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ABSTRACT Vessel monitoring system (VMS) is an effective tool for the quantified study of fishing.
As the fishing vessels equipped with VMS clients, a large amount of trajectory data has been collected,
which brings a new opportunity for fishing research. According to fishery safety production regulations,
fishing vessels should perform grouping operations based on actual conditions, but the group information
cannot be collected by the VMS. In this paper, we propose the Fishing Vessels Relationships Discovery
system (FVRD) by calculating the interaction time among fishing vessels and then using it as a weight to
generate a relationship network. The experiment of the proposed FVRD on the vessel dataset of Zhejiang
Province reveals that the generated fishing community is consistent with the type of operation of the fishing
vessels, which means the proposed method is effective. The experiment also indicates that the fishing vessel
relationship network has the characteristics of small-world and scale-free that is similar to the human social
network, Moreover, FVRD shows that 86.78% of vessels share the collaboration relationships over one week,
10.72% of vessels are in the long-term cooperation, confirming the regulation that most fishing vessels are

sailing together for fishing.

INDEX TERMS VMS, FVRD, data visualization, fishing density, trajectory analysis, group.

I. INTRODUCTION

In recent years, trajectory research is a hot area that attracts
lots of scholars to pay their attention to the study of trajectory
processing [1], [2], trajectory prediction [3], [4], trajectory
classification [5], [6], and trajectory matching [7], [8].

With the deployment of the vessel monitoring sys-
tem (VMS) in recent years, a large amount of trajectory data
has been collected. It records the sailing information of the
vessel, including the vessel’s ID number, position, heading,
speed, and time [9], which brings a new opportunity for
fishing researches to study the fishing activity and impact.

Previous research depicts the density distributions of
the fishing by exploiting VMS data, all of which can be
divided into two phases. The first one is to recognize the
fishing segments from all VMS trajectories. Dozens of
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classification methods are exploited in this step, including
thresholds on speed and heading [10], [11], statistical infer-
ence [12], [13], machine learning [14] and image process-
ing [15]. With the development of deep learning technology,
Zhang et al. propose Deep Multi-Scale Learning Model to
classify transportation mode and speed [16]. The second
one calculates fishing related metrics, covering fishing den-
sity [9], [17]-[23], and fishing efforts [15], [24]-[26].
Previous research depicts the fishing metrics, which are
important to fishing management and ecology. However,
these metrics do not disclose any properties of the fish-
ing process. One important property is the group pattern
among vessels. Fishing vessels should go out fishing in
groups according to fishery safety production regulations in
China [27], The group ensures the safety of fishing vessels
for two kinds of reasons. First, once a fishing vessel is in an
emergency, the other vessel in the same group can provide
aids in time. Second, if the fisheries safety management
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center finds the loss of contact for a vessel on the VMS,
it can contact the other vessel in the same group to check
the status of the target vessel and to provide aids. Although
every fishing vessel has its corresponding registered group,
the grouping information cannot be queried in the VMS
because it usually changes every year, the fishing groups
may have some turbulence in practice as some vessels are in
maintenance, on the vocation, or for other sakes, the dynamic
in fishing groups put forward the importance of discovering
the group pattern among fishing vessels.

In this study, we aim to study the social relationships and
further reveal the group patterns among fishing vessels based
on VMS datasets, which will help disclose the collaboration
among fishing vessels. The critical challenges on digging
fishing vessel relationship from VMS data lies in three folds:

1) The vessel social relationship is an ambiguous concept
to be defined on the spatiotemporal trajectories of fishing
vessels.

2) It’s hard to calculate the spatial relationship among
vessels when the timestamps of the VMS records are not
aligned due to heterogeneity in VMS terminals.

3) It is also computation-extensive because of the large
amount of VMS data.

To tackle these challenges, in this paper, we propose
the fishing vessel relationships discovering system (FVRD)
based on VMS trajectories. FVRD contains two blocks in its
design. Its first block exploits the trajectory process model to
interpolate the trajectory, align the time steps, and evaluate
the spatial closeness among vessels to create companion
relationships for fishing vessels. Then the model combines
the period between continuous companion relationships to
construct the relation models over the time window of one
day, one week, two weeks, and four weeks. After creating the
relation model, FVRD reveals some critical conclusions from
calculating the critical metrics of the relationship model.

FVRD solves the first and second challenges by evaluating
the closeness of spatial vessel distributions within different
time windows. The third challenge is conquered by applying
the data processing model.

FVRD is applied to the VMS dataset logged by the Beidou-
satellite system and Automatic Identification System (AILS)
in the East China Sea from 2016 to 2018, all of their tem-
poral resolutions is less than 5 minutes. FVRD shows that
86.78% of vessels share the collaboration relationships over
one week, confirming the regulation that most fishing vessels
are sailing together for fishing. Moreover, 10.72% of vessels
are in the long-term cooperation (over four weeks), repre-
senting the core members in each group. The comparison
between these two numbers shows that the collaborations
among fishing vessels are only stable for nearly half core
members of each group while loose for the other half.

We summarize the main contributions of this paper as
follows:

1) Through the integration and processing of massive
multi-source trajectory data, the distance calculation algo-
rithms for fishing vessels with different timestamps are
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designed as well as the interaction time between fishing
vessels is calculated, and finally, the social network of fishing
vessels is generated.

2) Based on various metrics, it is found that the fishing
vessel relationship network is very similar to the human social
network. After analyzing and visualizing a typical commu-
nity of fishing vessel, this paper employs the fishing vessel
relationship network to discover the fishing vessel formation
and investigate the fishing vessels out of the group, which can
further be employed to explore the trend of fishing intensity
changes.

3) FVRD can help to locate the dynamic group member
based on the group pattern analysis when some fishing vessel
loses contact in VMS, it also can disclose the safety risks
for some fishing vessels which goes out fishing without a
sufficient number of vessels in one group or even without a
group.

4) FVRD can correct the registration error on the metadata
of the fishing vessels, and point out that some transportation
vessels interact with other fishing vessels.

The rest of this paper is organized as follows. In Section II,
we describe the materials and methods. Section III elaborates
on the principle of FVRD. Through the experiments and dis-
cussions in Section IV, we evaluate and compare the proposed
variants with existing benchmarks, and present the conclusion
in Section V.

Il. MATERIALS AND METHODS

The vessel relation is defined as two vessels sailing along
in a close distance for a certain period. Here we choose the
threshold of one nautical mile for the distance, which comes
from the questionnaires with the fishermen. We propose a
novel algorithm for fishing vessel relationship network, and
the architecture of FVRD is shown in Fig.1, which contains
three steps:

Relational Network

Data Process Mining

Trajectory
Predict
Data
Fusion
Data
Cleaning

i

Community Detection

Community Analysis

FIGURE 1. Architecture of FVRD.

Step 1: Data processing. This paper preprocesses the
raw satellite trajectory data and Automatic Identification
System (AIS) trajectory data, including data cleaning, data
fusion, and generates predicted trajectories at a fixed time.
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Step 2: Generate network. This paper uses the interaction
time of each vessel as weights to generate a network of
undirected graphs.

Step 3: Community division and analysis. This paper
divides the community of fishing vessels and visualize the
network using the Fruchterman Geingold algorithm [28].

A. DATA PROCESSING
There are several issues with raw trajectory data:

(1) A vessel usually installs several terminals, such as
Beidou and AIS terminals, so the data center can receive
multiple positioning data from the same vessels.

(2) Since there are interferences and noise in the transmis-
sion and decoding of data, the received data contains a certain
percentage of zero values and unreasonable values.

(3) The original trajectory data fluctuates greatly. The rea-
son for the fluctuation is that the antenna is on the top of the
vessel, and the influence of waves shakes it.

To solve the above problems, we generate new data through
data cleaning, data fusion, and recalculation of speed and
heading.

1) DATA CLEANING
In order to improve the availability of the data, we clean
trajectory data.

Firstly, we clean missing value in the trajectory, nearly
5% of data which is rare and incomplete is deleted from the
dataset.

Secondly, we define the reasonable range of data: longitude
range [0,180 °], latitude range [-90 °, 90 °], and speed range
[0,40 knots], about 1.5% of data which out of the scope are
deleted.

2) DATA FUSION
The description of the multi-source positioning data fusion
algorithm used in this paper is as algorithm 1:

The idea of Algorithm NewTrack is as follows:

After the data verification, the data update and data fusion
are performed according to the timestamp, and multiple ter-
minals of a vessel (AIS data and satellite data are merged) are
updated to the fusion data table.

The idea of Algorithm NewTrack is as follows:

After the data verification, the data update and data fusion
are performed according to the timestamp, and multiple ter-
minals of a vessel (AIS data and satellite data are merged) are
updated to the fusion data table.

Through observing the vessel trajectory data, it is found
that the heading and speed fluctuate greatly for there are all
instantaneous values. Additionally, there are great differences
between the instantaneous value and the actual value, because
of the impact of vessel shaking and waves. In order to solve
the above two problems, According to the Aviation Formu-
lary [29], this paper calculates the distance and heading of
the two points.

112532

Algorithm 1 NewTrack
1: INPUT: AISDYNAMICLOG, TRACKS, MMSI
//AISDYNAMICLOG: AIS Position; TRACKS:
Satellite Position; MMSI: Maritime Mobile Service
Identify
2: OUTPUT: NewTrack //New Position of Vessels
3: for  AISDYNAMICLOG.MMSI=MMSI and
LASTTRACK.MMSI=MMSI
if AISDYNAMICLOG is VALID // Data Verification
update AISDYNAMIC // Update AIS Position
if TRACKS is VALID //Data Verification
update LASTTRACK // Update Position of Satellite
if AISDYNAMIC. DRRCVTIME>=LASTTRACK.
RECEIVE_TIME
9: Newtrack= AISDYNAMIC
10: else
11: Newtrack=LASTTRACK // Use Last Position
12: end if
13: end for

AN A

Because the time interval between two adjacent points on
the trajectory is very short, which ranges from 300 to 600
seconds, the speed change of the fishing vessel is very small.
Here, the sailing of fishing vessels is considered at a uniform
speed within this interval. Therefore, we calculate the speed
of the two points in the following way: v = S / ¢, where
S is the distance between the two points and ¢ is the time
difference between the two points.

3) TRAJECTORY PREDICTION ALGORITHM

Since the sampled timestamps of each two vessels are asyn-
chronous, so it is necessary to conduct interpolate operation
on the sampled dataset, and finally achieve the aim of data
synchronization.

Because the trajectory data is massive and the calculation
cost is expensive, this paper uses Easy Dead Reckoning
(EDR), which refers to the idea of the DR algorithm [30].
EDR algorithm to predict the trajectory and reduce the cost of
calculation when predicting a large number of trajectories in
batches, while the L-VTP [31] method is employed to predict
a small number of trajectories.

The principle of EDR algorithm is similar to the Dead
Reckoning Algorithm [30], assuming that the line between
two adjacent points is a straight line and the speed is constant,
the position of the next trajectory point can be predicted
based on the heading and speed. Because the time interval of
two trajectory points ranges from 5 to 10 minutes, the speed
of fishing vessel always slower than 10 knots, under these
conditions, there is little change in the heading and speed,
so we can use the formula plane geometry to calculate it.

B. RELATIONAL NETWORK MINING
The Relational Network Mining Algorithm includes five
steps:
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Algorithm 2 EDR
1: INPUT: A(lonl, lat1, t1) , B(lon2, lat2, t2)

// longitude, latitude, and timestamp of A and B
2:0OUTPUT: C(lon3, lat3, ¢3) // C is the prediction point
3:if 12 <>t 1 then // Different timestamp between A and B
4: lat3 = ((at2 —latl) / (12 — t1) % t3 + lat 1 —
(lat2 — latl) / (12 — t1) * t1)

5: lon3 = ((lon2 —lonl) /(t2 —t1) xt3 + lonl—
(lon2 — lonl) / (£2 — t1) x t1)
6: end if

Step 1: Use the EDR algorithm to predict a new trajectory
from massive fishing vessel trajectory data. The trajectory
starts from 00:00 every day and finally generates 144 track
points one day for each vessel by predicting the trajectory
every 10 minutes, such as 8:00, 8:10, 8:20, etc. As shown
in Fig.2, the generated trajectory is the same as the original
trajectory.

—— Origin Trace P
e Origin a
e Predit -
/’..
/‘.4
sl
A

FIGURE 2. Comparison of the original trajectory and the trajectory
predicted by the EDR Algorithm.

Step 2: According to the new trajectory and the port area
delineated by VMS, select the trajectory outside the port.

Step 3: Generate four one nautical mile grid centered on
each fishing vessel at each timestamp, and count other fishing
vessels in the grid. If there are fishing vessels in the grid,
regard the interaction time as 10 minutes. As shown in Fig.2,
the side length of each grid is one nautical mile, and other
fishing vessels in the four grids (gray) around the red vessel
are recorded as interacting with the red vessel.

Step 4: Calculate the cumulative one-year interaction time
for all registered fishing vessels and delete the duplicate data.

Step 5: To calculate the interaction time which is not
shorter than one day of each vessel, the interaction time is
used as the weight to generate the edge table, and the node
table is generated from the fishing vessel basic information
database, which represents the basic situation of fishing ves-
sel nodes. Then combine the edge table and the node table to
generate the relationship network data of the fishing vessels.
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This paper takes the interaction time of fishing vessels as
weight, and the unit is a day. Due to the volume of the data is
large, we conduct the relational network algorithm to gener-
ate a total of 663,465 rows of relational network fishing vessel
relational network data (edge table data from 2016 to 2018).
The average time taken to create the network every year
is 164 hours and 53 minutes.

C. COMMUNITY DETECTION AND ANALYSIS

We detect the fishing vessel community by referring to the
Fast Unfolding Algorithm(FUA) [32]. The basic idea of the
algorithm is to conduct local optimization, and combine with
multi-level clustering technology:

Stepl: Assume that we start with a weighted network of N
nodes, and assign a unique community to each node of the
network, then the number of the communities is equal to that
of the nodes in this initial partition.

Step2: For each node i, we consider the neighbors j of i
and we evaluate the gain AQ of modularity [28] that would
take place by removing i from its community and by placing
it in the community of j. The node i is then placed in the
community for which this gain is maximum, but only if this
gain is positive.

Step3: If no positive AQ is possible, i stays in its original
community. This process is applied repeatedly and sequen-
tially for all nodes until no further improvement can be
achieved and the first phase is then complete.

The gain in modularity AQ obtained by moving an isolated
node i into a community C can easily be computed by (1):

. A\ 2
AQ = |:Zin +2khm _ (Ztol +k1> j|

2m 2m

B (B ()T o
2m 2m 2m

where ), is the sum of the weights of the links inside C,
> 1or 18 the sum of the weights of the links incident to nodes
in C, k; is the sum of the weights of the links incident to node
i, ki in 18 the sum of the weights of the links from i to nodes
in C and m is the sum of the weights of all the links in the
network.

In the next section, we analyze the communities of fishing
vessels and compared them with existing benchmarks.

Ill. RESULTS AND DISCUSSION

A. DATA

The dataset about VMS trajectories of active fishing ves-
sels is recorded by Zhejiang Oceanic and Fishery Bureau,
China. Specifically, the trajectory data contains the time,
position, speed, and heading, etc. of the fishing vessels
in the East China Sea from 2016 to 2018. The dataset
has a total of 2,966,826,384 records of Beidou satellite
positioning data and 9,584,361,895 records of AIS data,
respectively, both of their temporal resolutions is less than
5 minutes.
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TABLE 1. Statistics of fishing vessel networks in Zhejiang province.

Metrics 2016 2017 2018 Mean
Node 13468 13451 13368 13429
Edge 536886 546886 526436 536736

Average Degree 79.728 77.728 76.325 77.927
Diameter[34] 15 14 14 14.333
Average Path

length{34] 3.936 3.535 3.536 3.669
Modularity[32] 0.885 0.865 0.866 0.872
Connected

Components[35] 128 136 116 126.667

Average

Clustering 0.339 0.346 0.324 0.336

Coefficien[36]

B. ANALYSIS OF FISHING VESSEL RELATIONSHIP
NETWORK

1) RELATIONSHIP NETWORK

The fishing vessel relationship network is regarded as an
undirected graph. The edge table and node table are imported
into Gephi software [33] and combined to generate a commu-
nity network.

This paper generated the fishing vessel relationship
network from 2016 to 2018 according to their weight
(weight>=1), and the metrics are shown in Table 1.

The network has the characteristics of small-world [37]
and scale-free [38]. It can be observed from Table 1 that the
average degree of nodes is reaching up to 77.927, and the
actual group of fishing vessels is only 6-10. In addition,
the fishing vessels group only exists in the same operation
mode, so this indicator can only explain frequent interactions
while cannot explain the formation of vessels. The study of
the fishing vessel network in Zhejiang Province found that
the diameter of the network was 14.333, and the average
distance was 3.669 among all types of vessels (13,429 ves-
sels), indicating that any two vessels can make connections
bypassing less than four vessels on average. The modularity
is 0.872, and the larger the modularity, the more reasonable
the corresponding community division. The number of con-
nected components reaches 126.667, indicating that there are
many disconnected networks. When fishing vessels are in
operating, the fishing vessels are grouped into three types of
operations: Trawl, Purse Seine and Gill Net. Among all the
auxiliary vessels, transportation vessels interact with other
fishing vessels. We generate the four types of interaction time
as shown in Table 2.

From Table 2, it can be found that the weight distribution
of Trawl, Purse Seine and Gill Net is concentrated between
1-2, and the distribution of weights conforms to the power-
law distribution [38]. Moreover, it also reveals that the median
weight is about 2 conforms to the power-law distribution.

The interaction frequency is relatively concentrated in the
weight of 1-2. It is not the actual grouping, but the fishing
vessels of the same operation method have interaction in the
same fishing area. Therefore, it is of practical significance to
study the fishing vessel relationship network in the same area.
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TABLE 2. Weighted statistical metrics (2016-2018 Zhejiang fishing vessel
average).

Operation type
Metrics Trawl Purse Seine Gill Net Transportation
Vessel
Average 2.7824 2.9022 2.5695 2.4789
Standard 2.2510 2.2617 2.0963 2.0452
deviation
25% 1.3542 1.4097 1.3125 1.2569
50% 1.9583 2.0972 1.8194 1.7083
75% 3.2153 3.4444 2.8750 2.7639

A |
A A

Al A

FIGURE 3. Record the interaction time, vessels in the gray grids around
the red vessel are considered as interacting with the red vessel.

Figure 4 shows the distribution of degrees of all fishing
vessel relationship networks in Zhejiang Province in 2016,
and the degree of nodes is a dense area from 0 to 10, which
is the same as the actual number of group members.

The degree distribution of the fishing vessel relationship
network is not uniform. Only a few nodes have many connec-
tions with other nodes and become ““central nodes”. From the
overall trend of the degree distribution in Fig.4, it can be seen
that the nodes with smaller network degree values account
for a large proportion, but the nodes with large degrees are
very rare, so it demonstrates that the network follows the
power-law distribution.

Because the generation of relational network data is gen-
erated by the trajectory of fishing vessels leaving the port,
and the number of fishing vessels group ranges from 6 to 10,
we get an average degree of 77.927, which indicates that the
interaction between fishing vessels is frequent. The average
degree shows that in addition to the grouping of fishing
vessels, there are interactions with other fishing vessels.

This paper explores the social network of fishing ves-
sels from 2016 to 2018, with an average of 13429 nodes
and 536736 edges annually.

We use the FUA algorithm to detect the communities of the
dataset, and compare it with several other popular algorithms,
the result of which is shown in Table 3.

The modularity of the network, as we know, reflects the
structural degree of the communities. It can be observed from
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FIGURE 4. Distribution of the degree of all fishing vessel relationships in
Zhejiang Province in 2016.

TABLE 3. Test results of community detection algorithm (2016-2018
Zhejiang fishing vessel average).

Metrics
Algorithm Modularity CNumber.o’f Time (S )
ommunities
FN 0.852 67 32.568
GN 0.861 92.333 2925.364
FUA 0.872 62.667 9.337
Walktrap 0.817 318.667 66.258
LPA 0.802 256.363 10.253

Table 3 that the communities detected by modularity based
algorithms such as FUA algorithm, FN algorithm [39], and
GN algorithm [40], have higher modularity, which proves
the feasibility of modularity based algorithms in detecting
communities.

Although the modularity and the number of communities
with FUA, FN, and GN algorithms are similar, the GN, unfor-
tunately, converges with an average of 2925.364 seconds,
while that of FUA algorithm is only 9.337 seconds.

According to the fishery administration, the actual number
of communities is between 60 and 90. However, the number
of communities detected by Walktrap algorithm [41] and
LPA algorithm [42] is much larger than the actual value.
Obviously, the more communities the algorithms detected,
the weaker the community structure will be.

Table 4 shows companion relationships to the relation
models over the time window of one day, one week, two
weeks, and four weeks. We can see that the longer the interac-
tion time, the fewer nodes and edges, the higher the degree of
modularity. It can also be seen that the longer the interaction
time, the greater the number of communities. We can see
that the vast majority of fishing vessels have interacted for
more than one week, reaching 86.78% (11653/13429), usu-
ally from the same operation mode of fishing vessels from the
same region, and communities that have interacted for more
than four weeks have reached 1440, and they account for
about 10.72% (1440/13429). These fishing vessels are Pair
Trawls, which work together.
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TABLE 4. Analysis of network metrics for various interaction times
(2016-2018 Zhejiang fishing vessel average).

Metrics
Interaction Number of
Time Modularity umber o Nodes Edges
Communities
One day 0.885 68.333 13429 536736
One week 0.958 266.333 11653 92118.667
Two weeks 0.980 815 9904 40772333
Four weeks 0.993 1440.667 6900.333 14646
TABLE 5. Ruian’s fishing vessel network from 2016 to 2018.
Nodes Operation Method
2016 2017 2018 Mean
74 75 63 70.667 Shrimp Trawl
35 38 35 36 Otter Trawl
96 84 70 83.333 Pair Trawl
134 135 131 133.333 Gill Net
0 4 2 2 Stow Net
30 25 22 25.667 Transportation Vessel
368 361 323 350.667 Total

This further verifies that the fishing vessels are worked in
groups.

2) VISUALIZE FISHING VESSEL COMMUNITIES

This paper generated a fishing vessel network map of every
city in Zhejiang Province from 2016 to 2018 through a
force-oriented layout algorithm-Fruchterman Geingold algo-
rithm [28]. The connection between every two vessels indi-
cates that the two vessels have a special relationship, which
can be a grouping or commercial relationship.

The network diagrams generated are shown in Fig.5, which
is the fishing vessel relationship network in Ruian City as
a typical fishing vessel community for analysis. It can be
seen that the visualization of the fishing vessel’s network
relationship reflects the operation of the fishing vessel.

It can see from Table 5 that the average number of nodes
generated by the algorithm is 350.667, which is consistent
with the number of fishing vessels in actual operation, and
the average number of registered fishing vessels in Ruian City
from 2016 to 2018 is 436.

From Fig.5, it can be seen that fishing vessels of the same
operation type are clustered together, which is consistent with
the actual fishing vessel operation method.

However, there are also different types of vessels mixed
in the cluster of pair trawl, which may be induced by two
reasons:

The first is the registration information error. As shown in
Fig.6, we found that two Gill Net (blue nodes) were divided
into the cluster of the Pair Trawl (green nodes). To explain
this phenomenon, we replayed the trajectories and then we
found that the trajectories of the two vessels were almost the
same, which matched well with the trajectory characteristics
of the Pair Trawl trawling together (Fig.7).

Therefore, this paper verified the information of these two
Gill Net with the management department, and it turned out
that the actual type is Pair Trawl which is misregistered as
Gill Net. Additionally, we used the same method to find out
the other three vessels with incorrect registration information.
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(a) 2016

(b) 2017

(c) 2018

FIGURE 5. Visualize all fishing vessel relationship networks in Ruian from 2016-2018 (fishing vessel operation method:1-Gill Net; 2-Pair Trawl; 3- Shrimp

Trawl; 4-Otter Trawl; 5-Transportation Vessel; 6- Stow Net).

e s B

FIGURE 6. Enlarged image of Pair Trawl community in 2016.
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FIGURE 7. The trajectory of two pair trawls throughout 2016.

The second is because fishing vessels are not grouped out,
such as Transportation Vessels, which serve fishing vessels
so that they will be in the same community as a certain
type of fishing vessel. There is also a strange phenomenon.
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FIGURE 8. Visualize one of the Transportation Vessels community in
Ruian 2016.

The Transportation Vessels in the red box in Fig.8 is a
relatively independent community. In order to explain this
phenomenon, we conducted an in-depth investigation and
found that this part of the Transportation Vessels is not serv-
ing for fishing vessels of Ruian City. Using this method of
community network visualization, this paper explains many
strange phenomena of many fishing vessel communities.

IV. CONCLUSION

In this paper, we propose the fishing vessel relationships dis-
covery system (FVRD) to discover the relationship between
vessels. Firstly, a trajectory prediction and distance calcu-
lation algorithm were proposed to calculate the interaction
time between fishing vessels. Secondly, the fishing vessel
community was divided by the FUA algorithm for grouping
fishing vessels according to operation types. Then, the pro-
posed method was verified on the vessel dataset of Zhejiang
Province. Finally, through the visualization and analysis of
fishing vessel community networks, this paper explains many
interesting phenomena of fishing vessel communities.

In our future work, we consider optimizing the Rela-
tional Network Mining Algorithm to improve its calculation
efficiency. In particular, we will further study the evolution
of the fishing vessel community.
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