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ABSTRACT With the continuous improvement of substation automation, the number of communication
equipment has risen sharply, the network topology is more complicated, and the problem of unable to
locate the fault of process-level communication networks quickly and accurately has become more and more
prominent. Under this background, to improve the maintenance efficiency of process-level communication
networks in the smart substation, this article proposes a method for fault location of process-level commu-
nication networks based on deep neural networks. Based on the redundant monitoring of the fault state, the
fault feature information of different monitoring nodes in the message transmission process is analyzed, and
the characterization method of the fault feature information is proposed accordingly. Based on the emergence
principle, it realizes the automatic generation of fault samples according to the physical connection, logical
connection, and message subscription relationship of process-level communication networks. Combined
with the training rules in deep learning theory, a fault location model of process-level communication
networks based on deep neural networks is established, and the real-time location steps are given. Taking
the process-level communication network of a typical 110kV smart substation as an example, simulations
verify the effectiveness and accuracy of the proposed fault location method in single fault environments and
multiple fault environments. Besides, accurate results can be obtained evenwhen the fault feature information
is wrong or missing, and the anti-interference ability is excellent.

INDEX TERMS Smart substation, communication networks, fault location, deep neural networks, deep
learning.

I. INTRODUCTION
Smart substations have the remarkable characteristics of
intelligent main equipment and networked auxiliary equip-
ment [1], [2]. The process-level communication network con-
sisting of fiber-optic links and auxiliary equipment carries
the transmission of critical messages such as Sampled Val-
ues (SV) and Generic Object Oriented Substation Events
(GOOSE). The safety and reliability of the process-level
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communication network are a powerful guarantee for the
stable operation of smart substations [3].

The faults in the process-level communication network
mainly occur in the auxiliary equipment ports, switches,
and fiber-optic links [4]. Aiming at these faults, the tech-
nicians at this stage mostly judge the cause based on the
functions such as message records and traffic monitoring
in the Network Analyzer (NA). However, due to a large
number of equipment ports and the complicated fiber-optic
links in the process-level communication network, the types
of messages generated become more and more numerous,
leading to the loss of many essential messages. Besides,
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the communication between auxiliary equipment depends
on the message subscription relationship in the Substation
Configuration Description (SCD) file. Still, the SCD file only
has the source and destination of the message and does not
describe the actual physical connection. Therefore, when a
fault occurs on the process-level communication network, the
subscriber of the message can only issue an alarm, but cannot
locate the fault directly [5]. On this basis, xi proposed parsing
GOOSE and SV messages and combined with traffic control,
by setting three security lines to ensure the reliable transmis-
sion of critical messages [6]. This method can only prevent
the communication network from collapsing in a large area,
but unable to locate the fault. Li proposed a Shared Risk
Link Group (SRLG) weighted p-cycle algorithm (SWCA) to
reduce the possibility of simultaneous faults of the working
path and the protection path [7]. This method can mitigate the
impact of faults to a limited extent. However, the optimization
of bandwidth allocation alone cannot fundamentally solve
the faults. Luo proposed a flow-criterion method based on
communication equipment. Through the switch learning net-
work topology, establishing the relationship between logical
connection and physical connection, and counting informa-
tion of historical traffic to realize fault location [8]. However,
the topology structure of the auxiliary system in an actual
smart substation has various composition schemes. If part
of the message transmission uses a non-networking method,
this method fails. Zhang proposed a method based on the
cross-path method by using the proof table [9]. However, due
to the fault feature information used is too single, this method
can only reduce the range of suspicious faults and has the
limited anti-interference ability.

In summary, the current methods are unable to locate faults
in process-level communication networks quickly and accu-
rately. The reasons are as follows:

1) There are many types of faults in process-level commu-
nication networks, but there are fewer criteria, and the
correlation between fault features is weak.

2) The connection relationship between equipment is
complicated, so traditional methods cannot efficiently
and quickly analyze massive multidimensional data.

3) The problems such as distortion and loss that may
occur in the process of message transmission cause the
results obtained by the above methods to fluctuate with
different confidence levels of messages.

Given the shortcomings of the above methods and the reasons
analyzed, this article proposes a method for fault location of
process-level communication networks in smart substations
based on deep neural networks (DNN), which opens a new
way to break the bottleneck of current fault location. Based
on the redundant monitoring of the fault state of the process-
level communication network, the feature information of dif-
ferent monitoring nodes is analyzed, and the characterization
method of fault feature information is proposed. Based on
the emergence principle, the automatic generation of fault
samples is realized based on the physical connection, logical

FIGURE 1. Auxiliary system of line 1.

connection, and message subscription relationship of the
communication network. Combined with the training rules
of deep learning, a DNN-based model of fault location is
established. In real-time fault localization, the fault point can
be obtained by taking the fault feature information as input
and calculating with the DNN location model.

II. ANALYSIS OF FAULT FEATURE INFORMATION
The currently constructed smart substations all comply with
the IEC 61850. The smart substations have the process bus
and networked auxiliary equipment. However, in practical
engineering applications, there are still some differences in
the process-level communication networks of smart substa-
tions in different countries. The following discussion is based
on smart substations in China, as shown in Figure 1, taking the
secondary system of Line 1 as an example, the process-level
communication network is divided into network A and net-
work B, there is no significant redundancy in a single net-
work, but two completely independent networks and relative
auxiliary equipment are configured to ensure the reliability of
the secondary system.

So, the main characteristics of the process-level communi-
cation network of smart substations in China are:

1) In the network structure, it is specified that the process
bus uses the star topology, and other structures such as
ring topology are not used.

2) The smart substations adopt two independent sets of
protection equipment in any interval, corresponding to
two sets of networks.

3) Protection equipment, measurement & control equip-
ment, etc. are independent and diversified.

A. REDUNDANT MONITORING OF FAULT STATE OF
PROCESS-LEVEL COMMUNICATION NETWORKS
According to the relationships of message transmission
between the auxiliary equipment, the communication
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network can be divided into four components, namely the
source, the intermediate forwarding equipment (switch), the
fiber-optic link, and the destination. When some parts fail,
the transmission state of message flow will have differ-
ent changes, such as the message reception state and the
equipment operating state. Therefore, monitoring nodes at
various locations in the communication network can be used
to monitor the message flow in the fault state redundantly,
and the feature information obtained from these nodes is the
data foundation that supports accurate fault location.

The monitoring alarms involved in the fault location of
the process-level communication network based on different
monitoring nodes includes:

1) ALARMS OF ABNORMAL STATE BASED ON THE
DESTINATION
Unlike the equipment in the primary system, which requires
the separate monitoring equipment to achieve fault location,
most of the equipment in the auxiliary system has self-test
and communication functions [10], [11]. Therefore, we can
know the impact of the communication network fault by
deploying monitoring nodes on the destination of messages.
When a fault occurs on the fiber-optic link or the forward-
ing equipment, some of the messages cannot be received
regularly. At this time, the monitoring node will issue the
abnormal message reception alarm (AMRA). When a fault
occurs on the port of auxiliary equipment, in addition to fail-
ing to receive some of its subscribed messages regularly, the
corresponding faulty equipment will self-check abnormally.
In this case, the monitoring node will forward the self-test
error alarm (STEA) in addition to the AMRA mentioned
above.

2) ALARMS OF ABNORMAL STATE BASED ON THE SWITCH
When the message transmission between the auxiliary equip-
ment adopts the networking method, the stable operation of
the switch as the intermediate medium determines the reli-
ability of the networking method. Therefore, by configuring
the statistics function of message traffic on the switch, we can
obtain the traffic information that characterizes the inter-
nal operating state of the process-level communication net-
work [12]. When a fault occurs in the process-level commu-
nication network, the traffic of some GOOSE/SV messages
passing through the switch will drop sharply. At this time,
the monitoring node deployed on the switch will issue the
abnormal message traffic alarm (AMTA). Besides, switches
installed in smart substations generally have the function of
providing an alarm when a fault occurs on the power or other
boards. Therefore, if the switch itself fails, the monitoring
node will also forward the STEA. It is worth noting that if we
want to realize the function of message traffic statistics, it is
first necessary to analyze the messages through the switch
dynamically and perform message traffic statistics in the
format of Table 1 [13].

Using the above fault feature information to describe the
fault state has an excellent effect. For example, as shown

TABLE 1. Format of message traffic statistics.

FIGURE 2. Port A of the MU is faulty.

in Figure 2, several messages are transmitted between the
merging unit (MU) and other auxiliary equipment through
the switch. When port A of the MU is faulty, the traffic
of the message S1-S3 through the switch will drop sharply,
so AMTAs of message S1-S3 will be issued. And the related
auxiliary equipment will not be able to receive the mes-
sage S1-S3 so that the corresponding monitoring node will
issue AMRAs of message S1-S3. Also, the monitoring node
located in the MU will issue AMRAs of message G1-G2 and
forward the STEA. It should be noted that the above feature
information is not limited to a specific fault. For example,
the measurement & control equipment issues the AMRA of
message S1, then the L1, L2, and equipment on the link
through which the message S1 flows are all possible fault
locations. Therefore, it is challenging to locate the fault point
only by the traditional method. Besides, although the auxil-
iary equipment has the function of fault alarms, if a critical
location of the communication network fails (for example,
port A of theMU), some alarm signals are difficult to transmit
(for example, AMRAG1, AMRAG2, and STEAMU). There-
fore, as shown in Figure 1, the redundant monitoring in the
fault state proposed in this article is based on the third-party
monitoring, that is, AMRAs, AMTAs, and STEAs are all
counted and analyzed by the third-party system.

B. CHARACTERIZATION OF FAULT FEATURE INFORMATION
UNDER REDUNDANT MONITORING
Based on the above, in the fault state of the process-level com-
munication network, the fault section can be characterized by
utilizing fault feature information from different monitoring
nodes, as shown in (1):

Xi = [DesXi,MidXi] , i = 1, 2, ...Nsum (1)

In (1),Xi is the set of feature information when the i-th fault
occurs. DesXi is the subset of the X , including the message
reception state and equipment state of the message destina-
tion. MidXi is the subset of X , including traffic statistics and
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equipment state of the switch.Nsum is the total number of fault
events.

DesXi synthesizes the operating state of typical auxiliary
equipment, as shown in (2):

DesXi =
[
MU1, . . . ,MUj, . . . ,MUA,

P1, . . . ,Pk , . . . ,PB,
IT1, . . . , ITg, . . . , ITC ,
MC1, . . . ,MCn, . . . ,MCD]
MUj =

[
STEAMUj ,AMRAj1 ,AMRAj2 , . . . ,AMRAjm

]
Pk =

[
STEAPk ,AMRAk1 ,AMRAk2 , . . . ,AMRAkm

]
ITg =

[
STEAITg ,AMRAg1 ,AMRAg2 , . . . ,AMRAgm

]
MCn =

[
STEAMCn ,AMRAn1 ,AMRAn2 , . . . ,AMRAnm

]
(2)

In (2), A, B, C, and D are the total number of MU, pro-
tection equipment, intelligent terminals, and measurement &
control equipment, respectively. MUj is the subset of DesXi,
including the message reception state and equipment state of
the j-thMU. Pk is the subset of DesXi, including the message
reception state and equipment state of the k-th protection
equipment. ITg is the subset of DesXi, including the message
reception state and equipment state of the g-th intelligent
terminal. MCn is the subset of DesXi, including the message
reception state and equipment state of the n-th measurement
& control equipment. During the actual operation, if MUj
cannot receive the message j1, the monitoring node located
at MUj will issue the AMRA of message j1, at this time,
AMRAj1 = 1, otherwise AMRAj1 = 0. If MUj itself fails,
the monitoring node will forward the STEA, at this time,
STEAMUj = 1, otherwise STEAMUj = 0.
MidXi synthesizes the operating state of all switches in the

auxiliary system and the message traffic state received by
each port, as shown in (3):

MidXi = [S1, . . . , Sc, . . . , SN ]
Sc =

[
STEASc ,Port1, . . . ,Portj, . . . ,PortM

]
Portj = [AMTA1, . . . ,AMTAk , . . . ,AMTAm]

(3)

In (3), N is the total number of switches. Sc is the subset of
MidXi, including traffic statistics and equipment state of the
c-th switch, where Portj is the traffic information of j-th port
and contains m piece of message traffic information. During
the actual operation, if the traffic of message k received
through Portj is too low, the switch monitoring node will
issue the AMTA of message k . At this time, AMTAk = 1,
otherwise AMTAk = 0. If Sc itself fails, the monitoring node
will forward the STEA, at this time, STEASc = 1, otherwise
STEASc = 0.

III. DESIGN OF FAULT LOCATION MODEL
Due to the fault feature information has the characteristics of
large data volume and high data dimension, this article uses
deep learning to establish a non-linear mapping relationship
between fault features and fault locations [14], as shown

in (4). 
Y = f (X)
X =

[
x1, x2, . . . , xp

]
Y =

[
y1, y2, ...yq

] (4)

In (4), X is the set of fault feature information, p is the
dimension of the fault feature information, Y is the code of
the fault location, q is the dimension of the fault location code.

A. AUTOMATIC GENERATION METHOD OF FAULT
SAMPLES BASED ON EMERGENCE PRINCIPLE
According to the training rules in deep learning theory, neural
networks need a large number of fault samples to get the
optimal parameters. However, due to the high reliability of
some equipment in the actual operating environment, the
number of fault samples accumulated is tiny, so it is difficult
to support the training and testing of neural networks based
on the database formed by historical fault events. Therefore,
in addition to the existing fault samples, other methods must
be used to generate correct and reliable fault samples auto-
matically.

FIGURE 3. Automatic generation of fault samples.

Emergence refers to the characteristics of random behav-
iors that occur in the system based on the interrelationship
between individuals. As shown in Figure 3, the process-level
communication network at an interval is regarded as the
whole system. Whether each node fails is considered as a
random behavior that occurs by individuals. The topology
of the communication network, the message subscription
relationship, the operation of the equipment mechanism and
configuration model are the interrelationship between the
nodes. On this basis, if port A of the switch fails, the mes-
sage reception state, the message traffic information, and the
equipment operating state are the presented characteristics,
which are simultaneously the fault feature information above,
as shown in (5).

S(X ) = g
(
Cphy,Clog,C mod el,Dstate,E

)
(5)

In (5), X is the set of fault feature information. Cphy is the
physical topology of the communication network. Clog is the
logical topology of the communication network. Cmodel is the
configuration model of the communication equipment. Dstate
is the operating state of the communication equipment. E is
the working environment parameter.
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The fault samples generated by the above method can be
stored according to (6).{

DataBase =
[
Sam1, . . . , Samj, . . . , SamT

]
Samj =

[
Xj,Dstate,Cphy,Clog

] (6)

In (6), T is the total number of fault samples in the
database. Samj is the sample formed by the j-th fault event,
which contains the set of fault feature information (Xj).

B. THE DNN-BASED MODEL FOR FAULT LOCATION
DNN improves the capabilities of feature mining and data
fitting by increasing the number of hidden layers, and it is
widely used in fields such as natural language processing
and image analysis. Due to it increases the model depth, it is
superior to shallow models in processing big data [15], [16].
Due to a large number of fault feature information and the
non-linear relationship between fault features and fault types,
this article uses DNN to build a fault location model for the
process-level communication network.

FIGURE 4. DNN topology.

As shown in Figure 4, a typical DNN includes an input
layer, hidden layers, and an output layer. Among them, the
input layer is the set of fault feature information, and the
output layer is the code of the fault location.

During the forward propagation of DNN, neurons in the
same layer are not connected. The connection mode of neu-
rons between layers is full connection. The output of a par-
ticular neuron is shown in (7).

yn+1q = σ (z) = σ

(
m∑
i=1

ωniqy
n
i + b

n+1
q

)
(7)

In (7), yn+1q is the output of the neuron q in layer n + 1.
ωniq is the connection weight between the neuron i in layer
n and the neuron q in layer n + 1. bn+1q is the bias of the
linear relationship, where the superscript denotes the number
of layers and the subscript denotes the index of the neuron.
σ (z) is the activation function, and Sigmoid can be used.

In the DNN back-propagation process, we use the loss
function to measure the error between the calculated out-
put and the actual label of the training samples. The
back-propagation algorithm (BP) fine-tunes the parameters

ω and b of the network by solving the minimum value of the
loss function. In this article, a mini-batch learning method is
used, and the loss function uses cross-entropy to improve the
training speed and accuracy of the model. Therefore, the final
loss function is shown in (8).

E (θ) = −
1
N

∑
n

∑
q

tnq log ynq (8)

In (8), θ is the network parameter, including ω and b. N is
the total number of samples. tnq is the actual value of the n-th
element in the q-th sample. ynq is the predicted value of the
n-th element in the q-th sample.

A dropout mechanism is added to the model to prevent
overfitting, and it can change the structure of the neural
network by randomly discarding some neurons to reduce
the dependence between neurons [17]. Besides, to improve
the shortcoming of the constant learning rate in the iterative
process of the traditional gradient descent method, this article
also uses the adaptive moment estimation (Adam) algorithm
and the exponential decay method of the learning rate to
update the parameters [18]. The final optimization process
of the network parameter θ is shown in (9) and (10).

gt = ∇θE (θt−1)
mt = β1mt−1 + (1− β1) gt
vt = β2vt−1 + (1− β2) g2t
m̂t =

mt
1− β t1

v̂t =
vt

1− β t2

θt = θt−1 − α
m̂t√
v̂t + ε

(9)

α = α0β

epoch−num
N/batch−size
3 (10)

In (9) and (10), gt is the gradient of the network parameters.
mt is the exponential moving average of the gradient. vt is
the exponential moving average of the square of the gradient.
m̂t and v̂t are the corrected quantities. β1, β2, and β3 are
the exponential decay rates, which are taken as 0.9, 0.999,
and 0.95, respectively. α0 is the initial value of the learning
rate. epoch-num is the current training times. batch-size is the
batch processing parameter.

IV. STEPS OF FAULT LOCATION
Based on the above, a fault location framework of process-
level communication networks is shown in Figure 5. The
specific steps are:

1) A determination process for triggering the fault loca-
tion model is set to eliminate the interference of a
small number of error alarms. When the total number
of fault feature information is detected to be higher than
a threshold value, the fault location model is triggered.
The threshold value of this process is set to the min-
imum amount of alarm information at the time of the
historical fault.

VOLUME 8, 2020 109711



B. Ren et al.: Research on Fault Location of Process-Level Communication Networks in Smart Substation

FIGURE 5. Fault location framework.

2) The fault feature information of each monitoring node
is called to form X when the process-level communica-
tion network is faulty.

3) The X is used as the input of the neural network and
sent to the DNN model to obtain the fault localization
result.

V. SIMULATION EXAMPLE
A. INTRODUCTION TO SIMULATION
A typical process-level communication network of 110kV
smart substation is simulated to verify the effectiveness of
the fault location method proposed in this article, and its
topology is shown in Figure 6. The auxiliary system consists
of two line-intervals, two transformer-intervals, and one bus-
interval. Each interval contains the auxiliary equipment and
the fiber-optic links. To simulate the complex linking that
may occur in the actual working environment, the commu-
nication network in the example uses a ‘‘point to point’’ way
within the interval, and the remaining GOOSE/SV messages
are separately networked [19]. The equipment name, port
number, and link number has been given. The GOOSE/SV
messages transmitted in the network are shown in Table 2.

B. CONSTRUCTION AND OPTIMIZATION OF DNN MODEL
In this simulation scenario, according to the representa-
tion method of fault feature information and the infor-
mation in Tables 2 and Table 3, it is known that the
destination-based alarms have 112 elements, including 86
AMRAs and 26 STEAs. The switch-based alarms have 151
elements, including 146 AMTAs and 5 STEAs. Therefore,
the total number of neurons in the input layer is set to 263.
According to the description of the fault location of the
communication network, it is known that the 92 equipment
ports and 46 fiber-optic links are all possible fault locations,
so the total number of output layer neurons is set to 138. It is
particularly pointed out that if all ports of specific equipment
are judged to be faulty, there is reason to highly suspect that
the I/Omodule of this equipment or even the entire equipment
is defective.

Based on the aforementioned automatic generationmethod
of fault samples, the samples obtained for each fault type are

TABLE 2. GOOSE/SV messages transmitted in the network.

divided into training samples (about 80%) and test samples
(about 20%). The neural network is optimized by setting
different hyper-parameters, and the optimal hyper-parameters
are selected with the discrimination accuracy of the training
samples. The results are as follows.

It can be seen from Figure 7 that under the premise of fixed
initial learning rates and batch-size, the optimization effect of
the neural network is best when there are one hidden layer and
512 neurons. Increasing the number of hidden layers and the
number of neurons contained in each layer will increase the
difficulty of training the neural network, although the initial
convergence rate is relatively fast, the final training accuracy
is lower. When the number of hidden layers and the number
of neurons is small, the fitting performance of the neural
network is weak, and the convergence speed is slow.

It can be seen from Figure 8 that after determining the
number of hidden layers and the number of neurons, α0 =
0.07 and batch-size=256 are the best for the neural network.
When the α0 is larger, the convergence speed is slightly faster.
Still, the final training accuracy rate is worse. When the α0
is smaller, the convergence speed of the neural network is
significantly reduced, and the ultimate training accuracy rate
is reduced. Increasing batch-size can improve the accuracy of
the training. Still, when it rises to a certain degree, its impact
on the accuracy is minimal, and the training time of the neural
network is greatly extended. Besides, with the increase of the
number of iterationswithin a specific range, the training accu-
racy rate of the neural network will continue to improve. Still,
when the number of iterations rises to a certain degree, the
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FIGURE 6. The process-level communication network of 110kV smart substation.

TABLE 3. Messages received through each port of the switch.

training accuracy rate will become stable. So, the maximum
value after the training accuracy rate stabilizes is selected to
reduce the training time and resource loss of themodel, which

FIGURE 7. Effects of hidden layers and neurons on neural network
optimization.

is the best when the number of iterations is 4600. At this time,
the training accuracy rate is 96.467%.

In summary, the main hyper-parameters of DNN are shown
in Table 4:

VI. EXPERIMENTAL RESULTS
The following analysis is carried out from a single fault, mul-
tiple faults, and unreliable fault feature information to show
the effectiveness of the DNN model in various environments,
and the DNN model is compared with the traditional fault
location method.

A. RESULTS IN SINGLE FAULT ENVIRONMENTS
The single fault environment means that there is only one
fault point at the same time. The verification of the test set
can analyze the effectiveness of theDNNmodel in single fault
environments, as shown in Figure 9.

It can be seen from Figure 9 that the DNN model has an
excellent recognition effect for each fault type in the test
set, and the accuracy rate is maintained at 97.5% ∼ 100%.
The average location accuracy rate of the fiber-optic fault is
98.972%, and the average location accuracy rate of the port
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TABLE 4. The main hyper-parameters of DNN.

TABLE 5. Message traffic affected by the fault of fiber-optic L2.

fault is 99.139%. The overall accuracy rate of all test samples
reaches 99.072%, which meets the actual engineering need.

For real-time fault location, it takes the fiber-optic L2 fault
in Figure 6 as an example. After the fault occurs, as shown
in Table 5, the traffic of these messages will drop sharply,
whichwill trigger the AMTAs of thesemessages. Besides, the
related auxiliary equipment will also issue AMRAs because
they cannot regularly receive these messages. Therefore,
DesX and MidX in the set X composed of the above alarms
are as shown in (11) and (12). (Due to a large amount of data,
only non-zero term position elements are listed.)

DesX = [MU1,P1,P5, IT1,
MC1,MC2,MC3,MC4,MC5]
MU1 = [AMRAS13] , IT1 = [AMRAG57]
P1 = [AMRAG56] ,P5 = [AMRAG9,AMRAS2]
MC1 = [AMRAG10,AMRAG19,AMRAG35,AMRAG51]
MC2 = [AMRAG3] ,MC3 = [AMRAG4]
MC4 = [AMRAG5] ,MC5 = [AMRAG6]

(11)

MidX = [S1, S2, S3, S4, S5]
S1 = [Port4]
Port4 = [AMTAG10,AMTAG19,AMTAG35,
AMTAG51,AMTAG56,AMTAG57,AMTAS13]
S2 = [Port17] ,Port17 = [AMTAG3]
S3 = [Port29] ,Port29 = [AMTAG4]
S4 = [Port53] ,Port53 = [AMTAG5]
S5 = [Port79]
Port79 = [AMTAG3,AMTAG4,AMTAG5,
AMTAG6,AMTAG9,AMTAS2]

(12)

FIGURE 8. Effects of bath-size and initial learning rate on neural network
optimization.

The location result Y obtained is shown in (13) by using the
set X as input to the optimal DNN model (The output layer
threshold is set to 0.9):

YDNN =
[
L2
0, . . . , 1, . . . , 0

]
(13)

Traditional fault location approaches take the cross-path
method and the flow-criterion method as examples [8-9].

The cross-path method only locates faults based on the
state of message reception. In this example, by some auxiliary
equipment that cannot regularly receive the messages (G3,
G4, G5, G6, G9, G10, G19, G35, G51, G56, G57, S2, and
S13), the fault location result obtained is shown in (14):

Ycross−path =
[
L2Port4Port79
0, . . . , 1, . . . , 1, . . . , 1, . . . , 0

]
(14)

The flow-criterion method only locates faults based on the
state of message traffic. In this example, the traffic of some
messages (G3, G4, G5, G6, G9, G10, G19, G35, G51, G56,
G57, S2, and S13) through the switch drops sharply, so the
fault location result obtained is shown in (15):

Yflow−criterion =
[
L2Port2Port4Port79
0, . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . , 0

]
(15)

The relative error between the actual fault range and the
suspected fault range is used as an evaluation index to com-
pare the effects of different methods, as shown in (16):

Er
(
Ŷ
)
=

∣∣∣Y − (Y ∩ Ŷ)∣∣∣
|Y |

(16)

In (15), Y is the suspected fault range. Ŷ is the actual fault
range. Specify |Y | as the number of non-zero elements in the
set Y.

According to the calculation method of relative error, when
the L2 fails, the relative error of the DNN model proposed
in this article is 0. Still, the relative errors of the cross-path
method and flow-criterion method are 0.667 and 0.75 respec-
tively. It can be seen that the method proposed in this article
can effectively reduce the suspected fault range by using
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TABLE 6. Comparison of three methods in single fault environments.

multidimensional features andDNN to improve the efficiency
of operation and maintenance.

According to the above fault location process and the
calculation method of relative error, fault analysis and error
calculation are carried out for all fault events in the test
sample set by the DNN model, the cross-path method, and
flow-criterion method. The maximum error, the minimum
error, and the average error of the two methods are compared,
as shown in Table 6.

It can be known from Table 6 that the average error and the
maximum error of the DNN model are both lower than the
cross-path method and flow-criterion method, so the DNN
model can significantly improve the accuracy of fault loca-
tion. The reason for this result is enlarging the dimension of
the fault feature information and adopting a more reasonable
method to process multidimensional data.

B. RESULTS IN MULTIPLE FAULT ENVIRONMENTS
The multiple fault environment refers to the existence of two
or more fault points at the same time. These fault points may
be located at the same interval or at different intervals.

Take the port 7 of MU 1 and the port 88 of protection
equipment 5 in Figure 6 as an example. When two ports
fail at the same time, as shown in Table 7, the traffic of
these messages will be significantly reduced, thus triggering
AMTAs. Besides, some auxiliary equipment that subscribes
the messages (G1, G8, G9, G18, G31, G34, G47, G50, G56,
G57, G58, G59, G60, G61, G62, G63, G64, G65, S1, S2, S4,
S6, S8, S10, S12, and S13) will send AMRAs. The MU 1 and
the protection equipment 5 will also issue STEAs. Therefore,
DesX and MidX in the set X composed of the above alarms
are as shown in (17) and (18). (Due to a large amount of data,
only non-zero term position elements are listed.)



DesX = [MU1,P1,P2,P3,P4,P5,
IT1, IT2, IT3, IT4, IT6, IT7]
MU1

=
[
STEAMU1 ,AMRAG1,AMRAG8,AMRAS1,AMRAS13

]
P1 = [AMRAG56] ,P2 = [AMRAG58]
P3 = [AMRAG61] ,P4 = [AMRAG64]
P5 =

[
STEAP5 , AMRAG9,AMRAG18,AMRAG31,

AMRAG34,AMRAG47,AMRAG50,AMRAS2,AMRAS4,
AMRAS6,AMRAS8,AMRAS10,AMRAS12]
IT1 = [AMRAG57] , IT2 = [AMRAG59] , IT3 = [AMRAG60]
IT4 = [AMRAG62] , IT6 = [AMRAG63] , IT7 = [AMRAG65]

(17)

TABLE 7. Message traffic affected by faults of port 7 and port 88.



MidX = [S1, S2, S3, S4, S5]
S1 = [Port3,Port4]
Port3 = [AMTAS1,AMTAS2]
Port4 = [AMTAG56,AMTAG57]
S2 = [Port17] ,Port17 = [AMTAG58,AMTAG59]
S3 = [Port29] ,Port29 = [AMTAG60,AMTAG61,AMTAG62]
S4 = [Port53] ,Port53 = [AMTAG63,AMTAG64,AMTAG65]
S5 = [Port79,Port85] ,Port79 = [AMTAS2]
Port85 = [AMTAG56,AMTAG57,AMTAG58,
AMTAG59,AMTAG60,AMTAG61,
AMTAG62,AMTAG63,AMTAG64,AMTAG65]

(18)

The location result Y obtained is shown in (19) by using the
set X as input to the optimal DNN model (The output layer
threshold is set to 0.9):

YDNN =
[
Port7Port88
0, . . . , 1, . . . , 1, . . . , 0

]
(19)

According to the analysis process of the cross-pathmethod,
it locates faults based on the reception state of the messages
sent by port 7 and port 88, respectively. However, since the
transmission path of the message S1 sent from port 7 and the
transmission path of all the messages sent from port 88 have
no intersection, so the location result is an empty set, and the
relative error is 1. According to the analysis process of the
flow-criterion method, the traffic of some messages (G56-
G65, S1, and S2) through the switch drops sharply, so the
fault location result obtained is shown in (20), and the relative
error is 0.667, while the relative error of the DNNmodel is 0.

Yflow−criterion

=

 L3L43Port3Port850, . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . , 1, . . . , 0
Port7Port88


(20)

One hundred sets of samples were randomly simulated
to verify the general location effect of the DNN model in
multiple fault environments. According to the above fault
location process and the calculation method of relative error,
fault analysis and error calculation are carried out for all fault
samples by the DNN model, the cross-path method, and the
flow-criterion method. The results are shown in Table 8.
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FIGURE 9. Results in single fault environments.

TABLE 8. Comparison of three methods in multiple fault environments.
(a) Two fault points. (b) Three fault points

It can be known from Table 8 that the relative error of the
DNN model is lower than other methods, while the accuracy
of the DNN model is higher than other methods. With the
increase of the fault complexity, although the average error of
the DNN model increases slightly, considering that the prob-
ability of multiple faults in the actual operating environment
is low, hence, the DNNmodel still has a reliable fault location
capability.

C. ANALYSIS OF ANTI-INTERFERENCE ABILITY WITH
UNRELIABLE FAULT FEATURE INFORMATION
Unreliable fault feature information refers to the situation in
which fault feature information is incorrect or lost. The anti-
interference ability of the DNN model is discussed below.

Taking the fault of the fiber-optic L2 as an example.
After the fault occurs, if the intelligent terminal 1 incorrectly
reports the AMRA of message G2, and the remaining fault
feature information is correct, then, DesX and MidX in the
set X are shown in (21) and (22). (Due to a large amount of
data, only non-zero position elements are listed.)



DesX = [MU1,P1,P5, IT1,
MC1,MC2,MC3,MC4,MC5]
MU1 = [AMRAS13] , IT1 = [AMRAG2,AMRAG57]
P1 = [AMRAG56] ,P5 = [AMRAG9,AMRAS2]
MC1 = [AMRAG10,AMRAG19,AMRAG35,AMRAG51]
MC2 = [AMRAG3] ,MC3 = [AMRAG4]
MC4 = [AMRAG5] ,MC5 = [AMRAG6]

(21)

MidX = [S1, S2, S3, S4, S5]
S1 = [Port4]
Port4 = [AMTAG10,AMTAG19,AMTAG35,
AMTAG51,AMTAG56,AMTAG57,AMTAS13]
S2 = [Port17] ,Port17 = [AMTAG3]
S3 = [Port29] ,Port29 = [AMTAG4]
S4 = [Port53] ,Port53 = [AMTAG5]
S5 = [Port79]
Port79 = [AMTAG3,AMTAG4,AMTAG5,
AMTAG6,AMTAG9,AMTAS2]

(22)

The location result Y obtained is shown in (23) by using the
set X as input to the optimal DNN model (The output layer
threshold is set to 0.9):

YDNN =
[
L2
0, . . . , 1, . . . , 0

]
(23)

According to the analysis process of the cross-pathmethod,
the fault location result is shown in (24). The fault location
result of the flow-criterion method is still shown in (15).

Ycross−path

=

 L2L4Port4Port130, . . . , 1, . . . , 1, . . . , 1, 1, . . . , 1, . . . , 1, . . . , 0
Port5Port79


(24)
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TABLE 9. Comparison of three methods in unreliable fault feature
information environments.

At this time, the relative error of the cross-path method
is 0.833, and the relative error of the flow-criterion method
is 0.75, while the relative error of the DNN model is still
0. The reason is that the false AMRA of message G2 and
the AMRA of message G57 cause the fiber-optic L4 and the
ports on both sides to bemistakenly regarded as fault points in
the cross-path method. However, the DNN model takes into
account the message traffic conditions of the switch, since
the monitoring node located in the port 2 of switch 1 does
not issue the AMTA of message G2, the weight of false
AMRA of message G2 is weakened. It can be seen that the
cross-path method is hugely susceptible to the confidence of
the feature information. Still, the use of redundant detection
can help improve the anti-interference ability of the fault
location model.

One hundred sets of fault samples are selected in the
test set to discuss whether the DNN model has general
anti-interference ability, these fault samples can obtain cor-
rect location results through the DNN model, the cross-path
method and the flow-criterion method. Randomly set a piece
of feature information belonging to DesX or MidX in each
group of samples to ‘‘0’’ (initially ‘‘1’’) or ‘‘1’’ (initially
‘‘0’’) to simulate an environment where the feature informa-
tion is unreliable. Taking the DNN model, the flow-criterion
method, and the cross-path method to analyze the processed
samples, and the results are shown in Table 9.

As can be seen from Table 9, the relative error of the DNN
model is lower than other methods, while the accuracy of the
DNN model is higher than other methods, so it has an excel-
lent anti-interference ability in the environments where the
feature information is wrong or missing. Besides, it should be
noticed whether different information confidence will affect
fault location results. In the future, it will also be possible to
consider adding information certification to eliminate incor-
rect fault location results caused by tampering or damaging
information during external malicious invasion [20].

VII. CONCLUSION
With the process-level communication network of smart sub-
stations is becoming more sophisticated, aiming at the prob-
lem that the fault is challenging to be accurately located, this
article proposes a method for fault location of process-level
communication networks based on DNN. First of all, based
on the redundant monitoring of the fault state, the feature
information obtained by the monitoring nodes in different
positions is analyzed, and the characterization method of
fault feature information is proposed. Secondly, based on the
emergence principle, a large number of fault samples are

automatically generated to expand the training set. Finally,
combined with the training rules in deep learning theory,
a fault location model of process-level communication net-
works based on DNN is established, and the real-time loca-
tion steps are given.

Simulation results show that the DNN model can handle
high-dimensional sets of fault feature information and accu-
rately locate faults in various fault environments. Besides,
under the influence of loss or error of feature information, the
DNN model can still accurately determine the fault point and
has an excellent anti-interference ability. So, the DNN model
can reduce the impact of the information confidence on the
fault location in the increasingly complex operating environ-
ment. The next work can be carried out from three aspects,
one is to select a better deep learning algorithm to optimize
the model [21]–[23]; the second is to consider more diverse
communication network structures, such as ring topology; the
third is to expand the scope of fault identification to achieve
the overall state monitoring of the smart substation auxiliary
system.
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