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ABSTRACT Investment decision-making is affected by the uncertain and highly coupled risks in the power
grid, and the inaccurate risk evaluation results in the great economic losses of power companies. In order to
improve the accuracy of risk evaluation and reduce the economic losses, a hierarchical risk evaluationmethod
considering the uncertainty and coupling of risks is proposed in this paper. At the lower level, the uncertainty
and time response of risks are taken into consideration for evaluating individual risks accurately in the power
grid. Through the data processing of historical risk factors based on BP neural network, the distribution
regularities of risk loss and probability of occurrence are performed. According to the partition of time
period, risk losses expressed by the interval and corresponding probabilities in different time periods are
identified. The evaluation results at the lower level are considered as the basis for risk management and the
inputs at the upper level. At the upper level, a comprehensive evaluation of multiple risks is performed for
evaluating the investment scheme accurately. A discretization method is developed to transform the inputs
into the probability sequences, and the sequence operation theory is applied in the comprehensive evaluation
of multiple risks that considers the coupling among risks. Extensive case studies are presented to validate
the effectiveness of the proposed method for risk evaluation.

INDEX TERMS Investment risk evaluation, power grid, uncertainty and coupling, BP neural network.

NOMENCLATURE
PARAMETERS AND VARIABLES
t Time
Ht Income of the power company in t year
St Average electricity transmission and dis-

tribution price in t year
Ct Power consumption in t year
βt Composite loss rate in t year
1Set Deviation of average electricity trans-

mission and distribution price in t year
1Ht Loss caused by average electricity trans-

mission and distribution price risk
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1G1, 1G2 GDP growth deviation
1CG1, 1CG2 Power consumption deviation caused by

1G1, 1G2
1I1, 1I2 Resident income deviation
1CI1, 1CI2w Power consumption deviation caused by

1I1, 1I2
Eg Electricity elasticity coefficient
Ey Elasticity coefficient of electricity

income
i, j Risk factor
Ri Risk loss of the ith risk factor before

normalization
R∗i Risk loss of the ith risk factor after

normalization
m Total number of risk factors
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min{Rj} Minimum risk loss of each risk factor
max{Rj} Maximum risk loss of each risk factor
min{min{Rj}} Minimum risk loss of all risk factors
max{max{Rj}} Maximum risk loss of all risk factors
f (x) Probability density function of the

Normal distribution
g(t) Nonlinear regression fitting function
x Deviation of the risk factor
µ(f (x)) Mean of the f (x)
δ(f (x)) Variance of the f (x)
P[t ,,t ,,] Probability of occurrence of the risk in

the given time period
P[g(t ,),g(t,,)] Probability of occurrence of risk loss in

the given interval
a Lower limit of the risk loss interval
b Upper limit of the risk loss interval
1i Length of discretization
a(k) Evaluation result of the single risk

expressed by a sequence
k Sequence number of the discretized

sequence
a[k] Value of a(k) at sequence number k
N Sequence length of a(k)
[b/1i] Largest integer not exceeding (b/1i)
P[k−1,k] Probability of risk loss in the interval

[1i∗(k − 1), 1i∗k]
ai(ki) Discretized sequence of the ith risk factor
ki Sequence number of the ith discretized

sequence
Ni Sequence length of the ith risk after dis-

cretization
x(K ) Comprehensive sequence of multiple

risks under the operation of the Addition-
Type-Convolution

K Sequence number of the x(K )
M Length of the comprehensive sequence
E Expected value of the comprehensive

sequence

I. INTRODUCTION
As the indispensable infrastructures, power grids play a sig-
nificant role in the development of the economy and society
[1]. The long construction period, huge investment cost and
various uncertainties result in the diverse risks in the power
grid investment [2], [3]. The accuracy of risk evaluation in
power grid investment directly affects the power grid invest-
ment returns [4]. Therefore, it’s a significant issue to evaluate
risks accurately [5].

There has been a growing number of relevant papers that
study risk evaluation of projects. In [6], the decision-making
tree model was proposed to analyze the influence degree
and probability of occurrence of risk factors, the risks are
intuitive for investors. In [7], a Monte Carlo simulation
method was developed that ranks the importance of risks and
analyzes the impact of risks on project schedule and cost.
Through determining the weight of each risk factor, a fuzzy

analytical hierarchical process was presented in [8] and [9].
In [9], the triangular fuzzy numberwas applied to describe the
expert’ judgment information of risk factors. In [10], the sen-
sitivity analysis was applied to quantitatively analyze the
probability of occurrence of risk factors. In [11] and [12],
a fuzzy comprehensive evaluation model based on the expert
scoring was established by distinguishing the significance of
risks. In [12], a multi-layer fuzzy comprehensive evaluation
methodwas presented that uses computer to establishmodels,
it’s more convenient to calculate the comprehensive risk value
of the project.

The increasing penetration of renewable energy introduces
numerous challenges to the operation and energy manage-
ment of electric power systems. The application of risk-based
assessment methods for short-term wind power commitment
and operation planning in power systems with wind power
generation has attracted high interest. In [13], a conditional
probabilistic method was proposed to quantify the wind
power commitment risk associated with wind power commit-
ments at different initial conditions, it’s simple for system
operator to make effective wind power commitment at the
acceptable risk levels. In [14], an analytical method for eval-
uating risks associated with frequency response inadequacy
was developed, a risk index with the sum of probabilities
and quantified consequences is used to assess system secu-
rity. To achieve the economic dispatch schedule, the power
system scheduling models with wind power forecast uncer-
tainty information in the electricity market were developed.
In [15], based on the proposed short-term operation model,
an optimal tradeoff between the profit and risk for wind power
penetrated system was made by value at risk and integrated
risk management methods. In [16], a model to optimize
the uncertainty intervals of wind power was proposed for
power system scheduling problems, which achieves a better
tradeoff between economics and reliability and stabilizes the
energy prices. In the literature, to improve the efficiency of
energy management and deal with the uncertainties of renew-
able energy, various approaches were employed. In [17], a
PDF-based risk assessment model was proposed that con-
siders the losses due to renewable power generation fluctu-
ations lying outside of acceptable interval, the risk losses are
considered as the optimization variable and the model pro-
vides an economically feasible energy management solution.
In [18], an optimal risk-averse for heterogeneous energy stor-
age deployment was proposed in a residential multi-energy
microgrid under diverse uncertainties, which can effectively
increase profits and avoid the risk.

The existing papers also study the evaluation of power
system faults-induced risks and cyberattacks-induced risks.
In [19], a machine learning-based anomaly detection
methodology was developed to detect the cyberattacks on
load forecasting and make suitable operational decisions for
the electricity delivery. In [20], a flexible machine learn-
ing method using spatiotemporal patterns was developed for
cyberattack detection, which performs better under different
cyberattack scenarios and improves the detection accuracy in
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distribution systems. In [21], a risk evaluation based approach
to the replacement strategy was proposed to evaluate the
risk of aged High Voltage Direct Current components, which
quantifies the expected system risks and risk costs due to
three replacement options. In [22], failure probability model
of transmission lines based on real-time operating conditions
and hidden failure model based on Markov method were
presented to assess operational risk on transmission system
cascading failure. In [23], a model and algorithm for trans-
mission expansion planning considering the blackout risk
was proposed, the algorithm takes the power-law tail risk
into consideration and helps to reduce the plans blackout
risk. In [24], an event-driven emergency demand response
strategy based onwhale optimization algorithmwas proposed
to effectively mitigate system voltage instability risk.

The risk matrix method is defined by determining the
level of risk impact and risk probability, which is the signifi-
cant difference compared with other common risk evaluation
methods [25]. In [25], the risk matrix method was proposed
to assess the power company risk security, it provides the
direction for the manager to improve the management and
has some theoretical significance and practical value. In [26],
a fuzzy risk matrix method was proposed that uses linguis-
tic variables to express the probability and severity of the
consequences, the method can be applied in different areas.
A comprehensive evaluation method based on the risk matrix
method was presented in [27] and [28] by constructing an
expert two-dimensional matrix. In [28], the Borda ordinal
method was applied to rank the importance of risks, it’s
effective for identifying key risks and comprehensive risk
level. In [29], the risk matrix method was applied to assess
the risk level in the short-term, middle-time and long-term. In
[30], a risk matrix analysis framework was proposed for risk
evaluation based on potential risk influence, which considers
the controllability, manageability, criticality and uncertainty
of risks.

These methods evaluate the risk through a definite risk
value that represents the sum of losses and probabilities of all
risk factors, the risk evaluation results provide basis for plan-
ning and management. Since risks have the characteristics of
variability, uncertainty and coupling, the risk loss and proba-
bility of occurrence change with time, and the changes show
different regularities at different time. Therefore, the single
risk evaluation result expressed by a definite value is not in
accordancewith the reality, and the comprehensive evaluation
result of multiple risks representing the sum of the single risk
results cannot satisfy the accuracy required by the power grid
company.

In order to evaluate risks accurately, a BP neural network
based hierarchical investment risk evaluation method is pro-
posed in this paper. Compared with previous methods, this
method considers the uncertainty and coupling of risks and
identifies the distribution regularities of risks that change
with time. The results representing loss interval and prob-
ability of occurrence are used to evaluate the single risk,
different loss intervals corresponds to different probabilities.

The comprehensive probability sequences reflecting
probability distribution under different loss intervals are used
to evaluate multiple risks. To consider the uncertainty of
risks, the distribution regularities of risks are identified and
a time partition method is developed. Therefore, the sin-
gle risk results can adapt to the characteristics of the risk
changing with time. To consider the coupling among risks,
a discretization method is developed and the evaluation
results of individual risks are transformed into probability
sequences. Furthermore, the sequence operation theory is
applied in the comprehensive evaluation of multiple risks.
The contributions of this paper are listed as follows.

1) In the proposed method, the uncertainty and time
response of risks are considered at the lower level.
According to the evaluation results of individual risks
from the lower level, the comprehensive evaluation
of multiple risks that considers the coupling among
risks is performed at the upper level. The proposed
method improves the accuracy of investment risk eval-
uation and reduces the economic losses of power
companies.

2) In the single risk evaluation, a time partition method
based on distribution regularities is developed to distin-
guish the influence of risks at different time. The risk
loss changing with time is expressed by the interval that
can describe the uncertainty of the risk.

3) In the evaluation of multiple risks, a comprehensive
evaluation method is developed to consider the
coupling among risks based on the discretization
method and sequence operation theory. The evaluation
results of multiple risks are expressed by probability
sequences that can reflect the probability distribution
of comprehensive risk under different loss intervals.

4) A central segment discretization method is developed
to divide the loss interval into more small intervals,
the probability of the small interval is equal to the
probability of the loss in the center of the interval.
After discretization, the evaluation results of individual
risks are transformed into probability sequences that
can reflect the probability distribution of risks under
different loss intervals.

The remainder of this paper is organized as follows.
In Section II, the lower level of the single risk evaluation
is proposed. In Section III, the comprehensive evaluation of
multiple risks at the upper level is proposed. Extensive case
studies are presented and discussed in Section IV. Section V
concludes.

II. SINGLE RISK EVALUATION AT THE LOWER LEVEL
The historical predicted values of risk factors are obtained
by collecting the historical actual values of risk factors and
establishing the time series predictionmodel. Then, the devia-
tions of risk factors are determined. Through the fitting of the
nonlinear regression and probability distribution, the partition
of time period is finished and the distribution regularities of
risks in different time periods are identified. The evaluation
process of the single risk is shown in Fig. 1.
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FIGURE 1. Flow chart of single risk evaluation at the lower level.

A. DATA PROCESSING OF RISK FACTORS
The time series prediction model based on BP neural network
provides an effective way for time series prediction of highly
nonlinear dynamic relationships [31]–[33]. The historical
predicted values of risk factors are obtained by establishing
corresponding time series prediction models. The historical
actual values of risk factors from 1990 to 2001 are used to
establish the model. The data of the adjacent three years
are taken as a group and there are nine groups. The first
six groups are used for model training, the others are used
for model testing. In each group, the three data are used
as input, and the value of the next year is used as output.
After the model is established, the historical actual of risk
factors from 1998 to 2017 are considered as the input data for
acquiring the predicted values from 2001 to 2018. The actual
values of the adjacent three years are input to the model,
the predicted value of next year is output. Based on the actual
values and predicted values of risk factors from 2001 to 2018,
the deviations between the actual and predicted values are
determined.

The deviations of risk factors are considered as the data for
the probability distribution fitting and the nonlinear regres-
sion fitting. The probability distribution is fitted to obtain the
probability density of the risk factor under different devia-
tions. In order to choose the fitting function with the desirable
performance, the test values of the first three fitting functions

with good effect are verified, which are the Anderson-Darling
test (A-D) value, the Kolmogorov-Smirnov test (K-S) value
and the Chi-square goodness-of-fit test (Chi-Sq) value. A-D
value is selected to verify the probability distribution fitting
for the limitation of sample size, and the smaller the A-D
value, the better the fitting degree [34].

B. THE MODEL OF RISK LOSS
The risk loss under the corresponding deviation can be
obtained as shown in (1)

Ht = St × Ct × (1− βt ) (1)

When calculating the risk losses caused by deviations of
risk factors, the risk loss of the single risk is only related
to the deviation of the risk factor, it’s equal to multiplying
corresponding deviation in (1). As an example, assuming the
deviation of average electricity transmission and distribution
price in t year is1Set , then the risk loss of1Ht caused by the
risk of average electricity transmission and distribution price
is obtained using (2).

1Ht = 1Set × St × Ct × (1− βt ) (2)

If risk factors are not represented in (1), the corresponding
risk losses are calculated by analyzing the correlation with the
risk factor represented in (1). The economic development and
power consumption have a positive correlation, which means
the faster the economic development, themore the power con-
sumption. The correlation between economic development
and power consumption can be described by the electricity
elasticity coefficient. The increase of resident income will
promote the electricity demand of residents, the correlation
between resident income and power consumption can be
described by the elasticity coefficient of electricity income.
The relationship between the deviation of the GDP growth
and power consumption, the deviation of resident income and
power consumption can be expressed by the formula (3) [35].{[

1CG1,1CG2

]
= Eg × [1G1,1G2] ,1G1 < 1G2[

1CI1,1CI2
]
= Ey × [1I1,1I2] ,1I1 < 1I2

(3)

Through the relationship between risk factor deviation and
risk loss, the influence process and the distribution regular-
ities of risks can be identified. After obtaining the losses
caused by each risk factor, the losses are processed with
normalization for the convenience of quantitative analysis.
The result is the number between 0 and 1, and the formula
of normalization is as follows [36].

R∗i =
(
Ri − min

{
min

{
Rj
}})

/
(
max

{
max

{
Rj
}}

−min
{
min

{
Rj
}})

(4)

The minimum and maximum risk loss of all risk factors
are determined as following three steps. Firstly, the minimum
and maximum deviation of each risk factor are determined.
Secondly, the minimum and maximum risk loss of each risk
factor are calculated according to the established risk loss
model, themodel represents the relationship between risk loss
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and risk factor deviation. Finally, theminimum andmaximum
risk loss of all risk factors are determined through comparing
the minimum and maximum risk loss of each risk factor.

C. THE PARTITION OF TIME PERIOD
The nonlinear regression and probability distribution are
fitted for describing the time response and distribution regu-
larities of risks. The nonlinear regression fitting means that
the deviation of the risk factor changes with time, plotted
by time on the horizontal axis and the deviation of the risk
factor on the vertical axis. The probability distribution fitting
is plotted by the deviation of the risk factor on the horizontal
axis and the corresponding probability density on the vertical
axis.

The partition of time period is based on the distribution
properties of probability density function. Such as the 3δ prin-
ciple of the Normal Distribution, the probability in the inter-
val [µ− 3δ, µ+ 3δ] is 99.74%, it means that the distribution
can be described more accurately in consideration of the risk
loss in the interval [µ−3δ, µ+3δ]. The Logistic distribution
and the Normal Distribution have similar shapes, therefore,
they have similar partition methods. In the effective interval,
the partition of the Triangle distribution can be divided into
the upper triangular and the lower triangular. The probability
densities of the Uniform distribution are the same within its
effective interval. Therefore, the time partition of the risk only
considers the effective interval.

Assuming the probability density function of a risk obeys
the Normal distribution, expressed by f (x); the nonlinear
regression distribution is expressed by g(t). The result of time
partition is shown in Fig.2.

As can be seen in Fig.2, the risk is divided into three-time
periods, which are [t1, t2], [t3, t4], [t5, t6]. t2, t3, t6 are the
intersections of the curve x equal to g(t) and the straight line
x equal to x1; t1, t4, t5 are the intersections of the curve x
equal to g(t) and the straight line x equal to x2, the formula
is as follows.

(t2, t3, t6) = ({x = x1} ∩ {x = g(t)} )|t
(t1, t4, t5) = ({x = x2} ∩ {x = g(t)} )|t
x1 = µ(f (x)) − 3δ(f (x))
x2 = µ(f (x)) + 3δ(f (x))

(5)

Through the partition of time period, the evaluation results
of individual risks representing the loss interval and proba-
bility of occurrence are determined. In general, in the same
time period, different risks obey different distribution reg-
ularities, and the partition results are different. In different
time periods, the partition results of the same risk can also be
different. Therefore, to evaluate multiple risks, it’s necessary
to calculate the probability of risk loss in the given time period
and the given interval.

In the effective time period, the area enclosed by proba-
bility density function and loss interval corresponds to the
probability of risk loss in the given interval. Risk loss at other
time or other intervals can be ignored for the probability of
occurrence is too small. The probability of risk loss within

FIGURE 2. Process of time partition. (a) Basis of time partition. (b) Result
of time partition.

the effective interval and the effective time period can be
calculated as follows.

P[
t ′,t ′′

] = P[
g(t ′),g

(
t ′′
)] = ∫ t ′′t ′ f (g(t))dt[

g
(
t ′
)
, g
(
t
′′
)]
⊆ [x1, x2][

t ′, t
′′
]
⊆ {[t1, t2] , [t3, t4] , [t5, t6]}

(6)

III. COMPREHENSIVE EVALUATION OF MULTIPLE
RISKS AT THE UPPER LEVEL
After the partition of time period, the risk loss expressed by
the interval and corresponding probability of occurrence in
themulti-time periods are obtained at the lower level. Consid-
ering the coupling among risks, the sequence operation theory
is applied in the comprehensive evaluation of multiple risks.
The flow chart of the comprehensive evaluation is shown
in Fig. 3.

A. THE PROCESS OF DISCRETIZATION
The Addition-Type-Convolution of the sequence operation
theory is applied in the comprehensive evaluation of
multiple risks, which means the summary of multiple
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FIGURE 3. Flow chart of comprehensive evaluation of multiple risks at
the upper level.

random variables [37]. The sequence operation theory can
deal with problems of probability sequences. Therefore,
the evaluation results representing the loss interval and prob-
ability are discretized to form corresponding probability
sequences.

Before the Addition-Type-Convolution, the loss interval is
discretized by the length of 1i. If the discretized value is not
included in the interval of the risk loss, the probability is zero,
it means that a[k] is equal to 0. Otherwise, the probability
is discretized by the central segment. The probability of the
risk loss in the interval [1i ∗ (k − 1), 1i ∗ k] is equal to the
probability of the risk loss in the center of the interval, and
the probability is the value at the sequence number (k − 1)
when the risk loss is expressed by a sequence.{

a (k) = a(1×(N−1)) = {a [k]}

k = {0, 1, · · · , N − 1}
(7)

N = [b/1i] (8)

a [k − 1] =

{
0, 1i ∗ k /∈ [a, b]
P[k−1,k], 1i ∗ k ∈ [a, b]

(9)

B. THE COMPREHENSIVE EVALUATION
After the discretization, the evaluation result of the single risk
is expressed by a sequence. In consideration of the coupling
among risks, the Addition-Type-Convolution is applied in the
comprehensive evaluation of multiple risks. The evaluation
result of multiple risks is expressed by a comprehensive

TABLE 1. Index system of economic development risk.

probability sequence, and the formula is as follows.

x (K ) = a1 (k1)⊕ a2 (k1)⊕ ai (ki)⊕ · · · ⊕ am (km)

=

∑
k1+k2+···+ki=K

[
m∏
i=1

ai (ki)

]
(10)

M =
m∑
i=1

Ni,K = {0, 1, · · · , M} (11)

E = 1i
M−1∑
0

(K − 1) ∗ x [K ] (12)

The comprehensive sequence x(K ) can describe the com-
prehensive probability distribution of multiple risks under
different losses, which is more intuitive for investors to make
investment decisions. In order to make a comparison with
the risk matrix method that assesses risks by a single and
determined level, the expected value of the sequence is calcu-
lated by (12). The expected value of the sequence represents
the average risk loss. Furthermore, the expected value of the
single risk expressed by a sequence can also be calculated
based on (11) [38], and it can reflect the average loss of the
single risk.

Different risks have different lengths of discretized
sequences. The discretized sequences of different risks can
be expressed by the form similar to a matrix. a1(1×(N1−1))

...

am(1×(Nm−1))

 =
 a1 [0] · · · a1 [N1 − 1]

...

am [0] · · · am [Nm − 1]

 (13)

IV. CASE STUDY
There are many uncertain factors that lead to risks in the
power grid investment. In order to ensure the comprehensi-
bility and objectivity of evaluation indexes, eight uncertain
factors that may exist in the investment process of the power
grid are identified through the investigation. The fuzzy theory
is applied to identify five key uncertain factors. On the basis
of the key uncertain factors, the model of GA-BP is applied
to identify four risk factors for the feasibility of the selected
risk factors. Finally, the evaluation index system of economic
development risk is established in Table 1.

The GDP growth risk represents uncertain losses and the
probability of occurrence caused by the variation of the GDP
growth. The variation of the GDP growth is evaluated by the
deviation between the actual value and the predicted value.
The bigger the deviation, the bigger the risk caused by the
GDP. The deviation of the GDP growth that changes with
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FIGURE 4. Nonlinear regression fitting of the GDP growth risk.

FIGURE 5. Probability distribution fitting of the GDP growth risk.

TABLE 2. Test values of the GDP growth risk.

time is identified, and its fitting function is shown in Fig 4.
The horizontal axis shows time and 2001 is the first year,
the vertical axis shows the deviation between the actual and
predicted value of the GDP growth. According to the fitting
result, the distribution of the GDP growth risk that changes
with time is fitted by an approximate polynomial.

The probability distribution of the GDP growth risk is
fitted, and the fitting result is shown in Fig 5. The horizontal
axis shows the deviation of the GDP growth, the vertical
axis shows the corresponding probability density. In order to
choose the fitting function with the desirable performance,
the test values of the first three fitting functions with the good
effect are verified. The test values of the GDP growth are
shown in Table 2.

As can be seen in Table 2, A-D test value of the Logistic
distribution is the smallest. Therefore, the Logistic distribu-
tion is the fitting function with the desirable performance,

FIGURE 6. The partition result of the GDP growth risk.

and the deviation of GDP growth tends to the Logistic
distribution.

The partition result of the GDP growth risk in time period
is shown in Fig. 6. The horizontal axis shows time and 2001 is
the first year, the vertical axis shows the deviation of the
GDP growth. The four straight lines represent the deviation
of the GDP growth in the interval [µ − 3δ, µ + 3δ] and
[−µ−3δ,−µ+3δ],µ and δ are the mean and variance of the
Logistic distribution, which are equal to 2.47 and 0.407. The
curve represents the fitting result of the nonlinear regression
distribution. The deviation of the GDP growth that changes
with time is fitted by an approximate polynomial, and the
expression is as follows.

g (t) = 4.61e−5t6 − 0.0025t5 + 0.05t4

−0.47t3 + 1.82t2 − 2.03t + 2.34 (14)

It can be seen from Fig. 6 that the GDP growth risk is
divided into four-time periods. In the first time period, the risk
of GDP growth is approximate to the invented triangular
distribution. In the second time period, the GDP growth risk
is approximate to the linear distribution. In the third time
period, the GDP growth risk is approximate to the invented
triangular distribution. In the fourth time period, the GDP
growth risk is approximate to the linear distribution. At other
time, the probability of the GDP growth risk is too small so
that it can be ignored.

The GDP growth risk from 2015 to 2018 is chosen to
calculate the comprehensive evaluation result of multiple
risks. In this time period, the GDP growth risk can be divided
into two-time periods. In the first time period, the lower limit
of time is 2015, the corresponding deviation of the GDP
growth is −2.76%; the upper limit of time is the intersection
of the curve and the straight line x equal to −1.25, the
corresponding deviation of the GDP growth is −1.25%. In
the second time period, the lower limit of time is the intersec-
tion of the curve and the straight line x equal to 1.25, the cor-
responding deviation of the GDP growth is 1.25%; the upper
limit of time is 2018, the corresponding deviation of the GDP
growth is 2.17%. In the first time period, the deviation of the
GDP growth belongs to the interval [−2.76, −1.25], and the
corresponding probability of risk loss in this interval is 0.48.
In the second time period, the deviation of the GDP growth
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TABLE 3. Risk loss and probability in the first time period.

TABLE 4. Risk loss and probability in the second time period.

belongs to the interval [1.25, 2.17], and the corresponding
probability of risk loss in this interval is 0.24.

Through the process of normalization, the risk loss
expressed by the interval and corresponding probability
of each risk factor in different time periods are listed
in Table 3 and Table 4.

After obtaining the evaluation results of individual risks at
the lower level, the risk losses expressed by the interval are
discretized by the length of 0.1. The principle of discretiza-
tion is based on (8) and (9). The discretized sequences in the
first time period are listed in (15).
aB1(1×7)
aB2(1×6)
aB3(1×7)
aB4(1×6)

 =

0 0 0.11 0.04 0.08 0.15 0.06
0 0.08 0.13 0.07 0.16 0.05
0 0 0.04 0.06 0.17 0.09 0.12
0 0 0.13 0.14 0.17 0.12


(15)

In the second time period, the discretized sequence of each
risk is listed as follows.
aB1(1×9)
aB2(1×6)
aB3(1×6)
aB4(1×7)



=


0 0 0 0.24 0.15 0.08 0.16 0.11 0.1

0.05 0.23 0.18 0.09 0.07 0.07
0 0 0.03 0.07 0.08 0.06
0 0 0.04 0.13 0.08 0.07 0.08


(16)

After the discretization, the sequence operation theory
is applied in the comprehensive evaluation of multiple
risks. The Addition-Type-Convolution is applied to obtain
the comprehensive probability sequence of multiple risks,
the comprehensive sequence of risk factors in the first time
period is listed as follows.
S1 = [0, 0, 0, 0, 0, 0, 7.8960e-04, 0.0036, 0.0114, 0.0272,

0.0511, 0.0844, 0.1167, 0.1433, 0.1537, 0.1422, 0.1157,
0.0790, 0.0444, 0.0199, 0.0059, 7.4543e-04].
The probability distribution of multiple risks in the first

time period is shown in Fig. 7, and the expected value of the
comprehensive sequence is 1.436.
The comprehensive sequence of risk factors in the second

time period is listed as follows.

FIGURE 7. The probability distribution in the first time period.

FIGURE 8. The probability distribution in the second time period.

TABLE 5. Assessment basis of the risk level.

S2 = [0, 0, 0, 0, 0, 0, 2.5880e-04, 0.0028, 0.0125, 0.0324,
0.0602, 0.0901, 0.1154, 0.1320, 0.1360, 0.1250, 0.1040,
0.0787, 0.0529, 0.0311, 0.0161, 0.0072, 0.0026, 6.0386e-04].

The probability distribution of multiple risks in the second
time period is shown in Fig. 8, and the expected value of the
comprehensive sequence is 1.448.

In the single risk evaluation, the risk matrix method and
the hierarchical risk evaluation method proposed in this paper
quantify risks from two sides, which are the influence degree
and probability of occurrence. The risk matrix method eval-
uates the risk level based on the expert scoring method,
the assessment basis is listed in Table 5 [39]. The hierarchical
risk evaluation method evaluates the risk by identifying its
distribution regularities.
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TABLE 6. The assessment results of the risk level.

TABLE 7. Risk evaluation results of individual risks

The hierarchical risk evaluation method considers the
uncertainty of the risk, the risk loss is expressed by the
interval. In order to compare the two methods, the risk losses
expressed by the intervals in Table 3 and Table 4 are trans-
formed into corresponding risk levels based on Table 5. The
evaluation results of the two methods are listed in Table 6.
Compared with the risk matrix method, the risk loss obtained
by the hierarchical risk evaluation can have multiple levels,
instead of a definite level. The risk levels expressed by the
interval are the integers no less than the lower limit, and no
more than the upper limit of the interval.

In different time periods, the levels of risk loss can be
different. In the same time period, the risk loss can have mul-
tiple levels, and the actual level of risk loss belongs to one of
these levels. According to Table 6, the evaluation result of the
single risk based on the risk matrix method is calculated. The
result is the product of the loss degree and the probability of
occurrence. The risk evaluation result obtained by the hierar-
chical risk evaluation method is the expression of probability
sequence. To compare the two methods, the expected value
of the probability sequence is calculated, and the evaluation
results of the single risk are listed in Table 7.

It can be concluded from Table 7 that compared with the
risk matrix method, the hierarchical risk evaluation method
has better accuracy in the evaluation of the single risk. In dif-
ferent time periods, the evaluation results of the single risk
are different. According to the method proposed in this paper,
the risk loss of the single risk is expressed by the interval, and
the evaluation result can reflect the probability distribution
of the risk under different loss intervals.

In the comprehensive evaluation of multiple risks,
the risk matrix method determines the weight of individ-
ual risks based on the analytic hierarchy process, as shown
in Table 7. The hierarchical risk evaluation method applies
the sequence operation theory to evaluate multiple risks.

TABLE 8. Comprehensive evaluation results of multiple risks.

The comprehensive evaluation results of multiple risks
obtained by the two methods and corresponding risk levels
are listed in Table 8.

The evaluation result of multiple risks obtained by the
risk matrix method is a comprehensive level, which is the
weighted average value of the single risk evaluation result
and corresponding weigh. The result obtained by the hierar-
chical risk evaluation method is expressed by a probability
sequence. To compare the two methods, the expected value
of the comprehensive probability sequence is calculated.

It can be seen from Table 8 that compared with the risk
matrix method, the hierarchical risk evaluation method has
higher accuracy in the comprehensive evaluation of multiple
risks. The obtained result of multiple risks is not a definite
level, but a probability sequence which can reflect the prob-
ability distribution of the economic development risk under
different losses. It can be concluded that the method proposed
in this paper considers the uncertainty and coupling of risks,
its accuracy is verified higher.

V. CONCLUSIONS
In this paper, a hierarchical risk evaluation method is
proposed for power grid investment that considers the uncer-
tainty and coupling of risks. This method includes the eval-
uation of the single risk and multiple risks. At the lower
level, the single risk is evaluated by considering the uncer-
tainty of the risk and recognizing its distribution regularities.
Through the partition of time period, the evaluation results
of individual risks expressed by the interval can describe the
uncertainty of risks better. At the upper level, the comprehen-
sive evaluation method of multiple risks that considers the
coupling among risks is developed. The sequence operation
theory is applied in the comprehensive evaluation of multiple
risks to express the result by an intuitive probability sequence,
instead of a definite value. Finally, the method proposed in
this paper is compared with the risk matrix method in the
case study. The results show that the method proposed in this
paper has high accuracy in the evaluation of the single risk
and multiple risks.
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