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ABSTRACT Time series classification is an essential task in many real-world application domains. As a
popular deep learning network, convolutional neural networks have achieved excellent performance in time
series classification tasks. The filters of the convolutional neural networks are fixed length and shared by
each sample. However, each time series usually has different time scale features. Therefore, convolutional
neural networks are not capable of extracting multi-scale features for each sample flexibly. In this paper,
we propose dynamic multi-scale convolutional neural network to extract multi-scale feature representations
existing in each time series dynamically. Specifically, we design a variable-length filters generator to produce
a set of variable-length filters conditioned on the input time series. To make model differentiable, we use the
learnable soft masks to control the lengths of variable-length filters. Therefore, the feature representations of
different time scales can be captured through the variable-length filters. Then, the max-over-time pooling is
used to select the most discriminative local patterns. Finally, the fully connected layer with softmax output is
employed to calculate the final probability distribution for each class. Experiments conducted on extensive
time series datasets show that our approach can improve the performance of time series classification through
the learning of variable-length filters. Furthermore, we demonstrate the effectiveness of dynamically learning
variable-length filters for each sample through the visualization analysis.

INDEX TERMS Convolutional neural networks, multi-scale temporal features, time series classification.

I. INTRODUCTION
Time series data is ubiquitous. Human activities and nature
produce time series every day, such as medical observa-
tions, financial recordings, physiological signals, andweather
data. Time series classification (TSC) is a fundamental task
in many real-world application domains. Recent research
showed that TSC could benefit to auxiliary medical diag-
nosis [1], [2], human activity recognition [3], speech anal-
ysis [4], etc. According to the number of variables in time
series data, TSC tasks can be categorized into two types:
univariate time series classification (UTSC) and multivariate
time series classification (MTSC). We focus on UTSC tasks
in this paper.

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan-Hsun Tseng .

In recent decades, many researchers have focused on
TSC tasks and proposed various methods to solve them.
As the earliest baseline, the distance-based methods clas-
sify a time series by nearest neighbor classifier or support
vector machine with designed distances. Typical models
of distance-based methods include the 1-Nearest Neighbor
with Euclidean distance (1NN-ED) [5], the Dynamic Time
Warping (1NN-DTW) [5], and the derivative distance-based
Dynamic Time Warping (DDDTW) [6]. DDDTW uses the
weighted combination of theDTWdistance between two time
series and the DTW distance between their corresponding
first-order difference sequences. Unlike the distance-based
methods, the feature-based methods extract discrimina-
tive features from time series for classification. Meth-
ods include the bag of SFA symbols (BOSS) [7], learned
shapelets (LS) [8], and learned pattern similarity (LPS) [9].
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The statistical time series methods [10]–[13] employ sum-
mary statistics of time series as features for classification. For
example, time series forest (TSF) [11] and the time series bag
of features (TSBF) [12] use simple statistical features such as
mean, standard deviation, and slop for classification. Lei and
Wu [13] use the statistical features (maximum, mean, polar
difference, variance, etc.) from the subsequences to constitute
new time series, and combine with the fully convolutional
network for time series classification.

Although distance-based, feature-based, and statistical
time series methods can achieve high accuracy and have
acceptable interpretation, they need to define distancemetrics
explicitly or handcrafted features. They are error-prone and
may not be suitable for time series of all domains.

To further improve the performance of TSC, the
ensemble-based methods perform classification by ensemble
multiple different classifiers. For example, Elastic Ensem-
ble (EE) [14] is an ensemble classifier with 1NN based
on 11 elastic distance measures. The Shapelet Transform
(ST) [15] uses the shapelet transformation based on a
heterogeneous ensemble. The collection of transformation
ensembles (COTE) [16] ensembles 35 different classifiers
constructed in the domain of time, frequency, change, and
shapelet transformation, respectively. However, they are usu-
ally suffering from high computational complexity.

In recent years, deep learning architectures have been
applied to a wide variety of tasks and achieved great success.
Wang et al. [17] proposed a strong baseline for TSC tasks
with deep neural networks. There are three different deep neu-
ral networks used for TSC, including Multilayer Perceptrons
(MLP), Residual Network (ResNet), and Fully Convolutional
Network (FCN). Among them, FCN achieves state-of-the-art
performance on the TSC tasks.

However, multi-scale temporal information naturally exists
in time series [18], which plays a vital role in the TSC
tasks. For example, we visualize three instances from two
categories in the Computers dataset in Figure 1. It shows
that the feature scales of instance in class 1 are different
from the ones of instances in class 2. In addition, the two
instances of class 2 also have different scales of features.
Therefore, not only different samples have different scales
of features, but also, there are different scales of features
within a sample. How to capture sample-specific multi-
scale features is still a challenge for time series classifi-
cation. FCN uses fixed-length filters for each layer, which
is unable to extract multi-scale temporal features of time
series. Some existing convolutional neural network-based
approaches [18], [19] are dedicated to capturing multi-scale
temporal features of time series and verify that multi-scale
temporal features can effectively improve the performance of
time series classification models. Moreover, in the field of
image processing [20] and natural language processing [21],
multi-scale features have also proved to be beneficial for
better classification. However, these time series classification
approaches rely on prior knowledge to manually select differ-
ent scales for each dataset. Therefore, they are unable to learn

FIGURE 1. Three time series instances in the Computers dataset. The
X-axis and Y-axis indicate time step and corresponding value,
respectively. The instances from the same class and different classes have
different scales of features.

variable-length filters based on each time series adaptively
since all the samples share their filters. Hence, they cannot
capture sample-specific multi-scale temporal features.

To address the above issues, in this paper, we propose
a novel end-to-end variable-length filter learning model
called Dynamic Multi-Scale Convolutional Neural Net-
work (DMS-CNN), for TSC tasks. Specifically, we pro-
pose a variable-length filters generator to generate a set of
variable-length filters conditioned on the input time series.
The core of the variable-length generator is to determine the
length of each filter based on each sample of time series.
To this end, we use a subnet to learn the lengths of fil-
ters. After that, we employ the lengths of filters to gen-
erate the masks and apply them to control the lengths of
the filters, thereby obtaining the variable-length filters. The
variable-length filters are used to replace the filters of the
conventional convolutional neural network to capture features
with different time-scales in each time series. Then, max-
over-time pooling [22] is used to maintain temporal invari-
ance and select themost discriminative local patterns. Finally,
we use a fully connected layer with softmax output to calcu-
late the final probability distribution for each class. Compared
with existing approaches, our approach is also dedicated to
capturing multi-scale temporal features of time series for
classification. The major difference is that our approach can
extract sample-specific multi-scale feature representations
existing in each time series. Specifically, it can be summa-
rized as two points: (1) Our approach is to learn the scales
of filters through data rather than relying on prior knowledge
to select the scales of filters manually. (2) Our approach can
learn sample-specific multi-scale feature representations for
each time series. In contrast, the existing approaches require
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a large number of filters of multiple scales to cover the scales
of each sample as many as possible. Experiments conducted
on 85 UCR time series datasets show that DMS-CNN can
improve the performance of TSC tasks, and visualization
analysis further demonstrates the effectiveness of the dynam-
ically learning variable-length filters.

The remainder of this paper is organized as follows.
In section II, The preliminary concepts related to our work
are introduced. Section III presents the detail of our proposed
model DMC-CNN. The experimental results and analysis on
extensive time series datasets to demonstrate the effectiveness
of DMC-CNN are given in section IV. Finally, Section V
provides conclusion and future work of this paper.

II. PRELIMINARIES
A. NOTATION OF UNIVARIATE TIME SERIES
CLASSIFICATION
Univariate time series classification is a task that takes a
univariate time series sample as the input of the model and
predicts its label.

A univariate time series dataset can be denoted as
D = {(T1,Y1), (T2,Y2), · · · , (TN ,YN )}, where T i =
{x1, x2, · · · , xL} denotes the i-th sample, and xj ∈ R, j =
1, 2, · · · ,L. Y i ∈ Rc denotes the label of the i-th sample.
N , L, and c are the number of samples, the length of input
time series, and the number of categories, respectively. The
time series dataset is usually divided into two sets: a training
set and a testing set. The training set is used to train the model
and obtain the parameters of the model, and the testing set is
used only for final evaluation.

B. CONVOLUTIONAL NEURAL NETWORKS
Recently, deep learning architectures have been applied
to a wide variety of tasks and achieved great success.
As a popular deep learning architecture, convolutional neu-
ral networks (CNNs) [23] have achieved good perfor-
mance in TSC tasks duo to its powerful feature extraction
capability.

The convolutional layer and pooling layer are the main
components of a convolutional neural network. In Figure 2,
we show the architecture of conventional CNNs for TSC
tasks. The model consists of an input layer, a convolu-
tional layer, a pooling layer, and an output layer. First, the
original time series is used as the input to the network.
Then, the filters of two different lengths are used to con-
volve the input to extract multi-scale temporal features of
the time series. After that, the max-over-time pooling is uti-
lized to select the most discriminative local patterns, which
have the most significant impact on classification. Finally,
the output of the pooling layer is fed into the fully con-
nected layer with softmax output for classification. Although
CNNs use filters of multiple lengths to extract multi-scale
temporal features of time series, they cannot adaptively
learn variable-length filters conditioned on the input time
series.

FIGURE 2. The conventional convolutional neural network that consists
of a convolutional layer with filters of two different lengths,
a max-over-time pooling layer, and a fully connected layer is used for
time series classification.

III. DYNAMIC MULTI-SCALE CONVOLUTIONAL NEURAL
NETWORK
The general architecture of a DMS-CNN is illustrated in
Figure 3. The variable-length filters generator is used to
generate a set of filters with different lengths conditioned on
the input time series and the randomly initialized filters. Then
the input time series is fed into the convolutional layer with
variable-length filters to capture the multi-scale temporal
features of the time series. After that, we use the max-over-
time pooling to select the most discriminative features, which
are the most significant for classification. Finally, the fully
connected layer with softmax output is used to calculate the
final probability distribution for each class.

A. VARIABLE-LENGTH FILTERS GENERATOR
To learn variable-length filters, we control the lengths of the
filters by learning masks. The masks are generated based
on the input time series and the randomly initialized fil-
ters to generate the sample-specific variable-length filters.
Therefore, we first use convolution to obtain the embedded
representations of the input time series. The subsequences of
input time series are used as the input of the convolutional
layer.

Given a univariate time series T = {x1, x2, · · · , xL}T,
we can obtain P subsequences of length l with a sliding
window length l and stride of 1, where P = L − l + 1 is
the number of subsequences. All the subsequences of time
series are concatenated and represented as S. We represent
S ∈ RP×l as follow:

S = x1:l ⊕ x2:l+1 ⊕ · · · ⊕ xL−l+1:L , (1)

where xt:t+l−1 ∈ Rl×1 denotes the l-length subsequence of
time series from time step t to t + l − 1 and ⊕ denotes the
concatenation operator.

To obtain the embedded representation of the time series,
we use a convolution operation on S with a stride of 1.
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FIGURE 3. General architecture of the Dynamic Multi-Scale Convolutional Neural Network (DMS-CNN). The core of DMS-CNN is
variable-length filters generator, which is used to generate a set of filters with different lengths conditioned on the input time series and
the randomly initialized filters. Specifically, we first use convolution to obtain the embedded representations of the input time series,
which are indicated with the blue lattices. Then, the embedded representations and randomly initialized filters are used to generate a set
of filters with different lengths, and we use the red lattices to indicate the randomly initialized filters. Finally, the filters of the
conventional CNN are replaced by the variable-length filters to capture features with different time-scales in each time series.

Let W i ∈ Rω×P denotes the i-th filter with ω-length. The
convolutional result with filterW i on S is obtained by:

ei = W i ∗ S+ bi, (2)

where bi denotes the bias, and ∗ is the convolution operation.
We use K filters to convolve S, and all the convolutional
results are denoted as:

E = {e1, e2, · · · , eK }T, (3)

where E ∈ RK×l is the embedded representations of the
input time series, and ei ∈ Rl×1, i = 1, 2, · · · ,K denotes
the convolutional result with filter W i on the subsequences
of time series S.
To generate the variable-length filters, a mask generator is

proposed to learn the lengths of filters. We first randomly ini-
tialize fixed-length filters W f

= {W f
1,W

f
2, · · · ,W

f
K }

T like
the conventional CNNs, where W f

i ∈ Rl×1 denotes the i-th
fixed-length filter. We concat the embedded representations
of time series and the fixed-length filters as inputs to the mask
generator.

In themask generator, we first design a functionm : R2l
→

[0, 1], which determines the length used by each filter. In this
work, the function m is implemented as two fully connected
layers.

ri = Wm2f (Wm1
· (ei ⊕W f

i )+ b
m1)+ bm2, (4)

li = ri × l, (5)

where Wm1
∈ R2l×l and Wm2

∈ Rl×1 denote the con-
nection weights of the first and second layers of the fully

connected network, respectively, and bm1 and bm2 denote the
corresponding bias. li denotes the length used by the i-th filter.

We can obtain the length of each filter by Eq. (4) and
Eq. (5), and denote as M = {l1, l2, · · · , lK }. However,
how to enable the filters to have different lengths through
learning is a challenging problem. Here we use the masks
to control the lengths of different filters. In practice, if we
generate the mask directly from the learned lengths, it will
make the model non-differentiable and lead to complicated
optimization. Instead, we use the soft mask proposed by
Jernite et al. [24] to approximate this operation.
Given li ∈ [0, l] and a sharpness parameter λ, the mask

vector mi ∈ Rl is defined as:

∀j ∈ 1, 2, · · · , l,mij = σ (λ(li − j)), (6)

where mi = {mi1,mi2, · · · ,mil}T denotes the mask vector,
and σ (·) is the sigmoid function. By using Eq. (6), we can
obtain the mask where the first li dimensions are closed to 1,
and the last (l−li) dimensions are closed to 0. As λ increases,
the closer the soft mask is to the 0-1 mask. We denote all the
masks asM = {m1,m2, · · · ,mK }

T, wheremi ∈ Rl×1 denote
the mask vector of the i-th filter. Then, the variable-length
filters are generated as follow:

W v
= W f

⊗M, (7)

where W v
= {W v

1,W
v
2, · · · ,W

v
K }, W

v
i ∈ Rl×1 denotes

the i-th variable-length filter, and ⊗ is the multiply
operator.
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TABLE 1. The details of 85 UCR datasets. Nmax/Nmin is the ratio between
the numbers of samples of most and least frequent classes.

B. CONVOLUTIONAL LAYER WITH VARIABLE-LENGTH
FILTERS
The variable-length filters are obtained with the variable-
length filters generator. However, if the variable-length filters
are generated by the masks, there will be some zeros in the
last part of each filter, which hinders the convolution of time
series. To solve this problem, we pad the input series with
zeros up to the length of (L + l), and denote as:

Tp = {x1, x2, · · · , xL ,0}T, (8)

where Tp ∈ R(L+l)×1 denotes the time series after zero
padding, and 0 ∈ Rl×1 is the zero vector. The zero padding
will not affect DMS-CNN due to the max-over-time pooling
layer in DMS-CNN, but retains the complete information of
all time series.

We apply the variable-length filters W v to Tp, and the
convolutional result with filterW v

i on T
p can be denote as:

d i = W v
i ∗ T

p
+ bvi , (9)

where D = {d1, d2, · · · , dK }T denote all the convolutional
results with variable-length filters W v on Tp, and bvi denote
the bias.

To select the most important local pattern, we employ the
max-over-time pooling. In this way, the pooling result of d i
can be defined as pi = max(d i), and we collect all the pooling
results into a single vector as:

P = {p1, p2, · · · , pK }T. (10)

Finally, the pooling results are fed into a softmax layer to
obtain the conditional distribution over each category label as
follows:

Ŷ = WoP + bo, (11)

p(C|T ) = softmax(Ŷ ), (12)

whereWo
∈ RK×c and bo ∈ Rc denote the weights and bias

of the softmax layer, respectively, and Ŷ denotes the output
vector. C denotes the classes of the input time series and
p(C|U) is the conditional distribution over time series label.

C. TRAINING
We use Dtr = {T1,T2, · · · ,TNtr } and Ytr =

{Y1,Y2, · · · ,YNtr } to represent the input time series and
corresponding labels of the training set, respectively, where
T i ∈ RL×1 denotes the i-th input time series, and Y i ∈ Rc

denotes its label. Ntr and c are the number of samples in the
training set and the number of categories, respectively.

Therefore, the loss function of the DMS-CNN is the nega-
tive logarithm likelihood function as follow:

L(T )=−
1
Ntr

Ntr∑
i=1

c∑
r=1

1{Y i,r=1}log
exp(Ŷ i,r )∑c
j=1 exp(Ŷ i,j)

, (13)

where Yout = {Ŷ1, Ŷ2, · · · , ŶNtr } denote the predicted label
of the DMS-CNN, and Ŷ i ∈ Rc is the predicted label of the
i-th input time series.
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Algorithm 1 Dynamic Multi-Scale Convolutional Neural
Network
Input:

T : input time series
K : number of variable-length filters
l: sliding window size
λ: the sharpness parameter

Output:
p(C|T ): conditional distribution

1: Initialize the fixed-length filters W f =

{W f
1,W

f
2, · · · ,W

f
K }

T

2: Obtain the subsequences S of T with a sliding window
length l and stride of 1

3: Compute the embedded representation E =

{e1, e2, · · · eK }T using Eq. (2)
4: for i = 1 to K do
5: ri = Wm2f (Wm1

· (ei ⊕W f
i )+ b

m1)+ bm2

6: li = ri × l
7: for j = 1 to l do

mij = σ (λ(li − j))
8: end for
9: end for

10: Obtain the mask matrix:M = {m1,m2, · · · ,mK }

11: Compute the variable-length filters:W v
= W f

⊗M
12: Compute the convolutional result D with variable-length

filters using Eq. (9)
13: for i = 1 to K do

pi = max(d i)
14: end for
15: Obtain the pooling results: P = {p1, p2, · · · , pK }
16: Compute conditional distribution p(C|T ) using Eq. (11)

and Eq. (12)
17: return p(C|T )

The ADAM [25] optimizer is used to train DMS-CNN
model with an initial learning rate of 0.01. To make the
training of the model stable, the weight attenuation is adopted
to train the model. Specifically, we attenuated the learning
rate by 0.8 after every 50 epochs. Algorithm 1 shows the
pseudo-code of Dynamic Multi-scale CNNs in detail.

IV. EXPERIMENTS
To evaluate the performance of DMS-CNN, experiments are
conducted on the UCR time series classification archive to
compare DMS-CNNwith other methods. All the experiments
are run on an Intel Core i7-6850K 3.60GHz CPU, 64GB
RAM, and a GeForce GTX 1080-Ti 11G GPU.

The classification accuracy is used to evaluate the perfor-
mance and defined by:

Accuracy =
#correct classified samples

#testing samples
(14)

A. DATASET INTRODUCTION AND IMPLEMENTATION
DETAILS
The UCR time series classification archive [26] con-
tains 85 publicly available time series datasets, which vary by

FIGURE 4. The distribution of ratio (Nmax/Nmin) between the numbers of
samples of most and least frequent classes for 85 datasets. The X-axis
and Y-axis indicate the ratio and number of datasets, respectively.

the number of classes, dataset types, number of samples, and
length of time series. Each dataset was split into training and
testing set using the standard split. Table 1 summarizes the
details of the 85 datasets. We also use a histogram to describe
the distribution of ratio (Nmax/Nmin) between the numbers of
samples of most and least frequent classes for 85 datasets in
Figure 4.
DMS-CNN involves the selection of several hyperparam-

eters, including slice window size l, the length of filters to
obtain the embedded representation of time seriesω, the num-
ber of variable-length filters K , and the sharpness parameter
λ. In our experiments, the slicing window sizes l are also the
lengths of fixed-length filters, which are chosen according
to the length of the time series. We set l as 0.4L, where L
denotes the length of the input time series.ω is fixed to 3.K is
chosen from K ∈ {30, 60, 90, 120}. The sharpness parameter
λ is chosen from λ ∈ {5, 10}. In addition, to improve the
generalization capability, we apply dropout [27] and batch
normalization [28] to the inputs of the softmax layer and the
convolutional layer with variable-length filters respectively.
The dropout rate is set to 0.2.

B. COMPARISON METHODS
For making a comprehensive evaluation, we first compare
DMS-CNN with 12 representative machine learning meth-
ods. Then DMS-CNN is compared with several recent deep
learning models.

For traditional machine learning methods, we compare
DMS-CNN with two classical yet powerful baseline meth-
ods 1-Nearest Neighbor with Euclidean distance (1NN-ED)
and 1-Nearest Neighbor with Dynamic Time Warping
(1NN-DTW). In addition, ten state-of-the-art methods pub-
lished in recent years are selected as the compared base-
lines. These methods can be divided into four categories:
distance-based methods, feature-based methods, statistical
time series methods, and ensemble-based methods. All the
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TABLE 2. Accuracy of DMS-CNN compared with 12 conventional classifiers on 85 UCR datasets. The best accuracy is indicated as bold. ST is an ensemble
of 8 classifiers, EE consists of 11 1-NN classifiers and COTE is an ensemble model with 35 different base models.
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TABLE 3. Statistical results of DMS-CNN and 12 conventional classifiers on 85 UCR datasets.

FIGURE 5. Critical difference diagram of the comparison with traditional
machine learning methods. The critical difference is 2.906, which means
that two classifiers are not significantly different at p < 0.05 level when
the rank difference is less than 2.906.

experimental results of these methods are collect by Bagnall
et al. [29].

• Distance-based methods: In addition to two clas-
sic methods 1NN-ED [5], and 1NN-DTW [5], two
distance-based methods are selected, including deriva-
tive DTW (DDDTW) [6], and derivative transform dis-
tance (DTDC) [30]. DDDTW is a method that uses the
weighted combination of the DTW distance between
two time series and the DTW distance between their
corresponding first-order difference sequences. Based
on DDDTW, DTDC takes into account the DTW distance
of the sequences transformed by sin, cosine and Hilbert
transformation.

• Feature-based methods: Three feature-based methods
are selected, including learned shapelet (LS) [8], bag of
SFA symbols (BOSS) [7], and learned pattern similarity
(LPS) [9].

• Statistical time series methods: Two statistical time
series methods are selected, including time series forest
(TSF) [11] and time series bag of features (TSBF) [12].
The TSF classifies a time series by the random forest
using some statistical features, such as mean, standard
deviation, and slope. The TSBF is an extension of TSF
that has multiple stages.

• Ensemble-based methods: These methods include
Shapelet Transform (ST) [15], Elastic Ensemble
(EE) [14] and the collective of transformation-based
ensembles (COTE) [16]. ST uses shapelet transfor-
mation based on a heterogeneous ensemble. EE is an
ensemble classifier with 1NN based on 11 elastic dis-
tance measures. COTE ensembles 35 different clas-
sifiers constructed in the domain of time, frequency,
change, and shapelet transformation, respectively.

For deep learning methods, many effective deep learn-
ing models have been proposed and applied to TSC tasks.

We compare DMS-CNN with Multilayer Perceptron (MLP),
Residual Network (ResNet), and Fully Convolutional Net-
work (FCN). The experimental results of the three methods
are provided by Wang et al. [17]. The brief introduction to
these three methods is given below.

• Multilayer Perceptron (MLP) stack three fully-
connected layers with 500 neurons for each layer, and
the softmax layer is used to obtain the classification
results.

• Residual Network (ResNet) stack three residual
blocks, each of which contains three convolution block.
The number of filters in the three residual blocks are 64,
128, and 128, respectively. The global average pooling
layer and a softmax layer are used to obtain classification
results.

• Fully Convolutional Network (FCN) stack three con-
volution blocks with 128, 256, and 128 filters in each
block, where the filter size in each block is 3, 5, and 8.
the convolutional results are fed into the global average
pooling layer and a softmax layer to get the classification
results.

In addition, we construct a baseline model to verify the
effectiveness of the variable-length filters. The architecture
and hyperparameters of the baseline model are consistent
with DMS-CNN. The only difference is that the baseline
model uses fixed-length filters.

C. COMPARISON WITH TRADITIONAL METHODS
For traditional methods, the accuracy of DMS-CNN and 12
traditional methods on 85 UCR datasets are shown in Table 2.
In addition, we also summarize the average rank of each
method and the number of datasets on which each method
achieves the best results in Table 3.
As shown in Table 3, DMS-CNN achieves much

higher accuracy than any of the other methods on 24 of
the 85 datasets and the average rank of 4.865. Compared
to the distance-based methods, DMS-CNN is superior to
these methods. Although DDDTW achieves the best perfor-
mance in the distance-based method, it only achieves the best
results on 5 of the 85 datasets. Similarly, the performance
of DMS-CNN is better than three feature-based methods
and two statistical time series methods. The ensemble-based
methods achieve good results on 85 UCR datasets. For exam-
ple, COTE achieves the best results on 26 of the 85 datasets
and the best average rank of 3.176, which is superior to
DMS-CNN. However, COTE ensembles 35 different clas-
sifiers and thus inevitably suffers from high computational
complexity. Even if the ensemble-based methods ensemble
multiple classifiers, DMS-CNN still numerically superior in
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TABLE 4. Accuracy of DMS-CNN compared with baseline and 3 deep
learning methods on 85 UCR datasets. The best results are marked as
bold.

TABLE 5. Statistical results of 3 deep learning methods, baseline and
DMS-CNN on 85 UCR datasets.

TABLE 6. Statistical results of 2 statistical methods, 3 deep learning
methods and DMS-CNN on 85 UCR datasets.

average rank to the ensemble-based methods (e.g., ST, EE)
except for COTE. To have a more intuitive understanding of
the results, we compare DMS-CNN with traditional methods
in pairs. The pairwise accuracy plots betweenDMS-CNN and
traditional methods are shown in the appendix. As shown in
Figure 11-22, DMS-CNN obtains higher accuracy in the vast
majority of datasets compared with the traditional classifiers
except for COTE.

Furthermore, we conduct a non-parametric statistical test,
the Nemenyi test [31] on the average ranks of the meth-
ods to make statistical comparisons. As shown in Fig-
ure 5, the critical difference is 2.906, which means that
two classifiers are not significantly different at p < 0.05
level when the rank difference is less than 2.906. There-
fore, we can conclude that DMS-CNN is significantly better
than the distant-based methods and slightly better than the
feature-based methods, the statistical time series methods,
and the ensemble-based methods except for COTE. Although
COTE ensembles 35 different classifiers, it has no statistically
significant difference with DMS-CNN.

D. COMPARISON WITH DEEP LEARNING METHODS
For deep learningmethods, the accuracy of DMS-CNN, base-
line model, and three deep learning methods on 85 UCR
datasets are shown in Table 4. In addition, we also summarize
the average rank of each method and the number of datasets
on which each method achieves the best results in Table 5.

As shown in Table 5, DMS-CNN achieves much higher
accuracy than any of the other deep learning methods on 25
of the 85 datasets and the average rank of 2.653. The baseline
model achieves the best results on 11 of 85 datasets, and
the average rank is 3.371. Therefore, DMS-CNN is superior
to the baseline model. This verifies that the variable-length
filters can better capture the temporal feature of time series,
thereby improving the accuracy of time series classification.
Compared with the three deep learning methods, DMS-CNN
is better than MLP and worse than ResNet and FCN. ResNet
achieves the best results on 29 of 85 datasets, and the average
rank is 2.6. Although ResNet uses multiple convolutional
layers, the performance of DMS-CNN is very close to that
of ResNet. Similarly, the pairwise accuracy plots between
DMS-CNN and other deep learning methods are also shown
in the Appendix. As shown in Figure 23-26, DMS-CNN
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FIGURE 6. Critical difference diagram of the comparison with baseline
and deep learning methods. The critical difference is 0.643, which means
that two classifiers are not significantly different at p < 0.05 level when
the rank difference is less than 0.643.

FIGURE 7. Critical difference diagram of the comparison with statistical
methods and deep learning methods. The critical difference is 0.849,
which means that two classifiers are not significantly different at
p < 0.05 level when the rank difference is less than 0.849.

obtains higher accuracy in the vast majority of datasets com-
pared with the MLP and baseline model. In addition, the
comparisons are constructed to compare the traditional sta-
tistical methods with deep learning methods. As shown in
Table 6, ResNet, FCN and DMS-CNN are superior to TSF,
and TSBF, which indicates the deep learning methods have
better performances than the traditional statistical methods.

Similarly, we also conduct the Nemenyi test on the aver-
age ranks of these five methods to make statistical com-
parisons. As shown in Figure 6, the critical difference is
0.643. From the Figure 6, we can draw the following
conclusions. First, DMS-CNN, baseline, ResNet, and FCN
are significantly better than MLP because convolution can
better extract the temporal features of time series. Then,
DMS-CNN is significantly better than the baseline model,
which further verifies the effectiveness of the variable-length
filters. Finally, although the results of DMS-CNN on the
whole 85 UCR datasets can not beat ResNet and FCN,
it has no statistically significant difference with them. For the
comparisons between the traditional statistical methods with
deep learning methods, as shown in Figure 7, ResNet, FCN
and DMS-CNN are significantly better than the statistical
methods, i.e., TSF and TSBF.

E. VISUALIZATION ANALYSIS
In this section, we conduct experiments on the ECGFiveDays
dataset for the visualization analysis of the interpretability
of the DMS-CNN. The visualization analysis consists of
two parts. First, we will explore how DMS-CNN captures
multi-scale temporal features. And then, we analyze how the
dynamics of the filters affect DMS-CNN.

The multi-scale temporal information naturally exists in
time series. For example, each cardiac cycle of the standard
electrocardiogram (ECG) consists of a P wave, a QRS wave,

FIGURE 8. A time series sample that is form the ECGFiveDays dataset,
and the important local patterns that are kept by the max-over-time
pooling in the baseline model and DMS-CNN with different scales,
respectively. We use the blue curves and red ones to indicate the time
series samples and important local patterns, respectively. P, QRS and T
are the critical waves in ECG. The X-axis and Y-axis are the time step and
corresponding values, respectively.

and followed by a T wave [32]. In the DMS-CNN, the max-
over-time pooling is used to select the most discriminative
local patterns. Therefore, we can see whether the DMS-CNN
has learned the multi-scale temporal information by the local
patterns kept by max-over-time pooling. We visualize a sam-
ple in the ECGFiveDays dataset and the important local
patterns that kept by the max-over-time pooling in Figure 8.
As we can see, the baseline model uses the fixed-length
filter, so it can only try its best to capture all the important
local features, rather than learn each important local feature
independently. Unlike the baseline model, DMS-CNN learns
filters of two scales. The important local pattern captured by
the filters of the first scale is P-wave and QRS wave and
the filters of the second scale capture T-wave. Therefore, the
important local features of time series may have different
lengths. MDS-CNN can adaptively learn these features for
each sample through the variable-length filters. In addition,
CNNs can also use filters of multiple lengths like DMS-CNN
to extract multi-scale temporal features of time series. How-
ever, the setting of the filter lengths depends on the prior
knowledge, and needs to be set manually for each dataset.

To verify the effectiveness of dynamics, we construct a
contrast model DMS-CNN without Dynamic (DMS-CNN
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FIGURE 9. The 2-dimensions features of DMS-CNN and DMS-CNN w/o
Dyn after dimension reduction. The feature maps of DMS-CNN have
smaller intra-class distances and larger inter-class distances compared to
the ones of DMS-CNN w/o Dyn. (We did not label the X-axis and Y-axis
since they have no specific meanings.)

FIGURE 10. The classification accuracy of DMS-CNN on 4 UCR datasets
when increasing the slice window size. For each subfigure, the X-axis and
Y-axis indicate slice window size and corresponding accuracy,
respectively. When l is set to 0.4L, DMS-CNN can basically obtain good
results.

w/o Dyn). It only relies on the randomly initialized filters
when generating the variable-length filters. That is, all sam-
ples use the same variable-length filters. The feature maps of
a good classifier usually have a smaller intra-class distance
and a larger inter-class distance. Therefore, we take the inputs
of the output layers of the two models, respectively, and use
t-SNE [33] to reduce their dimensions to 2-dimensions. The

FIGURE 11. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and ED.

FIGURE 12. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and DTW.

features after dimensionality reduction are shown in Figure 9.
We can find in Figure 9 that the feature maps of DMS-CNN
have smaller intra-class distances and larger inter-class dis-
tances (e.g., the results of DMS-CNN have a fewer number of
clusters than the ones of DMS-CNNw/o Dyn). Therefore, the
dynamics of the filters are beneficial for the model to classify
time series better.

F. EFFECT OF SLICE WINDOW SIZE
The slice window size l is also the length of fixed-length
filters, and it is an essential hyperparameter. It determines the
maximum length of the variable-length filters and thus influ-
ences the performance of DMS-CNN. To explore the effect
of l on DMS-CNN, we conduct experiments with different
l on four UCR datasets. These four datasets are ECG200,
DistPhxAgeGp, DistPhxTW, and TwoPatterns, respectively.
The hyperparameters of DMS-CNN, when applied to these
four datasets, are described as follows. ω and λ of all the
experiments are set to 3 and 10, respectively. The number
of variable-length filters K is set to 120 when DMS-CNN is
applied to ECG200, DistPhxAgeGp, and TwoPatterns. K is
set to 90 when DMS-CNN is applied to DistPhxTW.
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FIGURE 13. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and DD_DTW.

FIGURE 14. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and DTD_C.

FIGURE 15. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and LS.

When increasing the slice window size l, the classifica-
tion accuracies of DMS-CNN on 4 datasets are shown in
Figure 10. For the ECG200 dataset, increasing the value of
l can gradually improve the performance of DMS-CNN. For
the DistPhxAgeGp dataset, increasing the value of l will

FIGURE 16. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and BOSS.

FIGURE 17. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and TSF.

FIGURE 18. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and TSBF.

increase the accuracy of DMS-CNN at first and then decrease.
For the DistPhxTW dataset and the TwoPatterns dataset, the
accuracies of DMS-CNN change little (note that the accura-
cies of the TwoPatterns are in a very small range of [0.99,
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FIGURE 19. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and LPS.

FIGURE 20. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and ST.

FIGURE 21. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and EE.

1.00]) with increasing the value of l. As shown in Figure 10,
when l is set to 4L, DMS-CNN can basically obtain good
results. Therefore, l is set to 4L in all the UCR datasets to
make a trade-off between model accuracy and efficiency.

FIGURE 22. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and COTE.

FIGURE 23. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and MLP.

FIGURE 24. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and ResNet.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a convolution-based time series
classification architecture called Dynamic Multi-scale CNNs
(DMS-CNN) to solve the problem that CNNs cannot adap-
tively extract multi-scale temporal features for each time
series. DMS-CNN is an end-to-end model that adaptively
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FIGURE 25. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and FCN.

FIGURE 26. Pairwise accuracy plots on 85 UCR datasets between
DMS-CNN and CNN.

learns multi-scale temporal features of each input time series
through the dynamically learning of variable-length filters.
Experimental results demonstrate that DMS-CNN outper-
forms all of the distance-based methods and feature-based
methods and some of the ensemble-based methods, e.g.,
ST and EE. Although the results of DMS-CNN on the
whole 85 UCR datasets can not beat COTE, ResNet, and
FCN, it has no statistically significant difference with them.
Moreover, DMS-CNN is significantly better than the baseline
model, which verifies the effectiveness of the variable-length
filters.

In the future, we will extend this approach to multivariate
time series classification tasks, which is more challenging
due to the correlation between multiple variables. In addition,
we will explore how to learn variable-length filters in the
deeper convolutional neural networks.

APPENDIX
PAIRWISE ACCURACY PLOTS BETWEEN DMS-CNN AND
OTHER METHODS
To better understanding the results, we compare DMS-CNN
with other methods in pairs. The pairwise-accuracy plots

between DMS-CNN and other methods are shown in
Figure 11-26.
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