
Received May 13, 2020, accepted June 2, 2020, date of publication June 15, 2020, date of current version June 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3002236

A Novel Feature Matching Ranked Search
Mechanism Over Encrypted Cloud Data
LIANGGUI LIU AND QIUXIA CHEN
College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China

Corresponding author: Lianggui Liu (felix@zjsru.edu.cn)

This work was supported in part by the National Natural Science Foundation of China and Civil Aviation Administration of China under
Grant U1533133, in part by the National Natural Science Foundation of China under Grant 61002016 and Grant 61711530653, in part by
the Zhejiang Provincial Natural Science Foundation under Grant LQ18F030006, in part by the China Scholarship Council under Grant
201708330439, and in part by the Startup research funding of Zhejiang Shuren University under Grant 2020R001.

ABSTRACT Encrypted search technology has been studied extensively in recent years. With more and more
information being stored in cloud, creating indexes with independent keywords has resulted in enormous
storage cost and low search accuracy, which has become an urgent problem to be solved. Thus, in this paper,
we propose a new feature matching ranked search mechanism (FMRSM) for encrypted cloud data. This
mechanism uses feature score algorithm (FSA) to create indexes, which allows multi-keywords which are
extracted from a document as a feature to be mapped to one dimension of the index. Thus, the storage cost
of indexes can be reduced and the efficiency of encryption can be improved. Moreover, FMRSM uses a
matching score algorithm (MSA) in generating trapdoor process. With the help of FSA, the matching score
algorithm can rank the search results according to the type of match and the number of matching keywords,
and therefore it is able to return results with higher ranking accuracy. Comprehensive analysis prove that our
mechanism is more feasible and effective.

INDEX TERMS Encrypted search, feature score, storage cost, matching score, ranking accuracy.

I. INTRODUCTION
In order to save local storage cost, more and more people are
willing to store their private data in cloud servers. However,
there are potential risks in cloud storage environments, since
data leakage events have happened more and more frequently
in recent years. Many people have to encrypt their data
before uploading to the cloud to ensure the security of private
information. For the untrustworthy cloud environment, many
scholars have proposed their solutions for different cloud
storage problems [1]–[4]. Their works focus on designing
a searchable encrypted index that hides document informa-
tion from cloud server and can only be computed through
specific trapdoors. The searchable encrypted index can be a
Bloom filter [5]–[7] generated by mapping keywords, or an
index vector [8], [9] reflecting the importance of keywords.
However, these schemes not only have large storage cost but
also have low search accuracy.

In encrypted search schemes, it is particularly difficult to
find a solution that can satisfy the user’s accurate query.
Although there are many searchable methods that support
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multi-keyword search [10], [11], they do not consider the
relationship between extracted keywords. In addition, exist-
ing methods which focus on judging the importance of a
keyword for a document are not sufficiently, and when a large
number of keywords are extracted from the document, it will
inevitably lead to a huge storage cost. In order to address these
missing or incomplete search problems, many scholars have
proposed fuzzy keyword search and ranking search [12]–[17].
These solutions can greatly enrich query results, but they
often cannot meet users’ actual search requirements.

As we all know, in plain document query, phrase search
method is widely used and has achieved better effects.
Recently, many scholars have begun to use the method of
phrase or conjunctive keyword search in encrypted search
system. Comparing with single keyword or multi-keyword
search, the phrase search method can obtain higher query
precision. However, when the number of phrases which is
extracted from documents increases, the phrase search will
result in a huge computational cost, and this cost tends to
increase with the number of phrases [18]. Therefore, it is
urgent to find a feasible and effective search solution that can
not only reduce computational burden but also return results
accurately.
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In this paper, we propose a new feature matching ranked
search mechanism (FMRSM) for encrypted cloud data. In the
process of creating indexes, we first propose a feature score
algorithm (FSA) that can map multiple keywords which are
extracted from a document to one dimension of the index.
Therefore, comparingwith creating indexes with independent
keywords, this mechanism can not only reduce index dimen-
sions, but also improve the efficiency of encryption. During
the generating trapdoor process of FMRSM, we design a
novel matching score algorithm (MSA). This algorithm can
not only focus on the matching relationship between query
keywords and features, but also comprehensively consider
each matching type to return results that are closer to user’s
real request. The contributions of this paper are summarized
as follows.
(1) For the first time, we propose a novel feature score

algorithm to create indexes, which allows multiple
keywords extracted from a document as a feature to
be mapped to one dimension of the index to achieve
the purpose of accelerating the encryption process and
reducing storage cost.

(2) In the generating trapdoor process of FMRSM,
a matching score algorithm is designed. With the help
of FSA, this algorithm can rank search results accord-
ing to the matching types and the number of matching
keywords, and therefore the returned results have a
higher ranking accuracy.

The rest of this paper is arranged as follows. In section II,
we introduce related work of encrypted search. Section III
describes the system model, the threat model, and the design
goals. Also, in this section, we describe some related terms
used in this paper in detail. Then we present the proposed
feature matching ranked search mechanism in section IV.
In section V, we analyze the performance of our mechanism.
Finally, we conclude this paper in section VI.

II. RELATED WORK
Heinlein [4] first defined the concept of encrypted
search. They believe that storing encrypted data in the cloud
can not only save local storage cost but also reduce security
risks. However, they are also worry about the leakage of
private information in uncontrolled remote storage environ-
ments at the same time. For this reason, they first proposed
a full-text search scheme for encrypted data and verified its
security. Goh et al. [19] first used a bloom filter as an index
structure and each index is connected to a document. The hash
function is used to map keywords to codes which are stored in
corresponding positions of the bloom filter. While querying,
people can determine whether each index contains query
keywords by mapping again. Although this method does
not result in missing search results, it may return irrelevant
search information. Boneh et al. [20] described an untrusted
routing problem and created a public-key encryption scheme
that allows PIR (private information retrieval) on encrypted
documents. For the first time, this scheme can solve the
problem of search without leaking user query information.

However, all above searchable encryption schemes are based
on single keyword search or specific application situations.
Thus, they can’t meet users’ actual search requirements.

Unlike single keyword search, conjunctive keywords
search or multi-keyword search methods can allow users to
input multiple keywords in a request to query and return
results containing these keywords. Cui et al. [21] proposed
a public key searchable encryption scheme that can perform
multiple keywords search in an expression search formula.
Ali and Lu [22] proposed a symmetric encryption scheme
that supports connecting keywords search, and this scheme
does not need to specify the location of the keyword. In addi-
tion, pseudo-random functions and bloom filters are used
in the scheme to ensure index security. Yang and Ma [23]
proposed a new conjunctive keywords search method for
electronic health record systems. This method supports
automatic delegating revocation, which is the first search-
able encryption scheme that enables proxy re-encryption.
Kerschbaum [24] addressed the issue of associating a key-
word with a position in existing schemes, and propose a
search method that does not need to specify the location
of the connecting keywords. Fu et al. [9] first proposed a
multi-keyword ranked search scheme based on synonyms
for encrypted cloud data. When authorized users enter syn-
onyms of predefined keywords, they can also perform search.
Fu et al. later proposed central keyword-based semantic
extension ranked scheme [25]. By extending the central query
keyword, a good trade-off between search functionality and
efficiency was made.

In recent years, some scholars have proposed phrase
search schemes for encrypted data. Unlike supporting multi-
keyword search or conjunctive keywords search method,
phrase search requires comprehensive consideration of
each keyword information, including semantics, order, and
location. Poon and Miri [26] designed an encrypted search
scheme that supports both conjunctive keyword search and
phrase search. The scheme fully considered the statisti-
cal properties of natural language to reduce storage cost.
Their next work [27] proposed a phrase search technique
based on bloom filter, which for the first time supports
phrase-independent query. Tang et al. [18] defined a sym-
metric searchable encryption model, and then proposed a
symmetric encryption phrase search scheme that can per-
form secure and efficient phrase search over encrypted data.
Zittrower and Zuo [28] proposed a scheme that allows
phrase search and multi-keyword search for encrypted
datasets. By storing the keyword location information,
a comprehensive encrypted search function is achieved.
Yin et al. [29]–[31] further consider the secure search prob-
lem based on a practical application scenario that a data
owner needs to grant different keyword query permissions
for different data users to achieve flexible access control on
outsourced encrypted data in the cloud computing environ-
ment, several secure search schemes have been proposed to
meet the challenge of secure search over encrypted cloud
data. Due to the amount of encrypted files stored in cloud
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is becoming very huge, which will hinder efficient query
processing, Li et al. [32]–[35] presented a few schemes with
outsourcing key-issuing and outsourcing decryption, which
can implement keyword search function. Guo et al. [36]–[38]
did valuable research in the field of data privacy in cloud com-
puting and proposed several schemes over encrypted cloud
data, which also supports dynamic update operations, such
as adding or deleting files.

Although the above related work has improved the search-
able encryption technology from different aspects, the fol-
lowing problems still need to be solved: (1) The amount
of encryption calculation increases with the size of dictio-
nary, and when a large number of keywords are extracted,
it will inevitably lead to huge computational cost; (2) The
search results of existing schemes depend on similarity
scores or independent keyword matching relationships. They
do not comprehensively consider the number of matching
keywords and the overall matching relationship, which will
result in low query accuracy. Therefore, it is imminent to
design a new mechanism to solve these problems.

III. PROBLEM FORMULATION
A. SYSTEM MODEL
The encrypted search system is shown in Figure 1. This
system consists of three parts, that is, data owner, data user,
and cloud server. The data owner first regards all kinds of data
as documents, then extracts keywords from each document to
create an encrypted index, and finally uploads the encrypted
documents and indexes to the cloud server. While querying,
the data user first generates a trapdoor through search control
operation, and then submits it to the cloud server for retrieval.
After receiving the trapdoor, the cloud server calculates the
similarity score of the trapdoor and each document index, and
then returns copies of encrypted documents to the data user
according the score. In the end, the data user receives the
encrypted results and decrypts them through access control
operation.

FIGURE 1. System model.

B. SYMBOL DESCRIPTION
The symbol descriptions are shown as below.

TABLE 1. Notations.

C. THREAT MODEL
In this paper, we believe that the cloud server is ‘‘honest
but curious’’ [39], which means that the cloud server will
honestly perform search operations according to the submit-
ted trapdoor. However, at the same time, the cloud server
may also infer the plain data from existing information. The
existing information can be encrypted documents, encrypted
indexes and the trapdoor which must be submitted to the
cloud server, or some background knowledge about encryp-
tion. We believe that the general goal of the server’s attack
is to infer secret keys or plain data. To better evaluate the
security of our mechanism, we consider the following two
threat levels [40].
Level 1: The cloud server knows the encrypted infor-

mation, that is, the cloud server can know the encrypted
document set C, the encrypted index set I, and the query
trapdoor T, which must be uploaded to the cloud server.
Level 2: The cloud server knows more information than

that in Level1, for example, the cloud server may judge
whether some query keywords are in a trapdoor by combining
existing trapdoors and query results, or it may use encrypted
background information to infer secret keys.

D. DESIGN GOAL
In order to reduce storage cost and improve search accuracy,
our mechanism tries to achieve the following goals.

1) FEATURE INDEX
Our goal is to map multiple keywords extracted from a doc-
ument to one dimension of the index by using a feature score
algorithm. That is, each dimension of the index corresponds
to a feature.
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2) MATCHING SEARCH AND PRECISION
We calculate matching scores based on the matching rela-
tionship between query keyword set and feature dictionaries
to generate a query vector. While querying, the results are
ranked according to the inner product of the index and the
query vector and returned to the authorized user.

E. PRELIMINARIES
Four important techniques should be explained in our design,
which are as follows.
(1) Normalized term frequency and anti-term frequency:

The query score reflects the matching relationship
between query keywords and features. Term frequency
and anti-term frequency (TF-IDF) [40] are often used to
calculate a document score. Term frequency reflects the
importance of a keyword for a document. In general,
we use the occurrence of the term appearing in the
document represents term frequency. In this paper we
use the normalized term frequency [41] to calculate the
composite score, and the normalized term frequency of
each feature keyword can be calculated as:

TF(vi,b) =
1+ ln fi,b√ ∑

wi,k∈gi
(1+ ln fi,k )2

(1)

where giis the feature of the i-th document, wi,k repre-
sents the k-th keyword in gi, fi,k and fi,b represent the
number of occurrences of the keywords wi,k and vi,b in
the i-th document respectively, where vi,b ∈ gi∩dj, and
dj indicates the j-th feature in D. Anti-term frequency
indicates the degree of discrimination of a keyword for
a document, and we calculate anti-term frequency by
dividing the total number of features by the number
of features containing the term. In this paper, we use
the normalized anti-term frequency [41] to calculate
the matching score, and the normalized anti-term fre-
quency of each query keyword can be calculated as:

IDF(vj,b) =
ln(1+ n/fb)√ ∑

wj,k∈dj
ln(1+ n/fk )2

(2)

where n is the total number of dictionary, wj,k repre-
sents the k-th keyword in dj, fk and fb represent the
number of feature containing the keywordswj,k and vj,b
respectively, where vj,b ∈ dj ∩ e, e represents the query
keyword set.

(2) ‘‘Top-k’’ query: When a user enters keywords to
search, it is often not necessary to return all the query
results. In this paper, we used the ‘‘top-k’’ method to
query [40].When the user submits a query request, they
also need to submit parameter k , which indicates the
number of results to be returned. During the search pro-
cess, the cloud server ranks search results and returns
the ‘‘top-k’’ document to the query user.

(3) Exact match and partial match: According to the
matching relationship between document feature

gi(i = 1, 2, . . . ,m) or query keyword set e and feature
dj(j = 1, 2, . . . , n), we divide thematching relationship
into two different types, which are described as follows.
Exact match: It indicates that the keywords in gi or e
are the same as the keywords in dj.
Partial match: It means that the keywords in gi or e are
not the same as the keywords in dj.

(4) Ranking accuracy: In this paper, we define ranking
accuracy δ to measure the accuracy of returned results.
In partial match, we assume that the feature gi of doc-
ument Fi matches n keywords with the query keyword
set e. If Fi is returned before all the documents whose
number of matching keywords is less than n, we say
that the document Fi is returned in order. And if the
exact matching document is returned before all partial
matching documents, we specify that it is returned
in order. In this paper, we use δ = r/k to calculate
the ranking accuracy, where r indicates the number of
documents returned in order when performing ‘‘top-k’’
query, and k indicates the total number of returned
results.

IV. FMRSM
In this section, the specific implementations of our proposed
FMRSM are as follows.

A. GENERATION OF SECRET KEYS
The data owner first generates encrypting keys M1 and M2,
and an indicator S. Here, M1 and M2 are (n + u + 1) ×
(n + u + 1) invertible matrixes, and S ∈ {0, 1}n+u+1, where
n is the total number of features inD, and u+1 is the extended
dimension. Hence, the secret key can be expressed as a
3-tuple {S,M1,M2}.

B. CREATION OF INDEX
Step1: The data owner first creates an n-dimension index
vector

→
pi . Each dimension of the index vector

→
pi is a feature

score of a feature dj(j = 1, 2, . . . , n) in the correspond-
ing document Fi. The feature score algorithm is shown in
Algorithm1.
Step2: We first extend

→
pi from n dimensions to n + u

dimensions and set each of them to a random number ε, which
follows the same uniform distributionU (µ−c, µ+c). Then,
we extend

→
pi to n + u + 1 dimensions and set it to 1. The

extended index vector can be expressed as
→
pi∼.

Step3: According to the value of the indicator S, we ran-

domly split the extended index
→
pi∼ into

→

p′i and
→

p′′i . Namely,

if S[j] is 0,
→

p′i[j] and
→

p′′i [j] can be set as two different random
values while the sum of them should be equal to

→
pi∼[j]; if S[j]

is 1,
→

p′i[j] and
→

p′′i [j] are set as the same value as
→
pi∼[j].

Step4:The split index vectors
→

p′i and
→

p′′i are encrypted using
the secret keys M1 and M2 to generate an encrypted index Ii,

where Ii = {
→

p′Ti M1,
→

p′′Ti M2}.
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Algorithm 1 FeatureScore(gi, dj)
Require:
gi : The feature of document Fi.
dj : The j-th feature in D.
Ensure:
vi,b : The b-th keyword in gi ∩ dj.
FS : The feature score of gi.
IS : The highest value of feature score.
TF(vi,b) : The normalized term frequency
calculated by formula (1).
α : Initial distinguish parameter.
qα : Common ratio of geometric progression {αb}.
if gi exactly match dj then

FS = IS;
else if gi partly match dj then

FS = 0;
for every keyword vi,b in gi ∩ djdo
if b is equal to 1 then
FS = TF(vi,b);
α1 = α;

else
FS = FS + (TF(vi,b)+ αb−1);
αb = αb−1qα;

end if
end for

end if
return FS;

C. CREATION OF TRAPDOOR
Step1: When authorized users enter keywords to query,
we first create an n-dimension query request

→
q . Each dimen-

sion of
→
q is the matching score of a query keyword set e and

a feature dj(j = 1, 2, .., n). The method of calculating the
matching score is shown in Algorithm2.
Step2: We first extend

→
q from n dimensions to n + u

dimensions and randomly select v positions from them to be
set as 1, and the rest positions are set as 0. Then the value of
the n + u + 1 dimensions is set as a random value t(t 6= 0)
and all the other positions are multiplied by another random
value r(r 6= 0).The extended query request can be expressed
as
→
q∼.
Step3: According to the value of the indicator S, we ran-

domly split the extended query request
→
q∼ into

→

q′ and
→

q′′.

Namely, if S[j] is 1,
→

q′[j] and
→

q′′[j] can be set as two different
random values while the sum of them should be equal to
→
q∼[j]; if S[j] is 0,

→

q′[j] and
→

q′′[j] are set as the same value
as
→
q∼[j].

Step4: The split query requests
→

q′ and
→

q′′ are encrypted to

generate a trapdoor T , where T = {M−11

→

q′,M−12

→

q′′}.

D. SEARCH
The authorized user enters query keywords to generate a
trapdoor and submits it to the cloud server. The cloud server

Algorithm 2 MatchingScore(e, dj)
Require:
e : The query keywords set.
dj : The j-th feature in D.
Ensure:
vj,b : The b-th keyword in dj ∩ e.
MS : The matching score of query keywords.
QS : The highest value of matching score.
IDF(vj,b) : The normalized anti-term frequency
calculated by formula (2).
β : Initial distinguish parameter.
qβ : Common ratio of geometric progression {βb}.
if e exactly match dj then
MS = QS;

else if e partly match dj then
MS = 0;
for every keyword vj,b in dj ∩ edo
if b is equal to 1 then
MS = IDF(vj,b);
β1 = β;

else
MS = MS + (IDF(vj,b)+ βb−1);
βb = βb−1qβ;

end if
end for

end if
return MS;

calculates the score of the trapdoor and each document index.
Then, the search results are ranked according to the value of
the score, and the ‘‘top-k’’ documents with the highest scores
are returned to the authorized user. The search process are as
follows.

Ii · T = {
→

p′Ti M1,

→

p′′Ti M2} · {M
−1
1

→

q′,M−12

→

q′′}

=

→

p′Ti
→

q′ +
→

p′′Ti
→

q′′

= r(
→
pi
→
q +

∑
ε(v))+ t

After receiving the encrypted documents, the authorized
user decrypts them into plain documents through access con-
trol operation.

V. PERFORMANCE ANALYSIS
A. THEORETICAL ANALYSIS
1) INDEX AND KEY SECURITY
Under Level 2 model, the cloud server is able to establish
2(n+u+1)m equations, the number of which is less than the
sum of unknown variables in the index and the key, which
are 2(n + u + 1)m and (n + u + 1)2 respectively. Thus,
our mechanism is resilient against the key attack, and the
index information and the query confidentiality can be well
protected.

2) KEYWORDS PRIVACY
The information leakage in level 2 model is mainly incurred
by the random number ε in each index vector [40]. To meet
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the preset security, the number of
∑
ε(v) should be larger

than 2ω [25] when giving system parameter ω. Besides,
the number of different

∑
ε(v) is Cv

u which is maximized
when u/v = 2 and Cv

u ≥ (u/v)v. Therefore, when u = 2ω
and v = ω, our scheme can achieve the security goal.
In addition, each ε(j) follows the same uniform distribution
U (µ′ − c, µ′ + c), and their mean is µ′ and variance is
σ ′ = c2/3. According to the central limit theorem, the

∑
ε(v)

follows the normal distribution N (µ, σ 2), where their mean
µ is ωµ′ and variance σ 2 is ωc2/3. In the normal distribution
N (µ, σ 2), the larger the σ value, the more difficult it is for
the cloud server to analyze the similarity information between
initial index vectors, but the search accuracy will be reduced.
Therefore, it is necessary to choose the value of σ reasonably
between the privacy protection and the search accuracy.

3) EFFICIENCY
FMRSM uses feature score algorithm to create indexes
to reduce dimensions. The specific analysis are as fol-
lows. When we create indexes with independent keywords,
the number of dimensions of each index is related to the
total number of terms and is greater than the total number of
documents. When a large number of keywords are extracted
from a document, it will inevitably result in huge storage
cost and computational burden. Our feature score algorithm
allows a plurality of keywords which are extracted from a
document as a feature to be mapped to one dimension of
the index. Thus, the index dimension n is not greater than
the total number of documents m. Therefore, comparing with
creating indexes with independent keywords, this algorithm
can reduce storage cost and accelerate the encryption and
search process.

In existing encrypted ranked search schemes, multiple key-
words in the dictionary are independently mapped to different
dimensions of the index. When we use ‘‘TF-IDF’’ rule to
calculate a document score, it is very likely that an ‘‘error
order’’ will occur. For example, when we extract keywords
from documents Fi and Fj to form features gi = {‘‘cloud
computing’’, ‘‘ranked search’’} and gj = {‘‘cloud comput-
ing’’}, it may happen that the sum of the weights of ‘‘cloud
computing’’ and ‘‘ranked search’’ in Fi is less than the weight
of ‘‘cloud computing’’ in Fj. This situation is very common,
because ‘‘cloud computing’’ and ‘‘ranked search’’ appear
less in Fi. However, ‘‘cloud computing’’ appears more in
Fj. If users enter ‘‘cloud computing’’ and ‘‘ranked search’’
to query, Fj will be returned preferentially according to its
score, which obviously does not meet the user’s real query
requirement. Algorithm1 and Algorithm 2 can improve the
accuracy of query results. They comprehensively consider the
matching relationship between features and query terms, and
then give each query keyword different score according to the
matching types and the number of matching keywords.

In the process of creating indexes, Algorithm1 comprehen-
sively calculates the value of each dimension in the index,
and the processes are as follows. When a feature dj is exactly
the same as the document feature gi formed by extracting

keywords from document Fi, we specify that gi is exactly
match with dj. Exact match indicates that the feature dj
can fully reflect the real content of Fi. Therefore, the j-th
dimension of index pi should have the highest score, and in
Algorithm1, we set the highest feature score to IS. When gi
is different from dj, we think that they are partially matched.
Partial match includes two cases, where gi and dj have no
intersections or they have common elements. The first case
indicates that the feature dj can not reflect the information of
Fi, Thus, the j dimensional feature score of the index pi will
be 0. The second case indicates that the feature dj can reflect
some of the information of Fi, which depends on the number
of matching keywords in gi and dj. We use the sum of the
normalized term frequency of these matching keywords in Fi
to represent their feature score. However, using this method
directly will result in the ‘‘error order’’. In order to improve
ranking accuracy, distinguishing parameters are introduced
while calculating the normalized term frequency of each
matching keyword in Algorithm1. That is, we use TF(vi,b)+
αb to represent the score of the b-th matching keyword vi,b,
where α0 = 0, {αb}(b > 1) is a geometric progression whose
first item is α and public ratio is qα . For example, when
the feature dj = {‘‘cloud computing’’, ‘‘multi-keyword’’,
‘‘ranked search’’} and the feature gi = {‘‘cloud computing’’,
‘‘ranked search’’}, we use

∑
vi,b∈

_
W

(TF(vi,b)+ αb) to represent

the value of the j-th dimension in the index pi, where
_

W =
{‘‘cloud computing’’, ‘‘ranked search’’}. The introduction
of distinguishing parameters will make the feature score
of (n + 1)-th matching keywords much larger than that of
n-th matching keywords. Therefore, in partial match,
the more matching keywords there are in gi and dj, the higher
the feature score will be.

In generating trapdoor process, Algorithm2 gives different
matching scores according to different matching relation-
ships between query keyword set e and feature dj, which
are respectively described as follows. When e is the same
as dj, we specify that they are exact match. Exact match
indicates that the j-th dimension of query request q is the
user’s real query requirements, so it should have the highest
matching score, which is set to QS in Algorithm2. If e and
dj are not the same, we define them as partial match. In this
case, we use the sum of the normalized anti-term frequency
of their matching keywords to represent the matching score.
In order to avoid the ‘‘error order’’, different parameters are
introduced while calculating normalized anti-term frequency.
That is, we use IDF(vj,b) + βb to represent the score of the
b-th matching keyword vj,b, where β0 = 0, and {βb}(b > 1)
is a geometric progression whose first item is β and public
ratio is qβ . For example, when the feature dj = {‘‘cloud com-
puting’’, ‘‘multi-keyword ’’, ‘‘ ranked search’’} and the query
keyword set e = {‘‘cloud computing’’, ‘‘feature matching’’,
‘‘ranked search’’}, we use

∑
vj,b∈

_
W

(IDF(vj,b)+ βb) to represent

the value of the j-th dimension in query request q, where
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_

W = {‘‘cloud computing’’, ‘‘ranked search’’}. In partial
match, with the help of FSA, this matching score algorithm
will give priority to returning documents with more matching
keywords.

In both algorithms, the values of IS andQS should be larger
than the highest score of partial match to ensure the ranking
accuracy. Generally, the larger the values of IS, QS, qα and
qβ are, the more accurate the query results. However, their
values should not be too large, because in this case, there is a
high risk of privacy leakage under Level2 model. In general,
when α ∈ (TF, 1), β ∈ (IF, 1), qα, qβ ∈ (1.2, 1.5), IS ∈
(α · (qα)M , α · (qα)M+2TF) andQS ∈ (β · (qβ )M , β · (qβ )M+
2IF), the query results will achieve a good trade-off between
ranking accuracy and privacy protection. Where TF is the
maximum normalized term frequency in gi(i = 1, 2, . . . ,m),
IF is the maximum normalized anti-term frequency in dj(j =
1, 2, . . . , n), M is the maximum number of keywords in
feature gi(i = 1, 2, . . . ,m) or dj(j = 1, 2, . . . , n).

B. EXPERIMENTAL ANALYSIS
In this part, we evaluate the performance of our FMRSM
system using Java language on Windows 7 server with Intel
Core3 CPU 2.5GHz. We use Request for Comments database
(RFC) [42] as our dataset, and compare our mechanism with
MRSE (multi-keyword ranked search over encrypted cloud
data) [40] and CKSER (central keyword semantic extension
ranked scheme) [25].

The experimental process is as follows. In FMRSM,
we extract the keywords from each document to form the doc-
ument features, and filter duplicate features to construct the
feature dictionary. Then for MRSE and CKSER, we extract
the keywords from each document to form the keyword
dictionary. Finally, we perform five group of experiments,
including creating index, generating trapdoor, search, and
testing storage cost and accuracy. The experimental results
are shown in Figures 2, 3, 4, 5 and Table 2.

FIGURE 2. Time of creating index. For different number of documents
with system parameter ω = 2000.

The time of creating index, generating trapdoor, and
search, and the size of the index and trapdoor are all related to
the total number of features in FMRSM and the total number

FIGURE 3. Time of generating trapdoor. For different number of
documents with the same query keywords t = 10.

FIGURE 4. Time of query. For different number of documents with the
same query keywords t = 10.

FIGURE 5. Ranking accuracy. For different number of retrieved
documents with standard deviation σ = 0.3.

of keywords in MRSE and CKSER. In MRSE and CKSER
scheme, each dimension of the index or query request corre-
sponds to a keyword in the keyword dictionary. Thus, when
the total number of keywords is N , the dimensions of the
index and query request will be (N + u + 1). In FMRSM,
all the keywords extracted from a document are mapped
to one dimension of the index by feature score algorithm.
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TABLE 2. Storage of subindex/trapdoor.

When there are m documents, the largest dimension of the
index and query request will be (m+u+1). Since the number
of keywords N extracted from the document is much greater
than the number of documents m, the time of creating index,
generating trapdoor, and search for FMRSM is less than that
ofMRSE andCKSER, as shown in figure 2, 3, and 4. It should
be noted that since CKSER uses sub-matrices technology, the
time of creating index, generating trapdoor, and search will be
less than MRSE. At the same time, comparing with MRSE
and CKSER, FMRSM saves the storage cost of the index and
trapdoor, as shown in Table 2.

Another highlight of FMRSM is that it can improve the
ranking accuracy. In the experiment, we calculate the rank-
ing accuracy according to the definition mentioned in E.
Preliminaries, Section III. Figure 5 shows the relationship
between the ranking accuracy and the number of documents.
It can be seen from the figure that FMRSM has better rank-
ing accuracy than MRSE and CKSER. Therefore, for users’
query requests, FMRSMcan return the search results that best
match user’s query requirements.

VI. CONCLUSION
In this paper, we propose a novel feature matching ranked
search mechanism for encrypted cloud data. In this mecha-
nism, a feature score algorithm is used to create indexes so
that a plurality of keywords extracted from a document are
only mapped to one dimension of the index. Comparing with
creating indexes with independent keywords, this mechanism
can reduce the index dimension. In addition, a matching
score algorithm is designed in the generating trapdoor process
of FMRSM. This algorithm can give the query request an
accurate score based on the type of match and the number
of matching keywords, so that the query results are more in
line with users’ actual search requests. It can be seen from
the experiment results that our mechanism can speed up the
creation of index, the generation of trapdoor, and the search
process. Moreover, our mechanism can save storage cost and
improve the ranking accuracy.
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