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ABSTRACT Wireless visual sensor networks are commonly employed on several applications contexts such
as smart cities, intelligent transportation systems and industrial management, aiming at the use of visual data
from cameras to provide enhanced information and to expand the networks utilities. In these scenarios, some
applications may require high-definition images when performing more specialized tasks, for example in
face and text recognition, adding an important monitoring requirement when using camera-based sensors.
In fact, it is important to ensure that the network is able to gather visual data with the associated required
quality to each task, and such perceived quality may be processed as a function of the Field of View (FoV) of
the visual sensors. In order to address this issue, new quality metrics are proposed for wireless visual sensor
networks that are deployed to perform area coverage, exploiting for that different perceptions of the FoV.
Those metrics are proposed along with redeployment optimization methods for visual sensor nodes aiming
at the improvement of the perceived monitoring quality, which are based on greedy and evolutionary-based
approaches. The proposed metrics and algorithms are expected to be more realistic than previous solutions,
allowing flexible processing of variables as cameras’ positions, orientations and viewing angles, providing
then high flexibility on the definition of parameters and significantly contributing to the development of
sensor networks based on visual sensors.

INDEX TERMS Wireless sensor networks, area coverage, optimization, visual quality, quality ofmonitoring,
quality metric, visual sensing, field of view, mathematical modelling.

I. INTRODUCTION
Several applications have benefited from the use of dis-
tributed systems and visual information when achieving
a more comprehensive perception of the monitoring con-
text, usually employing (Wireless) Visual Sensor Net-
works (WVSN) composed of a set of camera-enabled
nodes [1]. For those networks, retrieved visual information
must be adequate to the application monitoring requirements,
i.e., the proper visual data ‘‘quality’’ is essential to perform
the expected tasks. However, the definition of quality is
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subjective and it may vary considerably, making harder the
definition of quality assessment metrics.

Nevertheless, such metrics could be an important require-
ment to develop and manage some applications in any
context, such as in Industrial 4.0 [2], environmental moni-
toring [3], mobility tracking [4], Internet of Things [5] or
just for network metric analysis, such as in dependability
assessment [6].

Actually, when considering the use of visual sensor
networks, some tasks will demand a stronger perception of
quality, for example requiring the adjustment of the position
or orientation of cameras in order to enhance the quality of
retrieved visual data, taking closer and sharper images of
objects. Similarly, more powerful hardware may be used to
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gather better images, also impacting quality [7]. On the other
hand, some monitoring tasks may not require high-definition
images, such as in intrusion detection applications that
essentially need to detect movement patterns. For this last
case, it is possible to save resources or use cheaper hardware
in order to perform simpler monitoring tasks, while achieving
acceptable results. Such scenario, with applications with
different demands concerning the quality of retrieved visual
data, is susceptible to the adoption of quality metrics that
leverage the processing and resource allocation in such
networks.

It is important to distinguish between quality of
image [8]–[11] and Quality of Monitoring (QoM) [12]–[16]
in a visual network. The image quality assessment evaluates
the image content degradation as consequence of acquisition,
processing, compression, storage, transmission and reproduc-
tion processes. On the other hand, quality of monitoring is a
generic term used to refer to the capability of a network to
perform the expected monitoring functions over the region of
interest. In this case it is assessed the value of gathered visual
information not considering content degradation, although
it is possible to join both approaches for a more realistic
assessment. In this paper it is discussed assessment of quality
of monitoring on wireless visual sensors networks only.

Still considering the relevant aspects for quality of visual
monitoring, several networks aspects like area coverage and
redundancy [17], [18] can affect the perceived quality, which
means that it can be indirectly used to evaluate other metrics.
It can also determine other network attributes such as depend-
ability, availability, lifetime or power consumption [15], [19],
which means that a proper quality mapping could also be
used to improve other network features or even to prevent and
identify failures [20].

In previous works in the literature [21]–[23], some QoM
metric is usually exploited according to the sensors ability
to view one or more targets. However, it is also possible
to define a QoM for area coverage applications [24], which
is a more challenging task since there are no reference
points with respect to the camera. Instead, the regions expand
continuously, varying both in distance and perspective from
each visual sensor node. Moreover, some regions may be
redundantly covered by several visual nodes, increasing the
complexity of area coverage. For these cases, it makes more
sense to define a metric to the entire network considering the
composition of covered areas.

The problem of quality of monitoring regarding area
coverage was initially addressed in [24], but imposing several
restrictions to the network deployment (position, orientation,
viewing angle) and, as a consequence, to the network
optimization process. In a different way, in this article we
circumvent these constraints proposing a new approach for
assessment of the quality of monitoring in WVSN, defining
new QoM-based metrics. The proposed metrics, defined
as the Area Quality Metric (AQM ) and its variations, are
types of QoM metrics that can be used for optimizations,
comparisons or exploitation of different quality aspects, such

as redundancy and dependability. In fact, in this work, the pro-
posed metrics are used to guide the network redeployment
based on QoM-based optimizations. For this purpose, we also
propose three optimization methods (Greedy, Pseudo-Greedy
and Evolutionary - Genetic Algorithm) and compare their
results in terms of quality improvement. The model is more
realistic than others found in literature since it does not
consider predefined cameras’ position or orientation (neither
on deployment or on redeployment) and provides support to
heterogeneous hardware configuration. For the best of our
knowledge, no metric and optimization algorithms with these
objectives have been proposed before.

The remainder of the article is organized as follows.
Section II presents some related works regarding cov-
erage and quality in Wireless Sensor Networks (WSN).
Some fundamental concepts are presented in Section III.
Then, three quality metrics are proposed and discussed
in Section IV. The proposed optimization algorithms are
described in Section V, detailing the ideas behind the greedy,
pseudo-greedy and evolutionary approaches. Section VI
presents and discusses the results for someWVSN scenarios.
Finally, the conclusions are stated in Section VII.

II. RELATED WORKS
Quality of monitoring in wireless sensor networks has
been addressed in different contexts in the literature. When
concerning visual sensing, the most common approaches
are related to targets coverage, comprising both scalar and
directional sensors. Some of the most relevant works are
then discussed in this section, giving important clues of how
quality of monitoring has been assessed and optimized in
visual sensor networks.

In [15], authors aim to find a scheduling approach for scalar
sensors in order to maximize the target coverage quality.
In this case, it is explicitly proposed a QoMmetric for targets,
measuring the number of time slots in which targets are
covered, considering the amount of energy consumed by each
sensor during the monitoring period.

Similarly, the authors in [14] also use the concept of QoM
to provide an efficient sensor scheduling, selecting the active
sensors based on the QoM of the sensors related to the desired
targets. However, in that work, QoM is calculated for each
single sensor, considering the ratio of the distance between
the sensor and target to the sensing range. Although the
authors approach directional sensors, they focus specifically
in ultrasonic and infrared sensors, which present a different
notion of QoM.Hence, that method only considers one sensor
active at time, and consequently it does not provide a QoM
metric for the entire network.

The distance of a target point to a sensor is also considered
to determine a perception of QoM in [16], but in visual
networks, which means that the directional sensors are
cameras. A QoM metric is defined and used to guide the
network deployment based on a predefined set of discrete
feasible configurations for all camera types.

VOLUME 8, 2020 109569



T. C. Jesus et al.: FoV-Based Quality Assessment and Optimization for Area Coverage in WVSN

In [25], QoM in visual networks is also addressed, also
considering target coverage, but exploiting the fact that the
quality of visual information is sensitive to its viewpoint. That
way, the authors address full view coverage considering target
viewing related to target facing direction and the viewed
direction of the objects, which reflects the viewpoint of a
sensor. However, the perception of QoM is assumed as a
condition to select a non-faulty sensor node instead of being
considered as a metric.

Still considering visual networks for target coverage,
the authors in [13] consider an anisotropic monitoring
due to the perspective of monitored objects in relation to
the cameras. In that work, the cameras can assume any
orientation and position, since they are attached to unmanned
aerial vehicles (UAV).

In [24] the notion of QoM in visual networks is
discussed for area coverage. The authors consider the
weighted sensing quality and the importance of sensing
area to establish Quality of Monitoring in a full coverage
scenario. That work focuses on the network deployment
(position, orientation, viewing angle) and, as a consequence,
it can support an eventual network optimization process.
However, coverage redundancy is not clearly discussed in
that paper, providing inconsistent understanding about QoM
calculation.

In this article we discuss and propose new QoM metrics
for quality assessment when performing area coverage by
visual sensor networks, without restrictions to cameras’
orientations, positions or viewing angles. Such metrics are
expected to be meaningful for single visual sensor nodes
or even for an entire network. Moreover, we show how to
use these metrics to improve the QoM perception of the
network using different optimization methods, in a flexible
and broader perspective. Putting all these together, this article
brings important contributions to the area, which were not
proposed before.

III. DEFINITIONS AND BASIC CONCEPTS
In this article, we follow the visual coverage formulation
presented in [21] and [26], taking their mathematical models
as reference. Table 1 lists the notations we use in this paper.
In the defined problem scope, it is considered a set of visual
sensors, VS = {vs1, vs2, . . . , vsn}, which are deployed over
a two-dimensional area A. Each sensor vs ∈ VS is located
using Cartesian coordinates and it is expected to be equipped
with a camera, having a viewing angle θvs and an orientation
αvs, as shown in Figure 1, where the camera is represented
by the small red circle. Each camera also presents a sensing
radius Rs as the approximation of the camera’s Depth of
Field (DoF), which is the region between the nearest and
farthest point that can be sharply sensed [27]. Each camera
may assume different values for their parameters, however,
without loss of generality, we consider in this work that all
visual sensors are identical and so they are configured with
the same values. For simplification and in order to make
this problem tractable and computationally feasible when

TABLE 1. Adopted notations.

FIGURE 1. Field of View of a visual sensor.

employing WSN in real applications, sensor nodes should be
assumed as having limited hardware processing resources and
low-power requirements [21].

The Field of View (FoV ) of any visual sensor is defined as
the area of an isosceles triangle composed of three vertices,
A, B and C (see Figure 1), being (Ax ,Ay) the Cartesian
coordinates of the sensor. The coordinates of vertices B
and C can be calculated by Equation 1 and the FoV of
any visual sensor vsi is the area of the triangle

a
ABC ,

which can be computed using trigonometry, as expressed in
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FIGURE 2. Monitoring area being covered by visual sensor nodes vsi ,
i = 1, . . . , 7.

Equation 2 [21].

Bx = Ax + Rs cos (αvs)

By = Ay + Rs sin (αvs)

Cx = Ax + Rs cos ((αvs + θvs) mod 2π)

Cy = Ay + Rs sin ((αvs + θvs) mod 2π) (1)

FoVvs =
R2vs · sin (θvs)

2
(2)

The monitoring field A on which a WVSN operates can
characterize different regions, such as an industrial plant,
a military field, a public square, an avenue, an entire city or
even a farm. Whatever the case, a monitoring field may be
composed by one or more Monitoring Areas (MA), each one
described as a rectangle defined by its origins (x1, y1), a width
w, a height h and a rotation angle β, as shown in Figure 2. The
other vertices of a MA can be computed in a 2D Cartesian
plan, as presented in Equation 3.

x2 = x1+ w. cos(β)

y2 = y1+ w. sin(β)

x3 = x1+ h. sin(β)

y3 = y1− h. cos(β)

x4 = x1+ h. sin(β)+ w. cos(β)

y4 = y1− h. cos(β)+ w. sin(β) (3)

A MA is the area of interest of a visual application and
only visual information from this sub-region is relevant
to the considered WVSN. If necessary, a non-rectangular
monitoring area can be defined as the union of t smaller
MAs, as shown in Figure 3, for instance. In other words,
MA = MA1 ∪ MA2 ∪ · · · ∪ MAt , such as

⋂t
i=1 (MAi) = ∅.

FIGURE 3. A non-rectangular monitoring area represented by the union
of several rectangles.

In that case, a circular monitoring area can be represented
by several rectangles, each one defining a single monitoring
area. The resulting MA will be more realistic if the empty
spaces are fulfilled with more or even smaller rectangles.

A single MA can be divided in smaller regions, called
Monitoring Blocks (MB), each one defined as rectangles
represented by its origins (x1s, y1s), a width ws, a height hs
and a center (xc, yc). Thus, a MA is composed by a grid of
monitoring blocks with size M × N . In this case, the ‘‘area
coverage’’ problem can be indirectly approached as several
‘‘target coverage’’ problems, where each point (xc, yc) is a
target with infinitesimal size. This is an important abstraction
aimed at higher efficiency, while keeping the computational
cost low, as we previously discussed in [28]. In that paper,
the monitoring blocks approach for area calculation has been
proven to be a good approximation in terms of accuracy, with
low computational cost.

We consider that a single monitoring block mb is covered
by a visual sensor node vs if the centermb (xc, yc) is inside the
polygon area of FoVvs. In this configuration, the Monitoring
Block is assumed to be covered as awhole, and its areaws×hs
is counted to the total coverage area [27], [28]. We represent
a covered MB with the notation mb ∈ FoVvs. This definition
can be extended for a set of visual sensors VS according to
Equation 4. In this paper it is not considered the impact of
perspective from cameras in area coverage, i.e., it makes no
difference here to cover aMB from different angles.

cover (mb,VS) =

{
1, if ∃vs ∈ VS | mb ∈ FoVvs
0, otherwise

(4)

The total area covered by VS is the product of the area of
a singleMB by the quantity of monitoring blocks covered by
at least one visual sensor, according to Equation 5.

CAmb (VS) = ws · hs ·
M∑
j=1

N∑
l=1

cover
(
mbj,l,VS

)
(5)

Besides the coverage area, another important aspect related
to visual sensor networks is the subjective perception of
Quality of Monitoring (QoM). In this work, the QoM will
be related to how ‘‘good’’ is the visual data definition that a
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camera can provide for a region located on a certain distance
dov (distance of view). Actually, it is considered that the
farther is the monitored region from the camera, the lower is
the level of details related to that region in captured images,
and consequently, the lower should be the amount of visual
information extracted from that region. This means that the
quality of captured images decreases as the distance from that
camera increases, which lead us to consider different quality
levels for the FoV of a camera. In other words, a FoV can
be perceived as an area with different associated levels of
monitoring quality over it.

That way, a sensor node vs ∈ VS has its FoV divided
into disjoint sub-regions FoV l1

vs , FoV
l2
vs and FoV l3

vs , which
determine the visual levels 1, 2 and 3, with high, medium
and low quality, respectively. The first level is defined by an
isosceles triangle

a
AFG with its high dov1 defined as the

distance from vertex A to the end of FoV l1
vs . The second and

third levels are defined by isosceles trapezoids DEGF and
BCEDwith highs equal to (dov2−dov1) and (dov3−dov2),

respectively, as depicted in Figure 4. It is important to notice
that the sensor FoV is not modified. It is only re-interpreted,
being FoVvs = FoV l1

vs ∪ FoV
l2
vs ∪ FoV

l3
vs and FoV

l1
vs ∩ FoV

l2
vs ∩

FoV l3
vs = ∅.

FIGURE 4. Quality perspective for a visual sensor’s Field of View.

The distances dov1, dov2 and dov3 can be calculated
according to Equation 6 and the proportion of dov1 and
dov2 with respect to dov3 can be defined freely, considering
the application requirements and camera’s constraints. The
coordinates of vertices D, E , F and G can be calculated
according to Equation 7. In this article, we consider
only three quality levels, but they could be extended to
incorporate additional levels, without loss of generality.
In fact, the quality variation will be more realistic if the same
FoV could be divided in more quality levels.

dov3 = Rs. cos
(
θvs
/
2
)

dov2 =
(
3
/
4
)
dov3

dov1 =
(
2
/
4
)
dov3 (6)

AD = AE =
dov2

cos
(
θvs
/
2
)

AF = AG =
dov1

cos
(
θvs
/
2
)

Dx = Ax + AD. cos (αvs)

Dy = Ay + AD. sin (αvs)

Ex = Ax + AE . cos ((αvs + θvs) mod 2π)

Ey = Ay + AE . sin ((αvs + θvs) mod 2π)

Fx = Ax + AF . cos (αvs)

Fy = Ay + AF . sin (αvs)

Gx = Ax + AG. cos ((αvs + θvs) mod 2π)

Gy = Ay + AG. sin ((αvs + θvs) mod 2π) (7)

In order to provide quantitative assessment, we assign a
weight value for each visual level, which is w1 = 1 for
FoV l1

vs , w2 = 0.5 for FoV l2
vs and w3 = 0.25 for FoV l3

vs .
Obviously, different values could be assigned, according to
the application requirements. For example, following the
definitions in [24], the assigned values would be w1 = 4 for
FoV l1

vs , w2 = 2 for FoV l2
vs and w3 = 1 for FoV l3

vs . Actually,
we use a percentage approach because an entire region
‘‘poorly’’ viewed would be equivalent to (a percentage) part
of an ‘‘adequately’’ viewed region. Nevertheless, this does
not mean that it is indifferent for the application to monitor a
small area with good quality or a large area with low quality.

In fact, an application is probably not able to extract the
same visual information from 100 MB poorly monitored
(w3 = 0.25) and from 25 MB well monitored (w1 = 1),
and vice-versa. However, we believe these quality weights
are defined in a way that they can provide relevance
equivalence between levels. For example, the information
extracted from 25 well monitored MB can be as relevant as
the information extracted from 100 poorly monitored MB,
depending on the application. Actually, with less covered
area, but with high coverage quality, it may be possible
to make facial recognition. On the other hand, with a
larger covered area, but with an associated lower coverage
quality, it could be possible to detect intrusion or to perform
pattern identification. Therefore, it is not necessarily about
the importance of the task, but the possibility of adding
value to visual information. This view-notion simplifies the
understanding of the proposed metrics and indicates how
practical they can be when performing quality assessment.

IV. PROPOSED QUALITY METRICS
One of the challenges to assess themonitoring quality for area
coverage is the necessity to deal with continuous variations
of quality in function of the distance of view of a visual
sensor. But this may be a prohibitive task if it is desired to
compute the QoM of the entire network instead of a single
visual sensor. For that, this work treats this potential complex
scenario as a discrete problem considering that the area to
be monitored will be divided into monitoring blocks, thus
approximating ‘‘area coverage’’ to the ‘‘coverage of several
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targets’’. In this case, the smaller the MB, more realistic the
QoM assessment will be.

In this context, we propose three new QoMmetrics: AQM ,
AQMabs and AQMrel . These Area Quality Metrics consider
that, similarly to the visual levels, each monitoring block
mb ∈ FoVvs receives a weight wl which is the weight of the
FoV sub-region of vs where mb can be viewed, as expressed
in Equation 8.

wl (mb, vs) =


w1, if mb ∈ FoV l1

vs

w2, if mb ∈ FoV l2
vs

w3, if mb ∈ FoV l3
vs

(8)

If a monitoring block mb is redundantly covered by a
set of visual sensor VS, then the weight of mb is the
maximum weight among the associated sensor, as expressed
in Equation 9. It is worthy to remark that in this paper
it is not considered the impact of perspective of coverage.
This explains why it is taken the maximum weight instead
other compositions: the visual information extracted from
a MB by different sensors will be as good as the best
quality of monitoring available among the associated sensor.
In a different scenario, where the coverage direction is
considered, sum or average should provide a better quality
representation.

wmax (mb,VS) = max
(
wl (mb, vs)|∀vs∈VS

)
(9)

Figure 5 illustrates the mapping of monitoring quality
of the MB covered by two visual sensors, including the
overlapping considerations. The MB marked with a green
circle are in level 1 (highest quality), while the ones marked
with a yellow star are in level 2 (medium quality) and the
MB marked with a red square are in level 3 (lowest quality).
Notice that there are some MB marked with more than one
symbol: those MB are redundantly monitored by more than
one visual sensor and its assigned weight is that one related
to the highest quality.

We define the proposed metrics as presented in Equa-
tions 10, 11 and 12.

AQMabs(VS) = hs · ws ·
M∑
j=1

N∑
l=1

wmax
(
mbj,l,VS

)
(10)

AQMrel(VS) =
AQMabs(VS)
CAmb (VS)

(11)

AQM (VS) =
AQMabs(VS)

h · w
(12)

The AQMabs is an intermediate metric that provides an
absolute perspective of the quality of monitoring, indicating
the equivalent quantity of monitoring blocks. In a different
way, the AQMrel provides a relative perspective of the quality
of monitoring, presenting the percentage of the equivalent
monitoring blocks related to the covered area. Finally, AQM
provides a global perspective of the quality of monitoring,
indicating the percentage of the equivalent monitoring blocks
related to the entire monitoring field. Actually, AQM best fits

FIGURE 5. Quality of the performed area coverage when viewing
monitoring blocks.

to be used as an objective function in optimization processes
since it is associated with the entire monitoring field. On the
other hand, AQMrel reveals an innermost panorama of the
coverage. A low value of AQMrel (< 62.5%) implies that a
larger area is covered with the majority of MB being ‘‘low
quality’’ monitored, while a high value of AQMrel (> 62.5%)
implies that a smaller area is covered with the majority of
MB being ‘‘high quality’’ monitored. The mean value of
AQMrel = 62.5% is justified because AQMrel varies from
25% to 100%, which is easy to verify. In the worst case
scenario, all covered MBs would be in the lowest quality
level (w3), which generates AQMrel = 25%. In the best case
scenario, all covered MBs would be in the highest quality
level (w1), which generates AQMrel = 100%.

TABLE 2. QoM metrics analysis for ws = hs = 1.

Table 2 shows fictional scenarios to better understand
the meaning of the proposed metrics. The AQM is the
fundamental metric, associating area coverage with the
quality of monitoring. However, such monitoring can be
performed on different ways. For example, a large area may
be monitored with low quality, while a small area can be
monitored with high quality. These two scenarios would
probably present a similar AQM value, as presented in lines 1,
2 and 3 of Table 2. In those cases, it is difficult to perform
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worth assessment considering only the AQM metric and thus
the other proposed metrics can be used for a better perception
of the considered visual sensor network.

Therefore, the AQMrel appears as an auxiliary metric to
help to ‘‘untie’’ such comparisons. Thus, it is possible to
distinguish themonitoring quality between coverage schemes
prioritizing area coverage (lower AQMrel) or quality of mon-
itoring (higher AQMrel). The relation between these metrics
can be used to improve objective functions in optimization
processes. Some authors use redundancy as dependability
or, specifically, as availability metrics [26], [29]. In this
case, AQMrel can be used to guide an optimization process
focused on the maximization of quality and redundancy,
for example. And the proposed metrics can be exploited to
analyze and enhance quality by optimization processes and
network redeployment.

V. PROPOSED OPTIMIZATION ALGORITHMS
In order to illustrate the utility of the proposed metrics, three
optimization algorithms are proposed aimed at the maximiza-
tion of the FoV-based quality of monitoring on randomly
deployed WVSN. Those optimization solutions, notably a
classic greedy algorithm, a pseudo-greedy algorithm and
an evolutionary algorithm, consider that visual sensors are
rotatable, and so their orientations can be changed.

The proposed greedy and pseudo-greedy algorithms con-
sider that each visual sensor may take one of a finite set of
disjoint orientations. This assumption is aimed at making this
problem tractable, still assuring near-optimal maximization
of the quality of monitoring [26]. On the other hand, since
evolutionary algorithms perform a guided random search,
showing good results when seeking in a very large solution
set, we consider for the proposed evolutionary algorithm that
visual sensors can take any orientation.

A. GREEDY
A reasonable and feasible way to optimize the network is to
compute the best orientations for each sensor individually,
aiming at the maximization of covered monitoring blocks.
A classical greedy heuristic looks for a global optimization,
handling only local data. This is due to the complexity of
dealing with global information, such as area coverage.

That way, for greedy algorithm, a visual sensor vs may
assumeOvs different orientations (sectors), where each sector
has the same angle γsec. The value of γsec can be calculated
by the quantity of sectors Ovs, according to Equation 13.

γsec =
⌊
360o/Ovs

⌋
(13)

Therefore, for each sector o = 1, . . . ,Ovs, the possible new
orientation of vs will be αovs, according to Equation 14 (as
shown in Figure 6, where γsec = θvs = 60◦), where αvs is the
original orientation of vs.

αovs = (o− 1)× γsec + αvs (14)

The proposed Greedy approach is based on individually
testing which orientation provides the highest QoM for

FIGURE 6. Sectors in the Greedy and Pseud-Greedy algorithms.

each single visual sensor, then redeploying the sensor
for that orientation. In this case, each sensor node will
be re-orientated in order to compute the highest AQM .
Actually, this is a simple way to improve the value of
QoM, while keeping lower computational costs as compared
with other approaches, although greedy algorithms may
provide sub-optimal results since they only evaluate local
information [30]. The proposed Greedy approach is detailed
in Algorithm 1.

It is worth to remark that, since this approach only analyzes
each sensor individually, it is not possible to guide the
optimization directly by the metric AQM . However, it is
important to present this method to realize the premise of
quality optimization and to have a basis of comparison.
In spite of that, one should notice that a notion of QoM
is provided by the variable SensorQoM (Algorithm 1,
Line 17), which is the quality perceived by a single visual
sensor.

B. PSEUDO-GREEDY
The main disadvantage of the Greedy approach is to use only
local information at the optimization process. To cope with
that problem, we propose a Pseudo-Greedy algorithm based
on [26], but here aiming at QoM optimization instead of
dependability optimization. This approach keeps looking for
a global optimum while searching in local solutions, but in
a different way of a classic Greedy approach, it uses some
global information recovered in a lightweight way to improve
the searching process. The idea is to re-orientate each sensor
node in a way that it generates the highest overall quality
of monitoring instead of the highest quality possible by
the sensor. Algorithm 2 shows the proposed Pseudo-Greedy
heuristic.

The first step is to identify, for each visual sensor node, its
covered monitoring blocks (Line 3) and store the associated
weight value (Line 4). Then, iteratively, each sensor (one
at time) is re-orientated to the position that generates the
highest QoM considering the current position of the other
sensors. For this, it is generated a finite set of sectors,
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Algorithm 1 Proposed Greedy Optimization Algo-
rithm

Data: VS = Greedy(VS,MA, Ovs);
Input: List of sensors, monitoring area parameters and

number of sectors.
Output: A set of reoriented visual sensors VS.

1 foreach visual sensor vs in sensors set VS do
2 angles = [];
3 γsec = b360o/Ovsc;
4 α′ = vs.α;
5 foreach sector o = 1, . . . ,Ovs do
6 MB = [];
7 αovs = (o− 1)× γsec + α′;

// Re-orientate vs with αovs
8 vs.α = αovs;
9 foreachMonitoring Block mbj,l do

10 if isCovered(mbj,l) then
11 MB[j,l] = wl(mbj,l, vs);
12 end
13 else
14 MB[j,l] = 0;
15 end
16 end
17 SensorQoM = sum(MB);
18 angles.add({αovs, SensorQoM}) ;
19 end
20 vs.α = angles.getMaxSensorQoM();
21 end
22 returnVS;

which are disjoint possible orientations to be assumed by
the visual sensor (Line 14). For each sector to be tested,
it is identified the MB covered by the sensor in its new
orientation, storing the associated weight value according
to Equation 8 (Line 19). Then, the AQM is computed
considering the new orientation of vs. Each computed value
of AQM is stored (Line 23) and the orientation which
generates the highest quality is associated to the sensor
(Line 25). This procedure is repeated for each sensor until
the network assumes a convergent deployment configuration.
Since the computing of the AQM is basically the summing
of all elements in a matrix (Lines 21 and 22), this step
adds valuable global information to the optimization process
without computational overhead.

C. EVOLUTIONARY
In order to search in a vaster solutions space, we also
implemented an evolutionary optimization process based
on Genetic Algorithms. These algorithms perform a guided
random search, inspired on natural evolution concepts such
as survival of the fittest, crossover and mutation. The
randomness of the algorithm makes it a good approach to
look for optimal or near-optimal combinations of solutions

Algorithm 2 Proposed Pseudo-Greedy Algorithm

Data: VS = pseudoGreedy(VS,MA), Ovs);
Input: List of sensors, monitoring area parameters and

number of sectors.
Output: A set of reoriented visual sensors VS.

1 foreach visual sensor vs in sensors set VS do
2 foreachMonitoring Block mbj,l do

// Create a matrix MB[] of
covered

// monitoring blocks per
visual sensor

3 if isCovered(mbj,l) then
4 MB[j,l,vs] = wl(mbj,l, vs);
5 end
6 else
7 MB[j,l,vs] = 0;
8 end
9 end
10 end
11 k=0; angles = []; anglesErr =∞;
12 while anglesErr > ε && k++ < |VS| do
13 foreach visual sensor vs in sensors set VS do
14 γsec = b360o/Ovsc;
15 α′ = vs.α;
16 foreach sector o = 1, . . . ,Ovs do

// Re-orientate vs with αovs
17 αovs = (o− 1)× γsec + α′;
18 vs.α = αovs;
19 update(MB[:, :, vs]);
20 MB’[] = max (MB[:, :, :]);
21 AQMabs = hs× ws× sum (MB’);
22 AQM = AQMabs

/
(h× w);

23 angles.add({αovs, AQM}) ;
24 end
25 vs.α = angles.getMaxAQM();
26 update(MB[:, :, vs]);
27 end
28 anglesErr = abs(angles(k) − angles(k − 1));
29 end
30 returnVS;

that might not otherwise be found in a lifetime. However,
such approach presents a relatively high computational
complexity, which may be prohibitive for some scenarios.
Since we provide a lightweight heuristic to compute QoM,
Genetic Algorithms became a feasible solution. Figure 7
shows the steps sequence of these algorithms.

The execution starts with an initial population, which is
the original deployment configuration, and some eligible
solutions randomly generated. A chromosome belonging to
the population is a set containing the orientation αvs of each
visual node. This population is evaluated (fitness) in order
to identify which chromosomes best fit as solution for the
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FIGURE 7. Flowchart of typical Genetic Algorithms.

optimization problem. Therefore, the fitness phase computes
the AQM generated by all visual nodes together. In the next
step, some chromosomes are selected as parents that mate
and recombine to create off-springs for the next generation.
We use a proportional selection based on Roulette Wheel,
i.e., each individual can become a parent with a probability
proportional to its fitness, but not necessarily the best
chromosomes are chosen [31]. To avoid that, we also apply
elitist selection, which directly copy the best chromosome to
the new population in the next generation. Then, a crossover
is performed, when some chromosomes pair and exchange
part of their DNA, which means that some visual sensors
from different solutions exchange their orientations. A few
visual sensors can also suffer mutation and change their
orientation randomly. Crossover and mutation operators are
crucial to provide a more diverse population in order to
make the heuristic more immune to be trapped in a local
optima. Finally, elite and selected chromosomes join new
chromosomes that are randomly generated to produce a
new population. The process is repeated until it fulfills the
stopping criterion, which could be a maximum number of
generations or the fitness convergence [32].

VI. NUMERICAL RESULTS
In this section, some analysis and numerical results related
to the utilization of the proposed metrics are presented.
Initially, we analyze the impact of the viewing angle on
each FoV level, considering constant values of dov1, dov2
and dov3. Then, in order to improve the QoM of a network,
the three proposed optimization algorithms are compared
regarding maximization of the AQM , and their performances
are analyzed and discussed. We also show how the metrics
AQM and AQMrel are associated and how they can be used
together to analyze the QoM perception. Algorithms and
designed simulations were implemented in the Mathworks
MATLAB platform.

FIGURE 8. Quality variation related to the viewing angle.

A. EXPERIMENTAL SETTINGS
For the performed simulations, the same configuration is
considered, with all visual sensors having the same sensing
radius Rs = 150 units of distance (u.d.). As a reference
when setting the viewing angle, Figure 8 shows the total
covered area by a visual node, as well as the covered area by
each FoV level. It can be seen that for smaller angles (below
45◦) we have lower covered area. For 75◦ and higher we
have a greater covered area, specially for FoV l1

vs and FoV l2
vs .

However, very wide angles bring the risk of loss of quality on
peripheral areas. This could be solved increasing the image
definition or setting an anisotropic QoM with respect to
viewing angle [13]. That being said, we set θvs = 60◦ which is
an intermediate value and also it is the average viewing angle
of several commercial cameras widely used on academy and
industry, such as RaspiCam and Cisco IP cameras [7]. These
visual nodes must cover a monitoring area withw = 500 u.d.,
h = 500 u.d., ws = hs = 8.5 u.d. and β = 0◦, which are the
same values used in [26]. The position and orientation of each
sensor node were randomly generated. The position is limited
to 100 u.d. away from monitoring area at most, since there is
no point to place a visual sensor too far that cannot be able to
cover the area of interest.

For the first test, in each simulation, all three pro-
posed algorithms were executed. The Greedy and the
Pseudo-Greedy algorithms divide the search space into 30
sectors, while the Evolutionary approach handles 50 chro-
mosomes over 100 generations, with crossover and mutation
probabilities of 0.7 and 0.01, respectively. In this scenario,
600 simulations were performed, being 100 simulations for
each scenario that vary the number of visual sensors, i.e.,
scenarios with 5, 10, 20, 30, 40, 50 visual sensors. This way,
the impact of the quantity of visual sensors and redundancy
on the QoM could be analyzed.

B. OPTIMIZATION COMPARISON
For each scenario, we took the average values from each
group of 100 simulations. Figures 9 and 10 show the gain
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FIGURE 9. Area coverage improvement.

FIGURE 10. AQM improvement.

of area coverage and of AQM provided by each optimization
algorithm in relation to the initial deployment. Since AQMrel
is a relative metric, it does not make sense to present
its gain. Instead, Figure 11 presents the average value of
AQMrel from executed simulations. As shown in Figure 9,
all optimization methods provide a considerable gain of the
total covered area that is reflected on the number of MBs
covered. Comparing this result with Figure 10, it is possible to
see that all optimization methods also provide a considerable
gain of AQM at the same order: the Pseudo-Greedy algorithm
provides a higher gain than the Evolutionary, which provides
a higher gain than the Greedy. This is due to the fact that
the Greedy algorithm only considers local information and in
a limited search space, while the Evolutionary approach has
and infinite search space, but exploited by a random guided
search using information of the entire network. Finally,
the Pseudo-Greedy algorithm also exploits information from
other nodes, but using a deterministic search.

FIGURE 11. Average value of AQMrel .

FIGURE 12. Association between covered area and QoM.

For a small number of visual sensor nodes (5 to 20,
in the case of monitoring network configurations taken as
example) there is plenty of uncovered regions which provides
‘‘room for improvement" to the optimization algorithms,
generating high gains in Figures 9 and 10. As the number of
visual sensors increases (30 to 50), uncovered regions shrink
and these gains decrease. It does not mean that the QoM
decreases. On the contrary, the optimization process keeps
increasing the perception of quality (QoM) and the coverage
area.

Furthermore, it is worthy to discuss the evolutionary results
since that approach is generally applied to complex problems
providing good solutions. However, in this work, it did
not provide the best results. The main explanation to this
discrepancy between the expected and obtained results is that
the evolutionary approach could eventually find the same
result or better than other approaches, since it has a wider
solutions space. However, it may take much more time than
the acceptable timeout that we set at the algorithm searching
parameters for 50 chromosomes through 100 generations.
It could eventually happen in the simulations, but it will
hardly appear at the results since we are taking the average
value from 100 simulations. This is, in fact, a reason to
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FIGURE 13. Example of a WVSN and the respective redeployment by each optimization algorithm.

exalt the Pseudo-Greedy results: it is so fast and efficient
in this context that overcomes the evolutionary approach
results. As a final remark, the simulations showed that the
Pseudo-Greedy optimization method converges in only 4
iterations, in average.

Considering the AQMrel metric, in Figure 11 the networks
with higher relative quality of monitoring, i.e., with more
MBs ‘‘well" viewed (MBs in majority inside of FoV l1

vs
and FoV l2

vs ), were redeployed by the Greedy optimization
with more than 30 sensors, or by the Pseudo-Greedy and
Evolutionary optimization with more then 40 sensors, since
they present AQMrel ≥ 62.5%. This means that, even if these
redeployments do not provide the highest amount of covered
area or the highest AQM , the available visual information is
assumed as having high quality and it can be used for more
specialized tasks.

C. QUALITY OF MONITORING VS. AREA COVERAGE
Another interesting result to notice is that the growth
of covered area (Figure 9) followed by the growth of
the AQM (Figure 10) in this comparison could leave the
wrong impression that the area coverage optimization (area
maximization or redundancy minimization) directly leads to
QoM optimization. But it may be not true in many cases.
Actually, it is natural that, increasing the covered area after
an optimization process, more non-monitored regions will
be encompassed, which tends to contribute to the gathering
of more visual data and the improvement of the QoM
perception. However, a non-optimal area coverage could
provide less overlapping of regions with the same weight,
providing a higher QoM. An example of this phenomenon
can be seen in Figure 12. In this case, the first network
presents CAmb (VS ) = 28835 and AQMabs (VS ) = 14529,
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while the second network presents CAmb (VS ) = 28166
AQMabs (VS ) = 14696. Hence, the network 1 has a higher
covered area and a lower QoM than network 2. This means
that we can not reduce the problem of QoM optimization
to a simple area coverage maximization or redundancy
minimization.

We investigated this issue more carefully and implemented
the Greedy, Pseudo-Greedy end Evolutionary optimization
processes aiming at area coverage maximization, according
to [26]. Then, the results were compared with the optimiza-
tion aiming at QoMmaximization in each simulation. It could
be seen that only in 24% of the simulations, the area coverage
maximization implied in QoM maximization, which justifies
the metrics and algorithms proposed in this article.

D. QUALITY OF MONITORING ASSESSMENT EXAMPLE
In order to illustrate the discussion stated from the optimiza-
tion methods, Figure 13 shows an example of distribution
of visual sensors on the initial deployment and after
the execution of the Greedy, the Pseudo-Greedy and the
Evolutionary redeployment algorithms in a WVSN with 20
visual nodes. Table 3 presents the covered area and the
quality metrics related to each (re)deployment. As suggested
by the graphics in Figures 9 and 10, the Pseudo-Greedy
optimization provides a higher covered area as well as higher
QoM. It is worthy to remark that these high values for the
metrics may imply in an unconventional redeployment. For
example, in Figures 13c and 13d this is achieved orientating
some sensors in a way that their FoV are outside of the
monitoring area. This also explains the reason for the Greedy
optimization to provide a higher AQMrel : there is higher area
coverage redundancy, specially for FoV l3

vs and FoV l2
vs (see

Figure 13b).

TABLE 3. Quality metrics for the results in Figure 13.

VII. CONCLUSIONS
This article discussed the quality of monitoring in wireless
visual sensors networks when performing area coverage.
Quality was addressed based on the characteristics of the sen-
sor’s FoV , but such perception of quality was also exploited
as an attribute of the entire visual sensor network. In this
context, metrics were proposed for both cases, providing a
practical mathematical tool for quality assessment. Actually,
this network quality model is more realistic than others found
in the literature, since it does not enforce predefined camera’s
position or orientation and provide high flexibility on several
parameters, such as quantity and width of quality levels.

In this article, we have shown how to analyze the features
of a network based on QoM metrics and how to use those
metrics to improve the quality of monitoring through three
proposed optimization algorithms. Also, this work showed
the importance of metrics to perform mathematical analysis
related to the utility of available visual information with
respect to the perceived QoM, as well as the potential
to exploit other quality aspects, such as dependability or
redundancy.

The presented numerical results reinforce the idea that
the proposed metrics indicate valuable information of the
networks, being possible to distinguish QoM among several
distinct networks deployments. Additionally, the optimiza-
tion algorithms achieved good results, specially the Pseudo-
Greedy, which increased the QoM up to 54% and area
coverage up to 65%. The relationship between QoM and area
coverage was also studied and we showed that they are not
directly related, which justifies the metrics and algorithms
proposed in this article.

Finally, the ideas and insights discussed in this work,
although consistent, still demand additional investigation
and potentially new proposals. In fact, new quality levels
considering an anisotropic perspective, dealing properly with
too oblique viewing angles or with peripheral regions, might
bring even more realism to the proposed model. Another
improvement could be the inclusion of dynamic external
factors that affect the perceived QoM, such as incidence or
lack of luminosity, or even weather conditions like fog, rain,
snow and dust. At last, other future works could also analyze
the network dependability as a function of QoM, further
associating visual quality to the network availability.
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