s training, the model dropped the first term in (2),
which reflected the distribution of the real data. Whereas,
the discriminator model was trained using both the generated
samples and the real samples. Thus, both terms in (2) were
present in the training of the discriminator model.

2) VARIANCE LOSS (LB)
Variance is used to measure the deviation from the mean.
The variance loss (LB) minimized explicitly the squared dif-
ference of the variances between the generated data and the
actual data as defined in the following equation:

LB
(
y, ŷ
)
=
(
σ (y)− σ

(
ŷ
))2 (3)

where σ signifies the variance in the data, which is calculated
as the average of the squared differences from the mean.
In other words, we calculated the sum of the squared distances
of each term in the distribution from the mean, divided by
the number of terms (which is equal to the batch size) in the
distribution.

3) FORECAST ERROR LOSS (LC)
In order to improve the forecasting performance of time-
series models, researchers have proposed the forecast error
loss or the RMSE loss (LC) [26]. The idea behind using
forecast error loss function is to bring predicted data closer to
the actual data. Forecast error is defined as per the following
equation:

LC
(
y, ŷ
)
=

√
1
N

(
y− ŷ

)2 (4)

where y and ŷ represent the real and predicted data, respec-
tively. N represents the total number of points in a batch.

4) WASSERSTEIN DISTANCE LOSS (LW)
Wasserstein distance is a loss function that measures the
distance between the data distribution observed in the train-
ing samples and the distribution observed in the generated
samples [23]. Arjovsky et al. have shown that training the
generator may seek a minimization of the distance between
the distribution of the data observed in the training dataset
and the distribution observed in generated samples for better
convergence and stable training [23]. The Wasserstein dis-
tance loss function is a measure of the distance between two
probability distributions over a region D. The Wasserstein
distance between two distributions X and Y is defined as
the minimum amounts of work done to match X and Y,
normalized by the total weight of the lighter distribution.
Assume that the distribution X has m clusters with X =
(x1,wx1), (x2,wx2), . . . , (xm,wxm), where xi is the cluster
representative and wxi is the weight of the cluster. Similarly,
another distribution Y =

(
y1,wy1

)
,
(
y2,wy2

)
, . . . ,

(
yn,wyn

)
has n clusters. Let D = [dij] be the ground distance between
clusters xi and yj. The objective is to find a flow F = [fi,j],
where fi,j is the flow between xi and yj, which minimizes the
overall work as per the following equation:

work = min
∑m

i=1

∑n

j=1
fi,jdi,j (5)

subjected to the constraints:

fi,j ≥ 0, 1 ≤ i≤m, 1 ≤j ≤ n;
n∑
j=1

fi,j≤wxi, 1 ≤i ≤ n;

m∑
i=1

fi,j≤wyj, 1 ≤j ≤ m;∑m

i=1

∑n

j=1
fi,j = min

∑m

i=1
wxi,

∑n

j=1
wyj (6)
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The total flow F is found by solving this linear optimization
problem. The Wasserstein distance W (X ,Y ) is defined as
the work normalized by the total flow as per the following
equation:

W (X ,Y )=

∑m
i=1

∑n
j=1 fi,jdi,j∑m

i=1
∑n

j=1 fi,j
(7)

D. DIFFERENT GAN MODELS
In this research, we developed GAN-based time-series pre-
diction models using novel combinations of above-defined
loss functions. Table 1 shows the generator and discriminator
models’ loss functions across different GAN models (includ-
ing the new V-GAN model).

TABLE 1. Different GAN models.

Adversarial GAN:We trained Adversarial GAN (A-GAN)
using the adversarial loss function (LA) for both the G and
the D (as shown in Table 1). The adversarial learning helps
the G to confuse the D, and it helps the D to classify the input
samples as real or fake [20]. Both the G and the D update their
cost independently as updating the gradient of both models
concurrently cannot guarantee convergence [47].
Variance GAN: The Variance GAN (V-GAN) was devel-

oped using a novel combination of LA and variance loss
function (LB), i.e., LA + LB, to train the G. The D in
V-GANmodel was trained using LA loss function. The reason
for trying a combination of LA and LB loss functions was
that minimizing adversarial loss alone may not guarantee
satisfactory predictions. With just adversarial loss, the G
could generate samples to confuse the D; however, those
samples may not be close to the actual data. To ensure that
theG produced samples that confused theD and the generated
samples were close to the actual data, we trained the G using
the LB loss function in addition to the LA loss function. The
LB specifically minimized the difference in variance between
generated and actual data. By developingV-GAN,we ensured
that the model reduced the adversarial loss, and the LB part of
the loss function in the G ensured that the generated sample
means did not deviate much from the actual data means.
Forecast Error GAN: The Forecast Error GAN (FE-GAN)

architecture was developed using a novel combination of

LA and forecast error (LC) loss function, i.e., LA + LC for
training the G and LA was used to train the D. The reason
for taking this combination was prior work in the time-series
domain, where researchers used the forecast error loss func-
tion (LC) [26]. The FE-GAN ensured that the G reduces the
adversarial loss as well as the forecast error while generating
the fake samples.
Variance and Forecast Error GAN: The Variance and Fore-

cast Error GAN (VFE-GAN) was developed using a novel
combination of LA, LB, and LC loss functions (LA + LB +

LC) and the D was trained with LA loss function (as shown in
Table 1). By developing the VFE-GAN, we aimed at reducing
the variance loss and forecast error along with the adversarial
loss while generating the samples from G to confuse the D
with realistic samples.
Variance and Wasserstein Distance-1 GAN: The Variance

and Wasserstein Distance-1 GAN (VW1-GAN) was devel-
oped using a combination of LA and LB loss functions
(LA + LB) to train the G. The Dwas trained using theWasser-
stein distance loss function (LW) (as shown in Table 1).
The reason behind using a combination of LA and LB loss
functions for the G was to investigate whether the V-GAN
improved its performance by using a different loss function
with convergence properties in the D [23]. The use of LW in
the D is also motivated from literature, where it may become
challenging to obtain Nash equilibrium in a non-cooperative
game when adversarial loss (LA) is used in the D [47].
Variance and Wasserstein Distance-2 GAN: Building upon

VW1-GAN, we also developed a Variance and Wasserstein
Distance-2 GAN (VW2-GAN), where the G was trained
using a combination of LA and LB loss functions (LA + LB)
and the D was trained using a combination of LA and LW loss
functions (LA + LW). The reasoning to use VW2-GAN was
to explore improvements in the V-GAN by using a combina-
tion of LA and LW loss functions. Thus, the minimization of
the adversarial loss and Wasserstein distance together in the
D may help the G in return to produce better predictions.

IV. DIFFERENT MODELS FOR COMPARISON
To evaluate the performance of the proposed V-GAN model
and other GAN-based prediction model variants, we devel-
oped an LR model [8], [29], a GBR model [29], an MLP
model [18], and an LSTM model [15], [18] (see Table 2).
All the developed models in Table 2 were evaluated in their
ability to perform time-series predictions on the medicine
expenditures’ data. As shown in Table 2, based upon prior
literature [29], we trained the LR and GBR models using
the least square loss function. Also as shown in Table 2,
the MLP and LSTM models were trained three times
using the different combinations of loss functions: variance
loss function (LB), root mean square error loss function
(RMSE; LC), and a combination of LB and LC loss functions
(LB + LC), separately. The idea behind using these loss
functions for the MLP and LSTM models were to evaluate
the variance minimization during model training against the
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TABLE 2. Different models for comparison with GAN models.

commonly used forecast error (RMSE) loss minimization (as
was also done in the GAN variants, including V-GAN).
Model Training: We used the first 1306 days data to train

the models and the last 259 days data for testing the models
(the training and test size was kept the same as used in the
development of the GAN-based predictionmodels). Different
models were trained on the training dataset. Next, test data
was used to evaluate the performance of the fully trained
models. After getting the predictions for 259 days (test data),
we summed these daily average expenditures on the block
of 7 days to get the weekly average expenditures by patients
on medicines. We used the block-level data to compute the
value of the evaluation metric. The RMSE was used to com-
pare the performance of these models against the prediction
of GAN variants (including the V-GAN) on training and test
data sets.

A. LR MODEL TRAINING
The ordinary least square linear regression (LR) is the most
widely used approach for predictive modeling in health-
care [29]. Using the input variables as described above, we fit-
ted an LRmodel using the least square loss function to predict
patients’ future expenditures.

B. GBR MODEL TRAINING
GBR is a successful ML technique used in research that gen-
erates an ensemble of decision trees to be used as a predictive
model [29]. GBR learns different trees in an additive manner.
Each round learns a new tree by optimizing the least square
error (the objective function used in this research) between
actual and predicted values. For training GBR, 100 decision
trees were trained. A grid search was performed to find the
optimum tree depth (varied between 2 to 14 in step size of 2)
and learning rate (varied between 0.01 to 0.1 in step size
of 0.01).

C. MLP AND LSTM MODEL TRAINING
For developing theMLP and LSTMmodels, we used the prior
time-steps of all the 21 attributes together as an input (the
number of prior time-steps or the lag value was determined
by using the grid search approach) to predict the daily average
expenditure (21st attribute) at time step t.We performed a grid

search for the following set of hyper-parameters duringmodel
training: hidden layers (1, 2, and 3), number of neurons in a
layer (8, 16, and 32), batch size (4, 8, 16, and 20), number
of epochs (8, 16, 32, 64, 128, 256, and 512), lag/look-back
period (2 to 8, with a step size of 1), activation function (tanh,
ReLU, and sigmoid), and dropout rate (20% and 30%). The
models were trained to generate one-step-ahead time-series
predictions of the daily average expenditure by patients.
As defined above, we trained the MLP and LSTM models
three times using three different loss functions: variance loss,
root mean square error (RMSE) loss, and the combined loss
of variance and RMSE.

V. RESULTS
Table 3 shows the GAN models’ results obtained with differ-
ent novel combinations of loss functions. We have reported
two quantities: 1) the root mean square error (RMSE) on
training and test data (on week-level data after summing
the daily predictions in the block of 7 days); and, 2) the
percentage of real-like samples reported by the discriminator
model for different GAN models. As shown in Table 3, from
the newly proposed V-GAN model, we obtained an RMSE
of USD 330.08 on the training data and USD 321.08 on test
data. The test RMSE was the best among all GAN variants.
The discriminator model in V-GAN reported 58.97% of the
fake/generated samples as real. Additionally, when V-GAN
was implemented with MLP as D, V-GAN’s performance
decreased (as shown in Table 3).

TABLE 3. GAN model results.

Furthermore, the training and test RMSEs of the V-GAN
model showed that the model did not overfit the training data,
where some amount of overfitting was present among other
GAN models. Fig. 4 shows the average expenditure results
on test data obtained from the V-GAN model. The x-axis
in Fig. 4 depicts a block of 7 days, and the y-axis depicts
the average expenditure by patients in USD. Additionally,
we found that all GAN models in which variance was part
of the loss function of the generator model performed better
on test data than GAN models where variance was not a
part of the loss function. Moreover, the discriminator model
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FIGURE 4. Prediction results on test data using V-GAN architecture.

in VW1-GAN reported 0% real-like samples, which meant
that the generator model could not confuse the discriminator
model with only LW as the discriminator’s loss function.
Next, we compared the ability of the best performing

V-GAN model with other ML models. Table 4 shows the
results of the different models (LR, GBR, MLP, and LSTM)
compared to the V-GAN model for predicting patients’
expenditures using different loss functions.

TABLE 4. Comparison of different models with V-GAN.

As shown in Table 4, the MLP model performed the best
in training data; however, the V-GANmodel outperformed all
other models in correctly predicting the future expenditures
in test data. Furthermore, we obtained better performance
on test data when the variance loss function was used to
train the MLP and LSTM models compared to other loss
functions. Among the four MLmodels, the LSTM performed
the best on test data, followed by the MLP, LR, and GBR
models. The final LSTM model was trained with a 2-lag
period, 128 epochs, 8 batch size, ReLU activation function,
and Adam optimizer. The LSTMmodel contained one hidden

layer with 16 neurons, one dropout layer with 20% dropout,
and an output layer with 1 neuron. Similarly, the final MLP
model was trained with a 2-lag period, 256 epochs, 4 batch
size, ReLU activation function, and Adam optimizer. The
MLP model contained one hidden layer with 8 neurons, one
dropout layer with 20% dropout, and then an output layer
with 1 neuron. The final GBR model contained 100 decision
tree estimators with 12 as the maximum tree depth and 0.1 as
the value of the learning rate. Moreover, as shown in Table 3
and 4, the V-GAN model outperformed other GAN-based
prediction models and different ML models used in prior
research for correctly predicting the medicine expenditures
of patients on test data.

VI. DISCUSSION AND CONCLUSION
The primary objective of this research was to evaluate the
potential of generative adversarial networks (GANs) as a
time-series model for predicting patients’ expenditures on
medications. In this research, we experimented with dif-
ferent combinations of loss functions to train the genera-
tor and discriminator models in a GAN and proposed a
novel variance-based GAN (V-GAN) architecture, which
minimized the difference in variance between model and
actual data explicitly. The generator model (G) in V-GAN
was trained using the binary cross-entropy and the vari-
ance loss function, where the discriminator model (D) was
trained using the binary cross-entropy loss function. This
research systematically evaluated the use of different loss
functions in GAN’s training for generating time-series dataset
related to patients’ expenditures on a medication. Moreover,
the proposed V-GAN model’s performance was also com-
pared against a linear regression (LR), a gradient boosting
regression (GBR), a multilayer perceptron (MLP), and a long
short-term memory (LSTM) model for predicting the multi-
variate time-series dataset.

First, we found that the proposed V-GAN model outper-
formed all the other GAN-based models (developed with
different loss functions) for predicting patients’ average
expenditure on a weekly level. A likely reason for this result
is that reducing the difference in variance between model and
patients’ data during model training helped obtain a lower
RMSE on test data. Next, we found that the V-GAN model
outperformed LR, GBR, MLP, and LSTM models in this
research on test data. Additionally, we obtained better per-
formance from the MLP and LSTM models trained with the
variance loss function compared to when these models were
trained with the other loss functions. Therefore, we found
a consistent behavior of the time-series prediction models,
which implies that variance minimization for model and
actual data during training helps generate better predictions.
Furthermore, among LR, GBR, MLP, and LSTM models,
the LSTM outperformed others. LSTM’s performance was
followed by MLP, LR, and GBR. A likely reason for this
result could be that the LSTM model can maintain memory
states across sequences and produce superior performance
for time-series predictions [34]. Overall, we conclude that
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GAN-based prediction models that focus on variance min-
imization can be developed in the healthcare domain and
in other applications for generating time-series datasets.
Additionally, developing LSTM based time-series models
where loss function aims at reducing the variance difference
between model and actual data might be helpful in general.

Second, we found that the Wasserstein distance (LW) as a
discriminator model’s loss function in the VW1-GAN model
did not help the model generate correct predictions. This
result is in contrast to prior results on image datasets, where
the use of Wasserstein distance loss function resulted in
better performance and stable training [23]. However, in this
research, when LW was used as a discriminator model’s loss
function, we experienced mode collapse and 0% real-like
samples as a result reported by the discriminator. Mode col-
lapse is a situation where the generator generates a limited
diversity of samples, or even the same sample, regardless of
the input [48]. This happens when the generator fails to model
the distribution of the training data well enough. In the case
of VW1-GAN, we found that after certain epochs, the model
stopped learning, and it was generating the same samples
again and again. In general, the generator is always trying
to find the one output that seems most plausible to the dis-
criminator. If the generator starts producing the same output
(or a small set of outputs) over and over again, the discrim-
inator’s best strategy is to learn always to reject that output.
However, if the next generation of discriminator gets stuck in
a local minimum and does not find the best strategy, then it
is too easy for the next generator iteration to find the most
plausible output for the current discriminator. Thus, in the
VW1-GAN model, each iteration of the generator was over-
optimized for a particular discriminator, and the discriminator
never managed to find its way out of the trap. As a result,
the generator rotated through a small set of output types and
encountered mode-collapse. Also, using a combination of LA
and LW loss functions for the discriminator did not help much
in generating real-like samples, and we obtained only 11%
real-like samples.

Next, we also experienced a minimal amount of overfit-
ting from the V-GAN model (as shown in the train and test
RMSE results reported in Table 3) compared to the other
models. Additionally, when the variance loss function was
present in the generator across all the GAN-based prediction
models, the amount of overfitting reduced compared to when
the variance loss function was absent. Moreover, for MLP
and LSTM models, the variance loss function helped these
models reduce the overfitting (as shown in the train and test
RMSE results reported in Table 4) compared to the forecast
error loss function. Therefore, the reduction in the difference
in variance between model and actual data is in general useful
for time-series forecasting models.

From the above results, we imply that the proposed
V-GAN model can be utilized as a prediction model to gen-
erate/predict time-series datasets in the healthcare domain.
The advantage of using V-GAN over existing models in this
domain is that the GAN-based models generate future data

that will have similar distribution as the actual patients’ data.
Whereas, methods like regression, bagging, and boosting do
not care about the underlying data distributions while predict-
ing future outcomes.Moreover, it is clear from the experiment
shown in this research that theV-GANmodel has the potential
to produce robust and accurate results compared to other pop-
ular time-series models such as LSTMs. That is because the
V-GAN model minimizes the difference in variance between
model and actual data by reducing the gap between generated
values and the mean value of the distribution. Additionally,
GAN is an unsupervised learning approach. Therefore, we do
not need toworry about providing labels or the lag values (i.e.,
values on prior time-steps) in the V-GAN model, as we need
to train other existing time-series prediction models.

A drawback of the proposed method is model train-
ing: GAN-based prediction models are harder to train com-
pared to other neural network models like MLP and LSTM.
Furthermore, the GAN models may fail to model a mul-
timodal probability distribution of data and can encounter
mode collapse. Additionally, GAN models may experience
slow convergence due to the internal covariate shift [48].
The internal covariate shift occurs when there is a change
in input distribution to the network [48]. Due to changes
in the input distribution, hidden layers may try to learn to
adapt to the new distribution, which slows down the training
process. If the training process slows down, it takes a long
time to converge to a global minimum. Batch normalization
technique may be one solution to avoid this problem during
GAN training [48]. Though there are certain challenges asso-
ciated with GANmodels, these methods have the potential to
generate accurate predictions.

In this research, we predicted the patients’ expenditure
on medication, and our results are likely to hold for other
patient-related time-series variables. Therefore, we believe
that the V-GAN framework could be used for other medi-
cations after some fine-tuning of the proposed structure of
generator and discriminator models. Developing GAN-based
prediction models may be beneficial, where data is limited,
and accuracy is the prime objective. The proposed models
may help pharmaceutical companies optimize the medica-
tions’ manufacturing process and other industries for better
inventory management. Apart from the healthcare domain,
the proposed method could be used to predict stock market
data, weather prediction, earthquake prediction, and for sev-
eral other applications. As part of our future research, it would
be worthwhile to explore V-GAN and other GAN-based pre-
dictionmodels for predicting patients-related expenditures on
other medications.
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