
Received May 26, 2020, accepted June 8, 2020, date of publication June 15, 2020, date of current version June 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3002164

Performance Evaluation of IoT Data Management
Using MongoDB Versus MySQL Databases in
Different Cloud Environments
MAHMOUD EYADA 1, WALAA SABER 2, MOHAMMED M. EL GENIDY 3,
AND FATHY AMER 4
1Mathematical and Computer Science Department, Faculty of Science, Port Said University, Port Said 42511, Egypt
2Electrical Engineering Department, Faculty of Engineering, Port Said University, Port Said 42511, Egypt
3Mathematical and Computer Science Department, Faculty of Science, Port Said University, Port Said 42511, Egypt
4Computer and Information Sciences Department, Faculty of Engineering, Cairo University, Cairo 12613, Egypt

Corresponding author: Walaa Saber (walaa_saber@eng.psu.edu.eg)

ABSTRACT The Internet of Things (IoT) introduces a new challenge for Database Management Systems
(DBMS). In IoT, large numbers of sensors are used in daily lives. These sensors generate a huge amount
of heterogeneous data that needs to be handled by the appropriate DBMS. The IoT has a challenge for the
DBMS in evaluating how to store and manipulate a huge amount of heterogeneous data. DBMS can be
categorized into two main types: The Relational DBMSs and the Non-relational DBMSs. This paper aims
to provide a thorough comparative evaluation of two popular open-source DBMSs: MySQL as a Relational
DBMS and MongoDB as a Non-relational DBMS. This comparison is based on evaluating the performance
of inserting and retrieving a huge amount of IoT data and evaluating the performance of the two types of
databases to work on resources with different specifications in cloud computing. This paper also proposes
two prediction models and differentiates between them to estimate the response time in terms of the size
of the database and the specifications of the cloud instance. These models help to select the appropriate
DBMS to manage and store a certain size of data on an instance with particular specifications based on the
estimated response time. The results indicate that MongoDB outperforms MySQL in terms of latency and
the database size through increasing the amount of tested data. Moreover, MongoDB can save resources
better than MySQL that needs resources with high capabilities to work with less performance.

INDEX TERMS IoT, DBMS, SQL, NoSQL, MySQL, MongoDB, AWS, cloud, multiple non-linear regres-
sions.

I. INTRODUCTION
Nowadays Internet of Things (IoT) technology become the
backbone of many industries like smart home systems, indus-
trial control systems, monitoring of pharmacies and hospitals,
open-source web data and weather stations. IoT is a system
that is based on sensing, collecting and sharing data. This
system results in exchanging operations for a large amount
of IoT data. Using IoT technology generates a large amount
of heterogeneous data like texts, numbers, audio, videos, and
pictures. These types of data need to be transferred, processed
and stored in a cloud server. Also, they need to be queried and
updated on-demand. Storing and managing a large amount of
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IoT data efficiently is one of the major challenges. Flexible
Database Management System (DBMS) is an important tar-
get to implement this challenge [1].

The DBMS is a software that is responsible for storing
and managing databases. Relational DBMSs (RDBM) [2]
are widely used systems. They are based on the Relational
model and they use Structured Query Language (SQL) as
their application programming interface language. RDBMSs
work well for storing structured data and managing their
relationships. However, using IoT means dealing with a large
amount of heterogeneous data which has a harmful effect on
the performance of the traditional RDBMSs. Non-relational
DBMSs [4] are proposed to solve the limitations of the tradi-
tional RDBMSs. NoSQL databases are schema-free; they are
designed towork in harmonywith the unstructured data. They
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are supposed to be easily distributed with high scalability
and availability. These properties are needed to realize the
vision behind the IoT from the data perspective. Managing
and storing a large amount of heterogeneous data through an
appropriate DBMS is one of the contemporary challenges.
Performance evaluation of the Relational and Non-relational
DBMS is one of the solutions that help to meet this challenge
[3]–[6].

Cloud computing [7] technology enables access to a strong
pool of configurable computing resources such as servers,
networks, storage, services and applications; which can be
rapidly provisioned and released with minimal management
effort or service provider interaction. Cloud storage service
is an important part of the cloud infrastructure. It can easily
deal with a large amount of data. Such databases use the cloud
computing paradigm to optimize consistency, availability and
partition tolerance.

The main objective of this paper is to find an effective way
to manage and store a large amount of heterogeneous data
in appropriate DBMS. This objective is implemented by per-
forming comprehensive experiments to compare and evaluate
the performance of the two types of databases: MySQL as a
Relational DBMS andMongoDB as a Non-relational DBMS.
The performance metrics include latency and database size.
This evaluation is implemented as follows:

- Evaluate the effect of manipulating heterogeneous IoT
data on performance.

- Evaluate the increase of workloads that result from the
expansion of the IoT network and increasing the number
of connected sensors on the way the data is stored within
the database and also on the size of stored data.

- Investigate the effect of improving the cloud instances
capabilities on improving the performance.

- Provide a new way for assessing and comparing the
DBMSs and choosing the most appropriate one based on
formulating a predictionmodel to estimate the latency of
the response time; in terms of realizing the database size
and the instance performance.

The rest of this paper is organized as follows.
Section 2 describes both background and related work.
Section 3 introduces tools of hardware and softwarewhich are
used in the experimental evaluations. Section 4 presents per-
formance evaluation experiments and results. Section 5 intro-
duces a statistical analysis of predicting the appropriate
DBMS that meets user’s needs.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND
IoT technology is based on collecting a huge amount of
data from different sources such as sensors, tracking devices,
smart-phones, social media and vehicles. These types of
data are emitted through the network to the appropriate
cloud platform to be managed by the appropriate services.
IoT applications are categorized; based on the performance
requirements, into four segments: critical IoT, massive IoT,

FIGURE 1. Managing and storing the IoT data.

industrial automation IoT and broadband IoT. Herein the
performance requirements are evaluated in terms of data size,
latency, data rate, reliability and availability [8]. The essential
aim of IoT technology is to manipulate the data efficiently.
Servers and data centers are responsible for manipulating
and storing all the received data smoothly. Then the data is
processed by appropriate programming language to handle
the manipulation operations. Finally, this data is stored in
databases [9]. Figure 1 shows the main operations of man-
aging and storing the IoT data.

Cloud Service Providers such as Microsoft Azure [10],
Google cloud [11] and Amazon Web Services (AWS) [12]
are needed for providing business applications, network ser-
vices and infrastructure to the cloud users. Microsoft Azure
is used for general business applications and development
environments for Microsoft-centric organizations. Moreover,
it is used in cloud-native applications and batch comput-
ing. Google cloud is used for cloud-native applications and
batch computing as well as projects that leverage the Google
cloud platform as a whole. AWS is the most popular in the
Infrastructure as a Service (IaaS) market due to the highest
share and compute capacity which it uses in comparison with
other IaaS providers. AWS has many services, one of them
is Elastic Compute Cloud (EC2) that provides the ability to
create Virtual Private Server (VPS) such as your PC but with
dedicated Internet Protocol Address (IP), number of GB of
RAM and Processors cores besides bandwidth and storage
space. It is actually one of AWS services, Amazon Simple
Storage Service (Amazon S3), that is used to save the dataset
in the database server.

Server-side programming languages are responsible for
many tasks such as processing the collected data, inter-
acting with servers, interacting with databases and manip-
ulation operations over databases. PHP [13], Python [14]
and Node.JS [15] are the most common used server-
side programming languages. Now Node.JS is the most
commonly used one because it is JavaScript operating
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environment, event-driven, asynchronous programming and
specially designed for network services.

Good database management systems are needed to store
the collected data in an appropriate way. DBMSs are cat-
egorized into two main categories: Relational DBMSs and
Non-Relational DBMSs. Relational DBMS such as MySQL
[16], Oracle [17] and PostgreSQL [18] are commonly known
as SQL databases. They are the most common and widely-
used databases. SQL requires some predefined schemas to set
the structure before you start to deal with the database. Here
all your data must follow the same structure which means
that a change in the structure would be both difficult and
disruptive to any system. Unfortunately, using IoT networks
caused generating a large amount of heterogeneous data.
Traditional SQL DBMSs were not designed to solve these
problems. Non-Relational DBMSs such as MongoDB [19],
Cassandra [20] and Hbase [21] are commonly known as
Not-only SQL (NoSQL) databases. NoSQL databases have a
dynamic schema for heterogeneous data. All types of data in
NoSQL databases are stored andmanaged in many ways such
as column-oriented, KeyValue and graph-based; or organized
as a document-oriented store.

MySQL is a popular open-source RDBMS that is devel-
oped, distributed and supported by Oracle Corporation. Like
other Relational systems, MySQL stores data in tables and
uses SQL language for database access. In MySQL you
pre-define your database schema based on your require-
ments and set up rules to govern the relationships between
fields in your tables. Any change in schema necessi-
tates a migration procedure that can take the database
offline or significantly reduce application performance.
MySQL supports various types of replication services. Also,
its distributed database engine is more robust than the
PostgreSQL [22].

MongoDB is a document-oriented Non-relational database
that can be used to distribute and store large binary files
like videos and images. It stores data as documents in a
binary representation called BSON (Binary JSON) objects,
which are binary encoded JSON like objects. Related infor-
mation is stored together for quick query access through the
MongoDB query language. Documents in MongoDB can be
organized in ‘‘collections’’. Fields can vary from document
to document; there is no need to declare the structure of
documents to the system – documents are self-describing.
If a new field needs to be added to a document, then the
field can be created without affecting all other documents
in the collection, without updating a central system catalog
and without taking the system offline. Therefore, it has a
better performance than other databases in terms of resource
usage and long-term storage to work with large amounts of
IoT sensor data [23], [24]. MongoDB also supports indexing
over embedded objects and arrays. It interacts efficiently with
memory storage, complex data and dynamic queries com-
pared to the other NoSQL databases. MongoDB is a scale-
out based scheme that provides flexibility to work in case of
hardware expansion [25], [26].

B. RELATED WORK
Many researches were introduced to compare between SQL
and NoSQL DBMSs based on IoT data structure. The main
metrics in these researches were storage, syntax, and latency
of queries, database connection time and schema design.
In [27], it discussed the possibility of a hybrid database
between MongoDB and MySQL. It shows that using Mon-
goDB in conjugate with MySQL improves the performance
of using the MySQL database. And in [28] authors showed a
disparity in performance between the data models reference,
embedded and hybrid model. The hybrid model was based on
merging collections to improve the performance and reduce
the storage size.

In [29], [30] the performance of Relational and Non-
relational DBMSs was evaluated using two models: one was
implemented on a small scale of data and the other was
implemented on a large scale of data. The performance was
evaluated based on the CRUD operations to get the advan-
tages and disadvantages of both kinds of DBMS. The perfor-
mance was evaluated in terms of the time of queries and the
size of data. However, the comparison was implemented on
simple structured data and one type ofMongoDB schemawas
examined, which didn’t show the benefits of MongoDB.

In [31], [32] Relational and Non-relational databases were
examined on IoT data. The experiments were implemented
on MongoDB, PostgreSQL and MySQL. The results showed
that NoSQLwas better than SQL in different scenarios. How-
ever, fixed numbers of sensors were used in the experiments.
Also, a single type of MongoDB schema was examined.

This paper is proposed to solve a lot of the previous lim-
itations. It compares between MySQL database as a Rela-
tional database and MongoDB database as a Non-relational
database in two different schema types; reference and hybrid,
as a Non-relational database. More enhancements are pro-
duced on both databases to increase the flexibility and reduce
the redundancy. It uses the IoT benchmark to evaluate the
performance of the two types of databases on the IoT data.
Moreover, different scenarios with different numbers of sen-
sors are examined. The performance is evaluated in terms of
size and latency. In addition, the experiments were imple-
mented on different cloud servers with different hardware
specifications. Furthermore, statistical analysis is introduced
to predict the best DBMSs you should use depending on data
size and server performance.

III. THE PROPOSED PERFORMANCE EVALUATION
A. EXPERIMENT OVERVIEW
The IoT data structure is considered as one of themain hetero-
geneous data structured types that need appropriate DBMS
to deal with. The evaluation of DBMSs varies according to
the used criteria. This paper attempts to propose comprehen-
sive criteria for performance evaluation and try to show the
behavior of each type of database through this evaluation.
The aim of the proposed experiments is to evaluate and
compare the performance of the two types of DBMSs: SQL
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TABLE 1. Instance specification.

database and NoSQL database on IoT data. The main metrics
in these experiments are the response time and the size of the
database. This evaluation is performed in three main parts.
First, it examines the impact of increasing workloads on the
two databases. This part helps to compare the performance of
the two databases handling a large scale of IoT data. Second,
it tests the effect of improving the capabilities of the cloud
instance on increasing the performance of the two databases.
It helps in deciding which database can save resources better.
Third, it proposes a prediction model that is concluded from
statistical analysis on the measured data of the introduced
experiments. This part applies two approaches of prediction
and compares between them to estimate the latency of the
data; in terms of the data size and instance performance.
It also evaluates these two estimation approaches and defines
which one is more accurate. The proposed prediction model
provides the flexibility to evaluate and compare the two types
of databases on any size of data and any instance. It selects
the DBMS with low estimated latency.

B. SOFTWARE AND HARDWARE
This section discusses the utilized software and hardware in
the proposed performance evaluation. Node.JS LTS version
10.16.3 and NPM version 6.10.2 are used to process the col-
lected data. Ubuntu 16.04 LTS version is used as an operating
system to setup MongoDB, MySQL and Node.JS.

Elastic Compute Cloud (EC2) is used during the imple-
mentation of this comparison. EC2 remains a core service
of the AWS cloud platform. It provides a customer with
an opportunity to build and host a software system on the
Amazon virtual servers (EC2 Instances). EC2 is a virtual
private server (VPS) within a cloud, where storage can be
resizable and almost unlimited. With Ec2 service, three types
of instances were used t3.large (referred to as VM1), t3.xlarge
(referred to as VM2) and t3.2xlarge (referred to as VM3). The
T3 instances feature is the Intel Xeon Platinum 8000 series
(Skylake-SP) processor with a sustained all core Turbo CPU
clock speed of up to 3.1 GHz. Additionally, there is a support
for the new Intel Advanced Vector Extensions 512 (AVX-
512) instruction set [33]. Table 1 shows the specifications of
the instances.

C. DATABASE SETUP
1) IoT BENCHMARK
The pollution database [34] is used as a base for this
paper. This database is based on collecting information about

elements of air pollution indoors and outdoors. The indoor
air frequently and severely polluted more than the outdoor
air, which can be refined naturally. The IoT sensor data that
depends on the temporal status and variables related to the
spatial characteristics of the space being measured should
be considered differently from other homogeneous inputs,
such as image and audio, because it considers heterogeneous
data [35]. Some changes are added to increase the flexibility
and decrease the redundancy for working with the intended
database. The database can be partitioned into three parts:
the sensors part, the location longitude and latitude part and
the timestamp part. The first part is concerned with adding
a new sensor to a specific station. This part is a multi-value
part so it can be changed from adding a newfield for each new
sensor to add a new record for each new sensor by converting
the sensors data fields (i.e. the number of fields is equal to
the number of all sensors) to only two fields: sensor_id field
and sensor_data field. This change increases flexibility as
it allows increasing any number of sensors to the database
without affecting its structure.

The second part is concerned with storing the longitude
and latitude of the location. This part can be normalized into
an independent table or collection that contains three fields:
station_id, longitude and latitude for each station location in
addition to the original table or collection but with replacing
longitude and latitude fieldswith station_id field. This change
reduces the redundancy in the original data as for every
sensor data insertion to a table or collection there is no need
to add the station location. The third part, the timestamp
part, is concerned with instant receiving of sensor data. This
part of data is important and must be added to the original
table or collection.

With these changes, the database becomes more flexible
to deal with MySQL and MongoDB DBMSs. After editing
the database, it becomes able to receive and store data from
any number of towns, stations and sensors; besides saving the
locations of every station the longitude and the latitude with
Date and Time of every record.

2) MYSQL DATABASE SETUP
MySQL server 8.0.11 is the version that is used in this evalua-
tion. Table 2 shows the SQL statements that are used to create
the tested MySQL database schema specifying the structure
of a database for managing a series of town’s base stations
and the related sensors. Two tables are created for MySQL
schema: station_location and town_name.

The station_location table is to save the location of every
station. Referential integrity constraint is implemented with
FOREIGN KEY to stop any station to be inserted in the town
table without being mentioned in the stations_locations. The
main target of dividing the dataset in two tables is to reduce
the data redundancy.

3) MONGODB DATABASE SETUP
MongoDB version 4.2 is the current stable release ver-
sion that is applied in this comparison. As in MySQL, two
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TABLE 2. MySQL creation queries.

TABLE 3. MongoDB creation queries.

collections are created for MongoDB. The first one saves
the location of every station, so no record can be inserted in
town_name collection from any station that is not inserted in
stations_locations collection.

The second collection is the sensors table of all sensors
in every station in the town. As stations_locations collection,
sensors table controls the insertion query in the town_name
collection. Thus, there is no record from the sensor can be
inserted when it is not available in sensors collection first. But
in MongoDB, the insertion is controlled with insertion query
and is not automatically inserted as in the MySQL from the
creation query.

MongoDB as NoSQLDBMS has three models to deal with
data set: reference, embedded and hybrid. The hybrid model
occupies less size of memory than the other reference and
embedded models [27]. Table 3 shows the creation collection
statements for the tested MongoDB database based on refer-
ence and hybrid models.

IV. EXPERIMENT AND RESULT
A. EXPERIMENT ANALYSIS
The proposed experiments manage the data collected through
a fixed number of stations (i. e. in this case four stations)

TABLE 4. Database description.

FIGURE 2. One sensor scenario.

and located within one town. The structure of the proposed
database is described in Table 4. Each station collects and
buffers data every second from its related sensor nodes and
sends it to the cloud with a rate of 1000 records per trans-
mission. Several scenarios have been introduced to illus-
trate the most important database operations. The proposed
experiments scenarios were carried out based on increasing
the number of sensors connected to each station from 1 to
12 sensors. This leads to increasing number of sensors for the
experiments from 4 to 48 by increasing one sensor per station
in each experiment.

B. IMPACT OF INCREASING THE NUMBER OF SENSOR
NODES ON THE INSERTION OPERATION
Increasing the workloads in the proposed experiments is rep-
resented by increasing the number of sensors connected to
each station. In each experiment, each station collects the data
from all its related connected sensors in data records. The data
record contains readings of all the related sensors at a specific
time. These collected data records are inserted as records in
MySQL and as record objects in MongoDB. To shed light
on the effect of increasing the number of connected sensors
on the number of inserted records in both databases, two
scenarios are introduced in detail.

In the first scenario, one sensor node is connected to each
station as shown in Figure 2. After the stations collect data
from the sensor nodes, each station sends its data with a rate
of 1000 data records per transmission to the cloud for process-
ing and insertion operations. Four stations are transmitting
4000 data records at a time. Each record contains data from
one sensor node. Each record is inserted in one record in case
of MySQL and one record object in case of MongoDB. The
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FIGURE 3. Two sensors scenario.

transmitted data is inserted in 4000 records in MySQL and
4000 record objects in MongoDB.

In the second scenario, two sensor nodes are connected to
each station as shown in Figure 3. The four stations transmit
4000 data records at a time for the cloud. Each record contains
data from two sensor nodes. In MySQL, the data for each
sensor needs to be inserted in a separate record. It needs
8000 records to insert the transmitted data. UnlikeMongoDB,
all sensors data can be inserted into one record object. So,
it needs 4000 record objects to insert the transmitted data.

The remaining scenarios are introduced in Table 5 to show
the number of inserted records in each case. Due to the
structured schema of MySQL, the addition of a new sensor
is represented by adding an independent record for this sen-
sor measurement. Therefore, the data record received from
the station is separated into independent records one per
each sensor data. While MongoDB is a document-oriented
database and the addition of new sensor results in a docu-
ment with a different structure for the newly inserted record
object. This means the data record received from the station
is inserted in one record object. Increasing the number of
connected sensors means increasing the number of records
(i.e. vertical increasing) in MySQL and increasing the width
of the record object (i.e. horizontal increasing) in MongoDB.

C. IMPACT OF INCREASING THE WORKLOADS ON THE
LATENCY
In the proposed scenarios, increasing the workloads is based
on increasing the number of connected sensors per station
from 1 to 12 sensors and therefore increasing the number
of insertion operations. These insertion operations are imple-
mented on three instances with different specifications VM1,
VM2 and VM3; which were described in Table 1.

MySQL accepts from 4000 records; in the first insertion
operation, to 48000 records; in the last insertion operations.
On the other side,MongoDB accepts 4000 records in all cases
from the first to the last operations. Table 5 shows the latency
of these insertion operations in all cases.

TABLE 5. The latency of the insertion operation.

FIGURE 4. Insert query Instance T3.large.

Figure 4 shows the impact of increasing workloads on the
latency using VM1 with a performance of 6.2 GHz. It shows
that in the first scenario MongoDB decreases the latency
compared with MySQL by 82.3%. By increasing the number
of connected sensors and in the last scenario, MongoDB
decreases the latency compared with MySQL by 97.7%.

Figure 5 shows the impact of increasing the same
workloads on the latency using VM2 with a performance
of 12.4 GHz. Using VM2 improves the performance of
MySQL with 29% over using VM1while it improves the
performance of MongoDB with 23% over using VM1. It also
shows that in the first scenario, MongoDB decreases the
latency compared with MySQL by 83.3%. Also, in the last
scenario MongoDB decreases the latency compared with
MySQL by 98%.

Figure 6 shows that MongoDB decreases the latency com-
pared with MySQL by 83.7% in the first scenario and by
97.5% in the last scenario using VM3 with a performance
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FIGURE 5. Insert query Instance T3.xlarge.

FIGURE 6. Insert query Instance T3.2xlarge.

of 24.8 GHz. Using VM3 improves the performance of
MySQL with 43% over using VM1 and with 26% over using
VM2. Besides, it improves the performance of MongoDB
with 35% over using VM1 and with 8% over using VM2.

The results show that through increasing the number of
connected sensors per station and accordingly increasing
workloads, the difference in latency between MongoDB and
MySQL is also increased in favor of MongoDB. Moreover,
the results show that usingMongoDB on VM1with low capa-
bilities has average improvement in latency with 43% over
MySQL on VM3 with high capabilities. This ensures that
MySQL needs instances with high capabilities to work well
on the contrary to MongoDB which works very well with all
instances capabilities.

D. IMPACT OF INCREASING THE WORKLOADS ON THE
DATABASE SIZE
In this section, two types of schemas for the MongoDB
database are examined and compared with MySQL database
in terms of the database size: hybrid and reference models.
Table 6 shows the effect of the same experiments on the
database size (i.e. size of the stored data).

Figure 7 shows the impact of increasing the workloads on
the three databases: MongoDB based hybrid model, Mon-
goDB based referencemodel andMySQL databases. It shows
that in MongoDB based hybrid model, the database size
is increased linearly with increasing the workloads. Also,

FIGURE 7. The storage size of MongoDB based hybrid model, MongoDB
based reference model, and MySQL databases.

TABLE 6. Database size comparison between MongoDB based Hybrid
Model, MongoDB based reference model, and MySQL.

in MongoDB based reference model, the database size is
increased linearly but the rate of increase is higher than
the database size of MongoDB based hybrid model. On the
other side in MySQL, the database size has periods of lin-
ear increase and periods of relative stability. According to
scenarios from S1 to S3 and from S7 to S8, database size
is increased linearly with increasing the workloads. Whereas
the scenarios from S3 to S7 and from S8 to S12, database
size is relatively stable with increasing the workloads. This
behavior of MySQL is due to its storage nature [4].

The results show that MySQL outperforms the other two
databases in case of inserting small number of records and
also at the end of each stability period as shown in the high-
lighted records of table 6 scenarios S1, S2, S6, S7, S11 and
S12. For inserting small number of records up to scenario S2,
MySQL is much more efficient than the MongoDB based
hybrid model by 15% and the MongoDB based reference
model by 33%. Also, by increasing the number of inserted

110662 VOLUME 8, 2020



M. Eyada et al.: Performance Evaluation of IoT Data Management using MongoDB versus MySQL Databases

FIGURE 8. MySQL records in the case of one sensor scenario.

FIGURE 9. MongoDB record objects in the case of one sensor scenario.

records and at the end of each stability period; scenarios
from S6 to S7 and from S11 to S12, MySQL outperforms
the other two databases. Whereas, at the beginning of each
stability period; scenarios from S3 to S5 and from S8 to S10,
MongoDB based hybrid model outperforms the other two
databases. In addition, the results also show that MongoDB
based hybrid model has average improvement in the database
size by 6.6% over MySQL and 51.5% over MongoDB based
reference model.

E. IMPACT OF INCREASING THE NUMBER OF SENSOR
NODES ON THE SELECTION OPERATION
In this section, the selection operation of both databases is
evaluated in terms of latency. It is based on retrieving the
data of all the connected sensors at a specific time. The
selection operations are started by selecting the data that is
collected based on one sensor per each station (i.e. the first
scenario) and end with selecting the data that is collected
based on 12 sensors per each station (i.e. the last scenario),
twelve scenarios and selection operations are implemented.
The data retrieved in the case of one connected sensor per
station is shown in Figures 8 and 9. Also, the data retrieved
in the case of two connected sensors per station is shown
in Figures 10 and 11. Table 7 shows the impact of the selection
operations on the latency in different instances VM1, VM2,
and VM3.

The selection operation considers a connection time that
connects theDBMSwith the database server before retrieving
the data. In the proposed experiments, this time is 112 ms in
case of MongoDB, and 5 ms in case of MySQL. Figures 12,
13, and 14 show that MongoDB is faster than MySQL in all
scenarios when implemented on instances VM1, VM2, and
VM3. As a result, to increase the performance of the instance,
the latency decreases, the same operation is processed on the
three instances but with better performance.

FIGURE 10. MySQL records in the case of two sensor scenario.

FIGURE 11. MongoDB record objects in the case of two sensor scenario.

TABLE 7. The latency of the selection operation.

The results show that VM3 has an average improvement of
the selection latency with 63.2% over VM1 and with 22.5%
over VM2 in case of MySQL. Also, VM3 has an average
improvement of the selection latencywith 38%overVM1 and
with 12.3% over VM2 in case of MongoDB. These results
ensure that MySQL is affected; more than MongoDB, by the
instance performance.

The comprehensive results ensure that MongoDB database
performance can significantly outperform the MySQL
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FIGURE 12. Select query Instance T3.large.

FIGURE 13. Select query Instance T3.xlarge.

FIGURE 14. Select query Instance T3.2xlarge.

database dealing with a wide range of IoT data. In addition,
the results show that MySQL can work well with high-
performance instance, unlike MongoDB which works very
well with all instance specifications.

V. STATISTICAL ANALYSIS
In this section, a statistical analysis is introduced to estimate
the latency of data from a measured data size and instance
performance using two approaches: Multiple Linear Regres-
sion and Multiple Non-linear Regression. This estimation
is implemented on both database types, MySQL and Mon-
goDB, for twofold aims. The first aim is to compare the
two types of databases in terms of latency. The second aim

is to evaluate the two estimation approaches and select the
appropriate one.

A. DATASETS AND METHODS
1) DATASET
The analysis starts by establishing the equations models from
a previously measured dataset which contains three param-
eters; namely latency in milliseconds, data size in KB and
instance performance in GHz.

The instance performance was calculated as the product of
the virtual central processing unit (vCPU) and the CPU clock
speed as shown in Table 1. The data size was calculated as the
product of the calculated average size of one record and the
number of records from Table 6. Table 8 shows the dataset
information that is needed in this analysis for both MySQL
and MongoDB databases.

2) MULTIPLE REGRESSION ANALYSIS
This section is proposed to compare two approaches for esti-
mating the latency of the database: Multiple Linear Regres-
sion and Multiple Non-linear Regression. This estimation
is used to evaluate the performance of both MySQL and
MongoDB databases. Residual value is the metric that is used
in this comparison.

3) LINEAR REGRESSION
A simple Linear Regression is used to illustrate the relation
between the dependent variable y and the independent vari-
able x based on the regression equation [36].

y = a1x1 + a0 (1)

The proposed evaluation needs to find a relation between
three variables: latency, data size and instance performance.
The dependent variable (latency) is related to two indepen-
dent variables (data size and instance performance). In this
case, the Multiple Linear Regression can be implemented as
follows [35]:

y = a2x2 + a1x1 + a0 (2)

where x1 is the data size, x2 is the instance performance and y
is the latency. Table 9 shows the parameters notations which
are used in this evaluation.

The determiner method is used to solve the previous equa-
tion and get the final equation of prediction for both Mon-
goDB and MySQL latency as [36]:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y x1 x2 1
n∑
i=1

y
n∑
i=1

x1
n∑
i=1

x2 n

n∑
i=1

x1y
n∑
i=1

x21
n∑
i=1

x1x2
n∑
i=1

y

n∑
i=1

x2y
n∑
i=1

x1x2
n∑
i=1

x22
n∑
i=1

x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3)

By substituting in equation (3) with values from Table 8 to
get the values a2, a1, and a0.
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TABLE 8. Dataset information: latency, data Size, and Instance
performance.

MongoDB equation will be:

y = −3.83x2 + 0.111x1 + 35.35 (4)

MySQL equation will be:

y = −27.257x2 + 0.581x1 + 310.345 (5)

4) NON-LINEAR REGRESSION
Non-Linear Regression is another approach that can be used
to estimate the database latency based on the perception of
both data size and instance performance. In this case, theMul-
tiple Non-linear Regression can be implemented as follows
[7]:

y = a5x21 + a4x
2
2 + a3x1x2 + a2x1 + a1x2 + a0 (6)

where x1 is the data size, x2 is the instance performance and
y is the latency.

TABLE 9. Parameters’ notations used in the proposed evaluation.

The determiner method is used to solve the previous equa-
tion and get the final equation of prediction for both Mon-
goDB and MySQL latency [37] as shown in equation (7).

By substitution; in equation (7), with values from Table 8
to get the values a5, a4, a3, a2, a1, and a0.

MongoDB equation will be:

y = 0.446x22 + 0.004x1x2 + 0.093x1−11.305x2+76.0968

(8)

MySQL equation will be:

y = 3.673x22−0.0424x1x2+0.694x1−98.236x2+544.357

(9)

5) R-SQUARED AND ADJUSTED R-SQUARED
R-Squared is a statistical measure that predicts the future
outcome of an investment and how closely it aligns to a single
measured model [8], [39]. It is represented as the difference
between the observed value of the dependent variable for
the observation yi and the estimated value of the dependent
variable for the observation ŷi [7]:

R2 =
SSE
SST
=

n∑
i=1

(ŷi − ȳ)
2

n∑
i=1

(yi − ȳ)2
(10)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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2
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2
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TABLE 10. The values of R2
adj in different cases.

where R2 is R-Squared, ȳ is the average of the estimated
values, SSE is the sum of squares error and SST is the sum of
squares total.

SSE and SST are calculated as follows [7]:

SSE =
n∑
i=1

(ŷi − ȳ)
2 (11)

SST =
n∑
i=1

(yi − ȳ)2 (12)

The adjusted R-squared compares the correlation of the
investment to several measured models as [7]:

R2adj = 1−
[
(1− R2)(n− 1)
n− k − 1

]
(13)

where R2
adj is the adjusted R-squared.

Table 10 shows the adjusted R-squared values for both
databases based on the two approaches of regressions. High
adjusted R-squared means good performance in the estima-
tion processand vice versa. The results show that both the
Linear Regression and Non-linear Regression approaches
provide better estimation in case of MongoDB than in case
of MySQL. Unfortunately, adjusted R-squared is very low
0.636 in case of MySQL based on Linear Regression and
cannot be used. To solve this problem, the used dataset is
divided in two sets: the first one is from 1 to 6 sensors and
the second set is from 7 to 12 sensors.

MySQL first set (1:6) Linear Regressions Equation:

y = −6.238x2 + 0.366x1 + 135.383 (14)

MySQL second set (7:12) Linear Regressions Equation:

y = −48.276x2 + 0.827x1 + 220.148 (15)

MySQL first set (1:6) Non-linear Regressions Equation:

y = 0.473x22 − 0.015x1x2 + 0.399x1−12.659x2+141.239

(16)

MySQL second set (7:12) Non-linear Regressions Equa-
tion:

y=6.874x22−0.073x1x2+0.9264x1−150.557x2+591.552

(17)

Table 11 shows that dividing the dataset into two sets
improving the adjusted R-squared and therefore the perfor-
mance of estimation in the case of MySQL. However Non-
linear Regression approach still provides good performance
in estimation 0.974 than the Linear Regression approach. The

TABLE 11. The values of R2
adj in MYSQL cases.

results show that the Non-linear Regression approach pro-
vides better estimation results for MongoDB. On the other
hand, after dividing the dataset into two sets, the two Non-
linear Regression equations of the divided dataset is the best
for MySQL with adjusted R-squared 0.959, and 0.951 for
both the sets of data.

VI. CONCLUSION AND FUTURE WORK
In this paper, a comparison between MongoDB and MySQL
has been implemented to evaluate the performance of both
databases to deal with a large scale of heterogeneous IoT
data. Several scenarios were introduced to perform this target.
The results showed that increasing workloads in case of using
MySQL leads to a considerable loss in performance greater
than the case of using MongoDB. Three instances with
different capabilities are used to compare the performance
improvement for both databases. The proposed evaluation
helps to differentiate between the two types of databases
based on database workloads, the available resources capa-
bilities, the number of network connected-sensors and the
needed requirements. The results showed that there are cases
where MongoDB is better than MySQL in terms of both
latency and database size. On the other hand, there are other
cases where MongoDB is better in terms of latency and
MySQL is better in terms of database size; based on the
database workload and the number of connected sensors.
The differentiation in these cases is based on the available
resources capabilities.

Two data models of the MongoDB are introduced: refer-
ence and hybrid. The results show that the hybrid model is
better than the reference model and also better than MySQL
in terms of database size. Two prediction models of estimat-
ing the latency from measured data were introduced based
on two approaches: linear Regression and Non-linear Regres-
sion. The results showed that Non-linear Regression is better
than Linear Regression for estimating the latency in both
MongoDB and MySQL. A benefit from applying the regres-
sions approach is to select the appropriate DBMS based on
the low estimated latency.

As a future work for this paper, a hybrid model between
MongoDB and MySQL can be implemented and compared
against MySQL and MongoDB. Also, the evaluation process
can be performed using big-data workloads. Finally, the esti-
mation process can be implemented using the neural network
instead of the Regression process.
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