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ABSTRACT Single-cell RNA sequencing(scRNA-seq) technology has boomed in the past decade which
makes it possible to study biological problems at the resolution of cellular-level. Currently, the research
mainly focuses on exploring the cellular heterogeneity, involving studies about identifying cell type identi-
fication, cell lineage tracing, spatial model reconstruction of complex organizations, etc. Clustering analysis
is always the most effective way in grouping single cells in previous studies. However, existing scRNA-seq
clustering methods separate pre-processing and clustering tasks that complicated the problem. In addition,
the emergence of big data further limits the traditional clustering algorithms’ application on scRNA-seq
data. Therefore, developing novel clustering methods and improving clustering accuracy for growing
scRNA-seq data is a continuous task. In this paper, we propose a highly integratedDeep SubspaceClustering
Denoise Network named DSCD, which integrates denoise, dimension reduction and clustering in a unified
framework. Based on the neural network architecture of autoencoder, DSCD discovers the low dimensional
latent structure within scRNA-seq data from the compressed representation. Furthermore, we add a novel
self-expressive denoise layer to learning the global relationships between single cells, which is the main
innovation of DSCD. Experimental results on the synthetic data demonstrate the effectiveness of the novel
denoise layer. From the clustering results on 5 real scRNA-seq datasets, we find that DSCD outperforms
the related subspace clustering algorithms and state of the art methods. In conclusion, DSCD responds well
to the rapidly increasing scRNA-seq data scale, greatly reduces human interference in dimension reduction
and handles the noisy scRNA-seq data in proper way thus obtain a higher clustering accuracy.

INDEX TERMS Single cell RNA-seq data, auto-encoder, sparse self-express, spectral clustering.

I. INTRODUCTION
Traditional RNA sequencing (RNA-seq) technology mea-
sures the average expression of genes across many cells
of different cell types, which may mask the real functional
capacities of each cell type and thus hinder the study of
cell heterogeneity. Fortunately, the emergence of scRNA-seq
technology overcame the limitations in traditional bulk
RNA-seq, which enables researchers to investigate the cellu-
lar heterogeneity from many aspects including determine cell
types and predict cell fates, thus presenting more potential
benefits for cell biology and clinical applications.

To mining valuable information from scRNA-seq data,
researchers solve multiple tasks of single cell data from
a computational perspective. Combined with the unique
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characteristics of scRNA-seq data, tailored approaches
involved in feature selection, feature reduction, clustering,
visualization an differentiated genes identification have been
developed in recent years. Thereinto, clustering is the most
effective way to study the cellular heterogeneity. It is an
intuitive method to identify cell types from a large number
of heterogeneous cells. Therefore, it is of great significance
to improve the accuracy of clustering algorithm [1].

Formally, the process of clustering scRNA-seq data is as
follows. Given a gene expressionmatrix, the row of thematrix
represents the cell, the column represents the gene, each
element in the matrix represents the expression value of the
gene in the corresponding cell. The purpose of clustering is
to group cells by measuring the similarity of genes. After
clustering the cells, the cells would be divided into several
categories, each type of cells has a specific biological mean-
ing. There are many challenges to this task [2]: First, noise
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which is caused by the cell cycle state [3], the difference
between scale of gene pool [4] and the low RNA capture
rate [5] will damage the potential biological signals and affect
the single-cell sequencing data analysis [6]. Second, Batch
effects, which are mainly due to daily changes in environ-
mental conditions, such as temperature, machine calibration,
or measurement efficiency [7]. Last, the increase in data
scale is due to the continuous exponential growth of the
number of cells that can be used for scRNA-seq analysis,
which is resulted from the development of technology and the
improvement in protocol. The number of cells collected can
be increased to a million level by using the latest sequence
technology called ’In situ barcoding’ [8]. Therefore, new
effective dimension reduction methods and methods that can
deal with large data sets need to be developed.

II. LITERATURE REVIEW
At present, many research teams are studying the single-cell
clustering method, as in [9], Justina Zurauskiene et al. pro-
posed a new method, which combined principal component
analysis and hierarchical clustering, and established a frame-
work to describe the consistency of cell state. In SSC [10],
Elhamifar et al. proposed a sparse subspace clustering algo-
rithm to cluster data points on the union of low dimensional
subspaces. However, in the sparse subspace clustering algo-
rithm, the solution of the minimization problem of norm
needs a lot of iterative process with high time complex-
ity [11]. In Zheng’s research [12], they used K-means to
cluster droplet-seq data, K-means algorithm has high effi-
ciency and scalability in dealing with massive data, but
K-means is difficult to identify aspheric shape clusters [13].
Guo’s research [14] is a processing flow of scRNA-seq
data analysis. He firstly preprocessed the data, screened
out the low expression genes according to preset standards
(such as deleting genes expressed in less than n cells), and
then used Z-SCORE to regularize the columns. Butler’s
research [15] is a tool for analyzing single cell transcriptome
data, which provides a standard analysis process, including
data normalization, finding differential genes, constructing
SNN (shared nearest neighbors) graph andmodular optimizer
algorithm clustering. For the deep learning method, Gökcen
Eraslan et al. combined the auto-encoder and zero expansion
negative binomial distribution [16]. Through redesigning the
loss function, they got a good ‘‘dropout’’ removal effect on
the simulation data after training the distribution parameters.
After getting ‘‘clean’’ data, they used K-means to cluster.

Through the introduction to previous studies, we can
find that the basic structure of the former clustering frame-
work is a two-step mode, including ’data preprocessing’
and ’clustering’. The preprocessing methods include dimen-
sion reduction, feature extraction and gene normalization,
while clustering methods are various, including density
based, distance based, graph based and depth learning based
methods [17]. There are four problems of these models.
Firstly, thesemodels lack integration and unity, preprocessing
and clustering are not closely linked and integrated into a

unified framework. Secondly, when dealing with a large num-
ber of high-dimensional sample, the limitations of traditional
clustering algorithm are increasingly obvious, so it is urgent
to introduce new methods to solve the clustering problem
of scRNA-seq. Thirdly, previous studies have introduced too
many subjective factors into the feature extraction which
is based on experience, but experience is not always cor-
rect. Fourthly, related works lack the research of clustering
itself, such as exploring the subspace structure hidden in cell
groups.

In this paper, based on the assumption that similar data
points are easier to be expressed by linear combination of sim-
ilar data points, we proposed a deep neural network structure
of unsupervised subspace clustering [18] for single cell clus-
tering. This built on the deep auto-encoder structure, maps the
input data onto a potential space, thus achieves the purpose of
spontaneously dimension reduction. In order to simulate the
effective ‘‘self-expressive’’ features in traditional subspace
clustering and denoise the data, a new self-expressive denoise
layer is introduced between encoder and decoder. The new
self-expressive denoise layer can remove the noise and learn
the pair affinities among all data points more accurately
through a standard back propagation process.

III. METHOD
The algorithm flow is shown in Figure1. The original dataset
is firstly divided into training set and validation set. Initialize
pre-training network with random parameters. The training
set is divided into mini-batches and then feed to the network.
The loss value is calculated according to the loss function and
the parameters of the pre-training network are updated. After
the update, the validation set will be sent to the pre-training
network to get the loss value, determining whether the loss
value is the minimum. When the loss value achieved the
minimum, stop the pre-training and save the current network
parameters, then initialize the deep subspace denoise net-
work parameters with the corresponding pre-training network
location. Update parameters according to the newly designed
loss function. When the training reaches up to 300 rounds,
terminate the training and extract the self-expressive matrix
located in the self-expressive layer. After constructing sim-
ilarity matrix with the aid of the self-expressive matrix,
clustering results is obtained by spectral clustering. The fol-
lowing parts will explain the components of the algorithm
in detail, in which subsections ’self-expressive’ and ’deep
auto-encoders’ are both components of the subsection ’deep
subspace denoise network’.

A. SELF-EXPRESSIVE
Self-expressive means that, a sample can be expressed in
terms of a few other complete samples from the same lin-
ear subspace [19]. That means, given multiple data points{
Si
}
i=1,2,...,K extracted from linear subspace

{
Xi
}
i=1,2,...,N ,

any point in the subspace can be expressed as a linear
combination of other points in the same subspace. If all
the points are superposed into a column of data matrix X ,
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FIGURE 1. Flow chart of algorithm.

the self-expressive property can be expressed by X = XC ,
in which C is the self coefficient matrix. Generally speaking,
C is not unique, so we look for the sparsest C to construct
affinity matrix for spectral clustering.

min
C
‖C‖ p s.t.X = XC, (diag (C )= 0) (1)

where ‖ • ‖p is the norm of any matrix, and the optional
diagonal constraint onC prevents the trivial solution of sparse
induced norm. In this paper, equality constraints are relaxed
to regularization terms,like

min
C
‖C‖ p+

λ

2
‖X − XC‖ F2 s.t.diag (C )= 0) (2)

However, self-expressive is only applicable to linear sub-
spaces. In this paper, our goal is to learn an explicit mapping
to facilitate the separation of subspaces. Therefore, in this
paper, we built a neural network based on the deep auto-
encoder.

B. DEEP AUTO-ENCODERS
Auto-encoder [20] is a data compression algorithm, in which
the data compression and decompression functions are data-
related, lossy, and learning from the samples automatically.
The neural network of auto-encoder consists of two parts:
encoder and decoder. The encoder compresses the input into
a potential spatial representation, and the decoder aims to
reconstruct the input from the hidden spatial representation.
The goal of this part is to train a deep auto-encoder as shown
in Figure2, so we introduce a new layer to present the concept
of self-expressive. Loss function of auto-encoder is shown as
follows.

L =
1
2

∥∥X ′ − X∥∥2F (3)

C. PRE-TRAINING NETWORK
In order to improve the training efficiency of the model,
pre-training is introduced to this paper, and input the recon-
structed single-cell data to the formal deep subspace model

FIGURE 2. Architecture of deep auto-encoders.

FIGURE 3. Architecture of pre-training network.

as the denoised data [21]. The structure of the pre-training
network is the part except for the self-expressive layer in
the deep subspace network, as shown in Figure 3. The net-
work of pre-training includes two auto-encoding layers and
two auto-decoding layers. The number of neurons in the
encoding layer is the dimension of the genes, and the decod-
ing layer is symmetrical with the encoding layer, and the
latent layer has 256 neurons. The Adam optimizer is selected
and the learning rate is set to 0.001. Different parameters
have been tried, including increasing the layers and neurons
in each layer. Basically, the model is supposed to make a
balance between efficiency and precision. Additionally, due
to the ’dropout’ phenomenon, which means that 70%-90%
genes in each cell express zero. The ’dropout’ phenomenon
contribute negative effect to the clustering, the remaining
gene transform into protein which gathering in small group
to function. Therefore, the number of latent layer(256) is
corresponding to the functional numbers in the orders of
magnitude.

In order to confirm the training destination and avoid
over-fitting of network, we adopt the strategy of early termi-
nation in the process of pre-training. The data set is divided
into training set and validation set. After each iteration,
the respective error rate is calculated. When the error rate on
the validation set reaches the minimum, the training would
be stopped. Because if the training not be stopped, the error
rate on the training set will continue to decrease, while the
error rate on the validation set will increase. It means that
the generalization ability of the proposed model will start to
deteriorate. At this time, the whole data set can be sent into
the model to get the denoised data for the deep subspace net-
work. Then the parameters corresponding to the pre-training
network and the deep subspace network are migrated as the
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FIGURE 4. Architecture of deep subspace network.

initial parameters of the deep subspace network. This greatly
increases the speed and efficiency of network training.

D. DEEP SUBSPACE DENOISE NETWORK
The network of deep subspace denoise network is shown
as Figure4, which includes two auto-encoding layers, one
self-expressive denoise layer and two auto-decoding layers.
Since the auto-encoder is composed of encoder and decoder,
the parameters of the auto-encoder2 can also be decomposed
into encoder parameter 2e and decoder parameter 2d . And
let the decoder parameter 2d represent the output of the
encoder Z2e.

Define the loss function as:

L(2,C,B) =
∥∥X − X̂2∥∥2F + λ1 ‖C‖p
+λ2 ‖B‖p + λ3

∥∥Z2e − (Z2eC + B)
∥∥2
F (4)

where X̂2 represents the data reconstructed by auto-encoder,
and the goal of auto-encoder reconstruction is to minimize
the loss function. Since C and B can be regarded as the
parameters of additional network layer, that is, the coefficient
matrix in self expression and the noise bias, we can use the
back propagation to solve 2, C and B.

In formula 4, parameters λ1, λ2 and λ3 are taken as the
reciprocal of their dimension product to balance three terms
in the loss function. The first term of the fraction aims
to ensure the reconstruction accuracy of the auto-encoder,
which achieves the dimension reduction of the encoder.
The second term of the fraction guarantees the sparsity of
the self-expressive matrix which is represented by C in the
self-expressive denoise layer, and the norm constraint can
achieve the sparsity when p is a positive integer, which has
been proved in [10]. The third term is similar to the second
term, which is sparse and aims at solving the noise in the data
matrix, also makes sure that the similarity matrix reflects real
relationship between data points. The forth term of fraction
guarantees the validity of self-expressive matrix, because
each data point can be represented by a linear combination
of other points,this linear operation corresponds to a group of
linear neurons without nonlinear activation.

In practical, the number of neurons in encoding layer is
the dimension of genes(512) and the endecoding layer is

symmetrical with the encoding layer. The middle self-
expressive denoise layer maps the whole batch which means
the whole dataset into the same dimension which called
self-expressive and sends it to the decoder for decoding. The
activation function of all layers in the network uses leaky
corrected linear. The deep subspace network needs to be
trained with the whole data set as a mini-batch. We choose
the Adam optimizer and set the learning rate to 0.001 for the
noise and similarity term, 0.0001 for the FC layerswhich have
been trained in the pre-train process. It should be noted that
since each batch is the whole data, it is necessary to increase
the number of training rounds to ensure that the network is
fully trained.

After getting the result of C , we use C to construct simi-
larity matrix, then utilize spectral clustering to get the final
clustering results.

E. SPECTRAL CLUSTERING
The spectral clustering algorithm is based on the spectral
graph theory. Compared with the traditional clustering algo-
rithm, it has the advantages of clustering on the sample space
of any shape and converging to the global optimal solution.

The spectral clustering algorithm first defines an affinity
matrix to describe the similarity of pairs of data points accord-
ing to the given sample data set, and calculates the eigen-
values and eigenvectors of the matrix, then selects appro-
priate eigenvectors to cluster different data points. Algo-
rithm 1 shows the algorithm flow chart of spectral clustering
algorithm.

IV. RESULT
In this section, we firstly make a brief introduction about the
evaluation criteria and datasets used in this paper. Then we
generate a synthetic dataset as toy example to evaluate the
effectiveness of the denoise layer. We consider two kinds of
regularization method of C , (i) l1 norm is the absolute addi-
tion of all values in the matrix, which will form DSCD-Net-l1
network, (ii) l2 norm is the square addition of all values in the
matrix, which will formDSCD-Net-l2 network. As a contrast,
We use DSC-Net-l1, DSC-Net-l2 [22] and some other state-
of-art methods as comparasion experiments.
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Algorithm 1 Framework of spectral clustering

Input: Similarity matrix S ∈ Rn×n,number k of clusters to
constuct;

Output: Clusters A1, . . . ,AK with Ai = j|yj ∈ Ci
1: Construct a similarity graph. Let W be its weighted

adjacency matrix.
2: Compute the first K eigenvectors v1, . . . , vk of L;
3: Let V ∈ Rn×k be the matrix containing the vectors

v1, . . . , vk as columns.
4: For i = 1, . . . , n,Let yi ∈ Rk be the vector correspond-

ing to the i-th row of V .
5: Cluster the points (yi)i=1,...,n in Rk with the k-means

algorithm into clusters C1, . . . ,Ck = 0.

A. EVALUATING CRITERIA
1) ADJUSTED RAND INDEX
The Rand coefficient requires a given actual category infor-
mation C , assuming that K is a clustering result, a means
that both C and K are elements of the same category, and
b means that in C and K are elements of different categories,
the RAND index is:

RI =
a+ b

C
nsamples
2

(5)

Numerator represent the number of samples with consistent
attributes, they can belong to or do not belong to this class.
a is the number of samples whose ground truth in the same
class, and the prediction classification is also in the same
class; b is the number of samples whose ground truth in differ-
ent classes, and predicted classification are also in different
classes. The denominator represents howmany combinations
that two samples have in a class, which is the total element
that can be composed in the dataset. The range of RI is [0,1],
and a larger value means that the clustering results match the
real situation.

For random results, RI does not guarantee that the score
is close to zero. In order to achieve ‘‘in the case of random
clustering results, the indicator should be close to zero’’,
the adjustment rand coefficient(ARI) was proposed, which
has a higher degree of differentiation

ARI =
RI − E[RI ]

max(RI )− E[RI ]
(6)

The value range of ARI is [-1,1]. A higher ARI value means
that the clustering results match the ground truth. In a broad
sense, ARI measures the degree to which the two data distri-
butions fit.

2) SILHOUETTE COEFFICIENT
Silhouette coefficient(SC) is also an evaluation criterion of
clustering. A good cluster is dense inside and sparse outside.
The samples of the same cluster should be dense enough, and
the samples of different clusters should be sparse enough.
The Silhouette coefficient is to calculate the average distance
a between a specific sample in the sample space and other

TABLE 1. Overview of 5 scRNA-seq datasets.

samples in the cluster, and the average distance b between
the sample and all samples in the nearest cluster. The Sil-
houette coefficients of all samples in the whole sample space
are taken as the arithmetic mean, which is the performance
criterion of clustering. The formula to calculate the silhouette
coefficient can be expressed as below,

S(i) =
b(i)− a(i)

max[b(i), a(i)]
(7)

The range of values for the silhouette coefficient is [-1, 1], and
the closer the sample distance of the same category, the farther
the distance of the different categories, the higher the value
of silhouette coefficient.

B. DATA SOURCES
5 datasets are collected from ArrayExpress and GEO
databases to measure the performance of clustering.
Table 1 shows the brief information about datasets we used.
GSE60361 studies the cells type of somatosensory cor-
tex and hippocampus by appplying a recently developed,
highly accurate and sensitive single-cell scRNA-seq method
(STRT/C1) [23]. GSE60361 contains 9 types of cell, includ-
ing Interneurons cells, S1 Pyramidal cells, CA1 Pyrami-
dal cells, Mural cells, Endothelial cells, Microglia cells,
Ependymal cells, Astrocytes cells and Oligodendropcytes
cells. GSE65525 analyzes mouse embryonic stem cells,
revealing in detail the population structure and the hetero-
geneous onset of differentiation after LIF withdrawal [24].
GSE65525 contains 4 types of cell, including Horizontal
cells, Retinal ganglion cells, Amacrine cells and Bipolar
cells. GSE72056 studies the diversity of expression states
within melanoma tumors, and then obtained freshly resected
samples, dissagregated the samples, sorted into single cells
and profiled them by single-cell RNA-seq [25]. GSE72056 is
composed of malignant cells and non-malignant cells, clus-
ters of non-malignant cells are annotated as T cells, B cells,
macrophages cells, endothelial cells, caner-associated fibrob-
lasts(CAFs) and NK cells. GSE76312 has more than
2,000 single cells from patients with chronic myeloid
leukemia, and then gene expression profiling was performed
by single cell sequencing [26].

All of the data has undergone a basical filter process which
in detail screen out the gene expressed in less than 5 cells.

C. THE EFFECTIVENESS OF DENOISE LAYER
In this section, we use toy examples to measure the effective-
ness of the denoise layer in our algorithm.
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FIGURE 5. Effectiveness of denoise layer a.b.c. show the simulation data with no noise, σ=5 µ=0 and σ=10 µ=0 respectively.

The process of generating toy examples is described as
following. Firstly, a set of data (N , d) which obeys a normal
distribution is generated, where N is the number of samples
for toy example and d is the number of hidden subspaces.
Generates another set of data which obeys the normal distri-
bution (d,D), where D is the number of sample properties,
multiplying the two sets of data to the data with dimensions
(N ,D), as the first class. Use the same method to make
the second class. In this experiment, N = 2500, D = 3000,
d = 1.
To measure the effectiveness of the denoise layer in our

algorithm, we generate two clusters of pure data samples
artificially as in Figure.5a and add Gaussian white noise of
different levels to samples as shown in Figure.5bc, then use
DSC and DSCD to cluster them. We extract the final noise
terms in LOSS function, which is marked as B in previous
depiction, under the three different noise condition. Take the
opposite number of the negative numbers in the matrix to
ensure the noise start from 0. Demonstrate them in the format
of heatmap in which the lighter the matrix is, the noisier
the data is. When we add more noise to the original sample,
the noise term will burden the noise and become lighter, thus
purify the data and get higher accuracy. The heatmaps shown
in Figure.5 confirm this. The heatmaps is an approach to
demonstrate our novel self-expressive denoise layer is able
to capture the noise containing in the data. We continuously
add more gaussian noise into our toy example data and the
heatmap shows the noise matrix capturing more noise, which
becoming lighter.

To demonstrate the statement, we apply DSC and DSCD
to the three datasets respectively and compare the clustering
results with the index ARI . The results are shown in Figure6.
We achieve better ARI under all the noise conditions.

FIGURE 6. Comparision on ARI between DSC and DSCD.

In specific, when there is no noise, result of the two methods
are close to each other. As the noise level rises up, DSCD
shows great superiority over DSCwhom has nomeans to deal
with noise.

D. EXPERIMENT ON REAL DATASET
After the experiment on toy examples, we apply the proposed
algorithm to the actual scRNA-seq data. We first make a
brief introduction to these methods. Justina Zurauskiene et al.
proposed a new method named pcaReduce [9] combining
principal component analysis and hierarchical clustering, and
established a framework to describe the consistency of cell
state. MatthewAmodio’s study [21] is a multi task framework
called SAUCIE, which integrates four important functions:
clustering, batch processing and correction, visualization and
inference. Because of it’s innovative use of the parameters
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TABLE 2. Comparison on Adjusted Rand index(ARI) between DSCD and
other state of art single cell clustering methods.

TABLE 3. Comparison on Adjusted Rand index(ARI) between DSCD and
DSC.

of the middle layer and self built binary activation function,
it achieved good results. Gökcen Eraslan built amethod called
DCA which is based on Autoencoder and merges ZINB into
the loss function [27]. After obtaining the imputed data,
k-means is used for clustering. CIDR [28] takes dropout
into account and achieves a fast results. NIMFA [29] is an
open-source Python library that provides a unified interface
to nonnegative matrix factorization algorithms. NMF [30]
is an algorithm for non-negative matrix factorization, which
learns holistic, not parts-based, representations. To sum up,
we select five advanced methods including two deep-learning
based methods and three traditional algorithms to prove the
superiority of our newly proposed model over the above. Our
comparison method used the default parameters and network
structure of the open source code, all of which can be found
in the github repository in the referenced paper.

1) ADJUSTED RAND INDEX
The following Table 2 and Table 3 show the comparison on
Adjusted Rand index(ARI) between DSCD and other algo-
rithms in real dataset experiment and the competition between
DSC and DSCD. The experiment results of GSE65525,
GSE72056 and GSE60361 are better than the other five
state-of-art existing Single-cell clustering algorithms, and the
performances of the other two datsets are also better than the
most of the existing algorithmswhere DSCDoccupies second
and third rank on GSE76312 and GSE103322. The last line
shows the total results on the five data sets in which DSCD
gets the first place. It can be shown that our DCSD clustering
algorithm is effective and performs excellent.

2) SILHOUETTE COEFFICIENT
The following Table 4 shows the comparison on Silhouette
Coefficient(SC) between DSCD and other state-of-art algo-
rithms which are designed specifically for single-cell cluster-
ing. Table 5 demonstrates the result competition of DSCD and
DSC. The experiment results of GSE60361, GSE76312 and
GSE103322 are better than other existing Single-cell

TABLE 4. Comparison on Silhouette Coefficient(SC) between DSCD and
other state of art single cell clustering methods.

TABLE 5. Comparison on Silhouette Coefficient(SC) between DSCD and
DSC.

clustering algorithms while rank highly on the other three
results.At the same time, DSCD shows great advantage over
DSC on Silhouette Coefficient.

V. CONCLUSION
A major challenge in developmental biology is to understand
the genetic and cellular processes driving organ formation
and differentiation of the diverse cell types that comprise
the embryo [31]. Single-cell RNA sequencing technology
is widely used in the quantitative study of single-cell RNA
expression,which can help us to improve the understanding of
human diseases. Many research team uses the technology of
clustering, which is of great significance to scRNA-seq data
analysis, to find cells subtype from a large number of het-
erogeneous cells. However, the current single-cell clustering
methods have great limitations, such as lack of integration,
not suitable for a large number of high-dimensional samples
and so on.

Deep learning has achieved great success in fields such as
computer vision, natural language processing, speech recog-
nition and so on. However, deep learning has not been fully
utilized in unsupervised tasks. With the continuous research
in recent years, deep learning has become the hope of pro-
cessing modern high-dimensional biological data sets [21],
while auto-encoder can learn the features of data itself and
reveal the structure of data, without defining similarity or
distance measurement in the original data space like other
dimension reduction methods [21]. Besides, sparse subspace
clustering can obtain self-expressive matrix by finding sparse
self-expressiveness, so as to reveal the characteristics of data
points in multiple sub-spaces [10]. In this paper, we intro-
duce self-expressive denoise layer and improve the deep neu-
ral network structure for unsupervised subspace clustering
of single-cell clustering. Based on the deep auto-encoder
and self-expressive denoise layer, the input data is mapped
to the low dimensional space to get the self-expressive
matrix, so as to mine the complex subspace structure in the
data.
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Experiment results show that the clustering effect of this
algorithm is excellent, the evaluation index ’Adjusted Rand
index’ and ’Silhouette Coefficient’ are better than other exist-
ing single cell clustering methods. The evaluation index ARI
of this algorithm achieved at least 1.8 times of other existing
algorithm.

Based on the deep neural network of unsupervised sub-
space clustering, our future research will be devoted to further
improve the self-expressive denoise layer. Firstly, we need to
increase its ability to cope with dropout, and further improve
the accuracy of clustering according to the characteristics of
data. The second step is to increase the ability of multitasking
which enables the network to solve other types of problems
in the analysis of single-cell sequencing, such as batch effect
and visualization.
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