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ABSTRACT To solve the problems of low image contrast and low feature representation in infrared and
visible image fusion, an image fusion algorithm based on latent low-rank representation (LatLRR) and
non-subsampled shearlet transform (NSST) methods is proposed. First, infrared and visible images are
decomposed into base subbands, saliency subbands and sparse noise subbands by the LatLRR model. Then,
the base subbands are decomposed into low-frequency and high-frequency coefficients by NSST, and a
feature extraction algorithm based on VGGNet and a logical weighting algorithm based on filtering are
proposed to merge the coefficients. An adaptive threshold algorithm based on the regional energy ratio is
proposed to fuse the saliency subbands. Finally, the fused base subbands are reconstructed, the sparse noise
subbands are discarded, and a fused image is obtained by combining the subband information after fusion.
Experimental results show that for the fused image produced, the algorithm performs well in both subjective
and objective evaluation.

INDEX TERMS Image fusion, latent low-rank representation, non-subsampled shearlet transform, VGG
net, logical weight, energy adaptation.

I. INTRODUCTION
Image fusion involves extracting and integrating the effective
information contained in two ormore images collected by dif-
ferent sensors from the same scene through specific methods
to obtain composite images with rich information and excel-
lent visual effects and meet the needs of subsequent research
and processing steps. Based on the reflection spectrum imag-
ing of a scene, the image generated by a visible light sensor
has a high spatial resolution and contains abundant back-
ground information. However, infrared sensor imaging is
easily affected by the external environment. If the external
lighting environment is bad, the amount of information con-
tained in the image will decrease sharply; The infrared sensor
images the radiation difference or temperature difference of
the scene. Although the resulting image is of poor quality and
low resolution and lacks detailed information, infrared sensor
images are relatively stable and can accurately capture the
hidden heat source targets in scenes, even in harsh environ-
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ments [1], [2]. The fusion of infrared and visible images uses
the spatiotemporal correlation between two source images
and the complementary information in scene descriptions so
that the fusion image can describe the scene in a detailed
and comprehensive way; this approach is conducive to human
visual interpretation and automatic machine-based detection.
This method has been widely used in video surveillance [3],
object detection [4], face recognition [5] and other processes.

Image fusion is generally performed at three levels: the
pixel level, feature level and decision level. The fusion of
infrared and visible images is generally performed at the pixel
level, and such methods can be divided into two categories:
data-driven and model-driven methods. The former directly
fuses images by manipulating the pixel values of the source
image, and the latter involves indirect model transformation
[6]. Model-driven multiscale geometric analysis has been
widely studied because of its unique multiscale analysis char-
acteristics. Feng [7] proposed a unique image fusion method
based on Tetrolet transform that uses the activity level to
guide the sparse coefficients and accurately fit the decom-
posed low-frequency subbands; then, the number of firing
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times of the neurons in the pulse-coupled neural network
(PCNN) is used to select the coefficients of high-frequency
subbands. The fused image effectively retains the edge infor-
mation and detail features of the source image. Zhang and
Maldague [8] proposed an effective image fusion method
based on non-subsampled contourlet transform (NSCT). The
decomposed low-frequency subbands were fused based on
a regional adaptive energy criterion, the highest frequency
coefficients in the high-frequency subbands were fused based
on the absolute value method, and the remaining subband
coefficients were fused with the adaptive Gaussian regional
standard deviation criterion. In this approach, fusion target
is clearer and the contrast is improved compared to these
features in traditional methods. Chen et al. [9] decomposed
a source image by using Laplacian pyramid transformation.
At low frequencies, the weight coefficient is obtained from
the pixel intensity distribution information for an infrared
image, and the coefficients at high frequencies are fused
by taking the maximum absolute value of the coefficient.
The fusion image has abundant details, and the prominent
objects in the scene are clearly visible. Liu et al. [10] pro-
posed a robust image fusion algorithm based on the complex
shearlet transformation, and the low-frequency coefficients
were fused with two-dimensional guided filtering. Addition-
ally, the high-frequency coefficients were fused based on the
Laplace energy and maximum combined guided filtering.
The resulting image performed well in subjective vision and
objective evaluation tasks. Liu et al. [11] proposed a novel
image fusion method based on non-subsampled shearlet
transform (NSST). The pilot low-frequency subbands were
decomposed using a pilot filter algorithm to calculate the
significant mapping relations, and the high-frequency sub-
bands were used to extract the edge information considering
phase consistency; then, according to the scene consistency,
theweight coefficientmatrix was constructed for the fusion of
subbands. The fused image could better retain the information
of the source image and was smoother than the original
image. Deng et al. [12] proposed an image fusion method
based on non-subsampled double-tree complex contourlet
transform. The decomposed low-frequency subbands were
fused by the adaptive size segmentation method. The image
block size was optimized and determined by the improved
fruit fly algorithm, and the low-frequency fusion results were
refined to obtain an accurate label map. The neighborhood
coefficient difference of the high-frequency subbands was
combinedwith the label graph to fuse the high-frequency sub-
band information, and the fused image overcame the block
effect generated during spatial block fusion.

With the continuous improvement of sparse representa-
tion theory, the sparse representation capability obtained
through learning can increasingly improve the fusion effect
of infrared and visible images. Liu et al. [13] proposed
an image fusion method based on a convolutional sparse
representation. A two-scale image decomposition and dif-
ference method was used to obtain the base subbands and
detailed subbands. The different base subbands were fused

using the maximum method and mean method. The convo-
lutional sparse representation of the detailed subbands was
used to encode the weighted fusion result. The superimposed
reconstructed image overcome effectively preserved impor-
tant details in sparse representation fusion. Chang et al. [14]
proposed an image fusion method based on a joint sparse
representation. The low-frequency subbands after quaternion
wavelet transform decomposition were fused using the rules
of the joint sparse representation, and the high-frequency sub-
bands were fused using the absolute maximum value of the
fusion coefficients. The reconstructed image avoided exces-
sively smooth boundary processing and time consumption
issues in traditional sparse representation fusion.

With the increase in the popularity of deep learning, new
convolutional neural networks have gradually penetrated the
field of image fusion [15]. Ma et al. [16] built and trained
an end-to-end generative adversarial network model to fuse
infrared and visible images. Through the continuous iterative
adversarial relation between the generator and discriminator,
fused images with high definition and rich details can be
obtained, thus effectively avoiding the design problem of
fusion rules in traditional algorithms. Liu et al. [17] com-
bined a convolutional neural network and Laplace pyramid
to design a fusion algorithm and constructed a weight graph
to guide the image fusion process by extracting the image
features from Siamese networks with shared parameters and
the same structure; this approach reduced the complexity of
the weighting strategy. Li and Wu [18] built a DenseNet deep
learning model based on the method of dense connection and
performed the fusion of infrared and visible images through
encoding and decoding, thus reducing the loss of information
in the fusion process.

At present, the fusion of infrared and visible images still
has some problems; for example, the prominent features of
fusion images are often not prominent, and noise interference
can be serious. In view of the above problems, this paper
proposes a fusion algorithm that combines a latent low-rank
representation (LatLRR) and NSST to achieve the multilevel
decomposition and fusion of infrared and visible images. The
specific algorithm flow is shown in Fig. 1. By combining the
feature extraction and denoising capability of LatLRR and the
sparse representation capability of NSST, the optimal decom-
position of the image can be obtained, and the interference
caused by noise in the fused image can be reduced. The fusion
rules based on the regional energy ratio reflect the significant
areas and targets in a scene and improve scene recognition.
A feature extraction algorithm based on VGGNet through
VGG-16 is used in model training to extract the image fea-
tures for deep fusion and avoid complex operations; this
tool is combined with weighting rules based on a filtering
algorithm to retain the maximum amount of background
information and edge information, resulting in high contrast
and rich details for significant features in fused images.

The main contributions of this paper are as follows.
(1) An image cascading decomposition framework with

LatLRR and NSST is constructed. Compared with a single
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FIGURE 1. Algorithm flowchart.

LatLRR or NSST, this framework can not only better separate
the important information and noise in an image but also
obtain a multidirection sparse representation of the image.

(2) To fully retain the background, details, and other infor-
mation from the base subbands, a feature extraction algorithm
based on VGG-16 is proposed to fuse the low-frequency
coefficients of the base subbands, and a logic weighting
algorithm based on filtering is proposed to fuse the high-
frequency coefficients of the base subbands.

(3) To highlight significant areas and targets in a scene,
a threshold adaptive weighting algorithm based on the area
energy ratio is proposed for subband fusion.

The remainder of this paper is organized as follows:
Section II introduces the LatLRR model and the image

decomposition model of NSST; Section III discusses the
saliency of subbands, the fusion method of the low-frequency
and high-frequency coefficients of the base subbands, and
image reconstruction; Section IV explains the experimental
setup used in this paper, and the results of the experiment are
analyzed; Section V gives the conclusions of this study.

II. IMAGE DECOMPOSITION MODEL
A. LATENT LOW-RANK REPRESENTATION
In 2010, Liu et al. [19] proposed the low-rank representation
(LRR) theory. In the case of determining the learning dic-
tionary, the original data matrix Q is expressed as a linear
combination of the dictionary matrix G, and the coefficient
matrix is expressed as a low-rank matrix to separate data and
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FIGURE 2. LatLRR decomposition.

noise. The mathematical model of the LRR approach is:

min
Z
||Z ||∗ s.t. Q = GZ (1)

where, || · ||∗ is the kernel norm and Z is the optimal LRR
matrix of the original data. Generally, the original data are
selected to form the dictionary, i.e. G = Q; thus, the above
equation is transformed into:

min
Z
||Z ||∗ s.t. Q = QZ (2)

Although the LRR can represent the overall structure of
the data, the local structure information of the image cannot
be retained when this approach is used for image processing.
In 2011, Liu and Yan [20] proposed the LatLRR approach
based on LRR. LatLRR inherits the benefits of LRR and
can extract the global structure and local structure of an
image by considering the influence of hidden information
on the learning dictionary; therefore, LatLRR has strong
feature information extraction ability and denoising ability.
The mathematical model of LatLRR can be expressed as:

min
Z ,L,E
||Z ||∗ + ||L||∗ + λ||E||1 s.t. Q = QZ + LQ+ E (3)

where λ > 0 is the equilibrium coefficient and || · ||1 is
the L1 norm. The meanings of Q and Z are consistent with
those in Equation (1), L is the significance coefficient matrix,
and E is the sparse noise. Equation (3) can be regarded as
a convex optimization problem with a kernel norm that can
be solved by the inexact augmented Lagrangian multiplier
(ALM) method. When LatLRR is used for image decompo-
sition, QZ , LQ and E correspond to the base subband, salient
subband and sparse noise subband of the image, respectively.
Taking one group of infrared and visible images as an exam-
ple, the decomposition effect of LatLRR is shown in Fig. 2.

B. NON-SUBSAMPLED SHEARLET TRANSFORM
To represent images in a sparse manner, Easley et al. [21]
proposed the shearlet transform (ST) approach in 2007 by
combining multiscale analysis with geometric analysis using
the theory of affine systems. This transform has excellent
multiscale, localization and orientation properties. However,
the ST process involves an extraction operation, shifting
occurs, which can cause Gibbs distortion in image process-
ing. The emergence of the NSST approach [22] has effec-
tively overcome this deficiency. NSST not only inherits the

FIGURE 3. NSST decomposition process.

FIGURE 4. NSST decomposition subbands.

excellent characteristics of the traditional ST but also has
good translation invariance for effectively extracting the edge
details of images. In addition, in the process of orientation
localization, the number of decomposition directions can be
customized by selecting Meyer windows with variable aspect
ratios, thus overcoming the limitation related to the number
of decomposition directions.

The image decomposition process of NSST is divided into
two parts: multiscale decomposition and directional local-
ization. Multiscale decomposition involves the source image
and is based on the non-subsampling pyramid filter bank
(NSPFB) approach. One low-frequency subband and one
high-frequency subband can be obtained after each decom-
position. If the source image is decomposed into g levels,
g + 1 subbands with the same size as the source image can
be obtained. The focus of directional localization is the low-
frequency subband after the multiscale decomposition of the
source image, which is achievedwith a shearlet filter (SF). If a
subband is decomposed in the z direction, 2z + 2 subbands
with the same size as the atomic band can be obtained.
Two-layer NSST decomposition was performed on a zone
plate image, and the decomposition subband image with the
direction coefficient of [4 8] is shown in Fig. 4.

III. IMAGE FUSION
A. SALIENCY SUBBAND FUSION
It is assumed that the infrared image to be fused is I and
the visible image is V . Although traditional weighted fusion
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can produce a low-noise and stable image, the characteristics
of image (including statistical characteristics and amplitude
characteristics) are randomly distributed and have a direct
impact on the weighting coefficient. When the infrared image
I and the visible image V are fused, if the features of image I
are more prominent than those of image V , the corresponding
weighting coefficient of I will be relatively large, and vice
versa. Therefore, simple weighted fusion cannot perfectly
integrate the characteristics of the images to be fused and fully
retain the significant details.

A fusion method based on regions can mitigate this situa-
tion to a certain extent. In image fusion, fusionmethods based
on regions can be divided into three categories: methods
based on the region energy, methods based on the region gra-
dient and methods based on the region variance. Image fusion
methods based on the region gradient and region variance
do not fully consider the correlations among adjacent pixels
and thus cannot reflect the local features of the image. The
fusion methods based on region energy assume that the local
features of an image are represented by multiple pixels in the
region. The pixels in the same region have a strong correlation
that reflects the local features of the image; therefore, a the
fusionmethod based on region energy is chosen as the basis of
the saliency subband fusion method [23]. To make overcome
the above shortcomings, this paper proposes a new adaptive
weighted fusionmethod based on the threshold of the regional
energy ratio. To fuse images and fully retain the relevant
details, the adaptive changes in the weighted coefficient are
adjusted according to the continuous changes in the pixel at
the region center and the corresponding region energy. The
detailed process is as follows.

First, for the saliency subbands SI and SV of the infrared
and visible images after LatLRR decomposition, the region
energy levels EI (m, n) and EV (m, n) centered at pixel (m, n)
can be obtained, respectively. The corresponding formula is
as follows:

EI (m, n) =
∑

m′∈X ,n′∈Y

ω × [SI (m+ m′, n+ n′)]2 (4)

EV (m, n) =
∑

m′∈X ,n′∈Y

ω × [SV (m+ m′, n+ n′)]2 (5)

where m′ and n′ are the offsets of the pixels in the region
window relative to the center pixel. X and Y represent the
maximum row and column coordinates of the regional win-
dow, and the size of the regional window is generally 3 × 3;
ω = 1

16 × (
1 2 1
2 4 2
1 2 1

) is the window coefficient.
Second, according to the regional energy, the regional

energy ratio Eratio(m, n) is calculated as follows:

Eratio(m, n) =
EI (m, n)
EV (m, n)

(6)

Finally, the fused saliency subband SF is calculated by
a weighting method, and the corresponding formula is as
follows

SF (m, n) = w1 × SI (m, n)+ w2 × SV (m, n) (7)

where w1 and w2 are weighting coefficients. The specific
formulas for these variables are as follows:

[
w1
w2

]
=


[1 0]T , Eratio < th1[
EI/(EI + EV )
EV /(EI + EV )

]
, th1 < Eratio < th2

[0 1]T , Eratio > th2

(8)

where [·]T is thematrix transpose operator and th1 and th2 are
threshold coefficients, which are determined according to the
overall energy distribution of the image. From equations (7)
to (8), if the energy ratio of the region is too small or too large,
the two energy values corresponding to the region will greatly
differ. In such cases, the weight of the region with the higher
energy level will be set to 1, and the weight of the region with
the lower energy level will be set to 0. If the energy ratio of the
region is within the threshold range, the two energy values of
the region will be close to each other. In this case, the adaptive
weight calculation is based on the energy proportion; that is,
the larger the regional energy is, the larger the corresponding
weighting coefficient will be and the higher the proportion
will be in the combined result. Conversely, the smaller the
energy level is, the smaller the contribution to the fusion
result.

B. LOW-FREQUENCY COEFFICIENT FUSION FOR BASE
SUBBANDS
The low-frequency component is similar to the smoothed ver-
sion of the base subbands, which contain most of the impor-
tant image information. To better integrate this information,
the depth feature auxiliary fusion rules of image extraction
are introduced by pretraining VGGNet.

VGGNet was proposed by the Visual Geometry Group
of Oxford University. Compared with previous networks,
VGGNet can explore the relationship between network depth
and performance, and networks of 16 to 19 layers can be built
[24]. VGG-16 has five convolutional groups, including 2, 2,
3, 3 and 3 convolution layers, with a total of 13 convolutional
layers. Each convolution group is followed by a max pooling
layer, with a total of 5 pooling layers. The fifth pooling layer
is followed by 3 fully connected layers, and the final fully
connected layer is followed by a softmax classifier. For a
VGG-16 image input size ofN×N , the parameters are shown
in Table. 1.

Convolutional layers can extract image features through
convolution operations, and as the number of convolu-
tional layers increases, the extracted image features become
increasingly abstract. According to Table. 1, the image fea-
tures extracted by the fifth convolution group of VGG-16 are
too abstract. Notably, the output feature map is too different
from the detailed content map of the source image. Therefore,
the output of the four convolution groups in this algorithm is
used as the basis to build the weight map and guide the fusion
of the low-frequency coefficients. The acquisition process of
the weight map is shown in Fig. 5. The specific fusion steps
are as follows.
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FIGURE 5. Acquisition process for the joint feature weight map.

TABLE 1. VGG 16 structure parameter.

Step 1. Input the low-frequency components {LI ,LV } into
the VGG-16 network, and extract the output {Oi,mV ,Oi,mI }
of the i-th convolution group, where i = 1, 2, 3, 4 repre-
sent the first, second, third and fourth convolution groups,
respectively. m is the number of channels in the output
characteristic map of the i-th convolution group, which is
determined by the number of convolution kernels; notably,
m ∈ 1, 2, . . . ,M ,M = 64 × 2i−1. According to the number
of convolution kernels in each convolutional layer of the
VGG-16 network, as shown in Table. 1, Oi,1:M is an M -
dimensional vector, and Oi,1:M (x, y) represents the value of
Oi,m at position (x, y). The output multichannel feature map is
compressed according to the L1 norm, and the single-channel
feature map {C i

V ,C
i
I } is obtained. The formula is as follows:

C i
V (x, y) = ||O

i,1:M
V (x, y)||1

C i
I (x, y) = ||O

i,1:M
I (x, y)||1 (9)

Step 2. To improve the fused image, an average filter of
size 3× 3 is introduced to smooth the single-channel feature

map, and the normalized adaptive weight {wiV ,w
i
I } is then

calculated. The corresponding formula is as follows:

wiV (x, y) =
C i
V (x, y)

C i
V (x, y)+ C

i
I (x, y)

wiI (x, y) = 1− wiV (x, y) (10)

Step 3. The pooling layer in the convolutional neural net-
work employs a data sampling operation. The size of the
feature map after pooling is changed to 1

s , and s is the step of
the pooling operator. The value of s in VGG-16 is fixed at 2,
and the size of the featuremap output by different convolution
groups is 1

2i−1
of the original image size. According to the size

consistency principle of image fusion, upsampling is used
for the size reconstruction of the weight map {wiV ,w

i
I }, and

four groups of weight maps {W i
V ,W

i
I |i = 1, 2, 3, 4} with

sizes consistent with those of the original base subbands are
obtained; then, the low-frequency coefficients are fused. The
formula is as follows:

L iF (x, y) = W i
VIS (x, y)× LV (x, y)

+W i
IR(x, y)× LI (x, y) (11)

Step 4. The fused low-frequency coefficients have four val-
ues at each position (x, y). Four values at the same position are
selected according to the maximum absolute value criterion
to obtain the fused low-frequency coefficients LF :

LF (x, y) = max{L1F (x, y),L
2
F (x, y),L

3
F (x, y),L

4
F (x, y)} (12)

According to the above equation, compared with the use of
a single network model of the final output of a fusion algo-
rithm, this algorithm can minimize the loss of image detail,
provide comprehensive and effective information, improve
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FIGURE 6. Comparison of row pixels and column pixels.

the depth of image feature extraction, and promote the fusion
effect.

C. HIGH-FREQUENCY COEFFICIENT FUSION FOR BASE
SUBBANDS
The low-frequency coefficients of an image concentrate most
of the energy of the image and reflect the brightness of
the image, and the high-frequency coefficients represent the
details and edges of the image and reflect the texture char-
acteristics of the image. For the high-frequency coefficients
of the base subband, fusion is mainly performed to get clear
edge areas and rich texture information to improve image
clarity. Fig. 6 shows the pixel value curves of the high-
frequency coefficients of the base subband and the randomly
selected high-frequency coefficients in row 106 and column
99 (marked by the crossing of the red lines).

Fig. 6 shows that the high-frequency parts of the infrared
and visible images are quite different from each other,
so the fusion strategy for the high-frequency coefficients
should focus on enhancing the detailed information in the
fused image. Therefore, for the high-frequency coefficients
{H j

I ,H
j
V } of the base subbands {BI ,BV }, a logical weighting

method based onmaximumfiltering is proposed in this paper.
The specific steps are as follows.

First, the absolute value of the high-frequency coefficients
is obtained, and a local window w of size 3 × 3 is used to
filter the maximum value. The corresponding mathematical
expression is as follows:

Z jI (m̈, n̈) = max
w
{|H j

I (m̈, n̈)|}

Z jV (m̈, n̈) = max
w
{|H j

V (m̈, n̈)|} (13)

where {Z jI ,Z
j
V } is the maximum filtering result of the high-

frequency coefficients {H j
I ,H

j
V }.

Second, a logic map is obtained by comparing the differ-
ence value U (m̈, n̈) and threshold value T of Z jI (m̈, n̈) and
Z jV (m̈, n̈):

Map(m̈, n̈) =

{
1, U (m̈, n̈) > T
0, U (m̈, n̈) ≤ T

(14)

Finally, the fused high-frequency coefficients are obtained
through fusion according to the logic map. The applied for-

mula is as follows:

H j
F (m̈, n̈) = Map(m̈, n̈)× H j

I (m̈, n̈)

+[∼ Map(m̈, n̈)]× H j
V (m̈, n̈) (15)

where the elements ofMap(m̈, n̈) are logical values of 0 or 1,
∼ Map(m̈, n̈) is the inverse of the previous variable, and
(m̈, n̈) are the position coordinates. From equations (14) to
(15), after the high-frequency coefficients are filtered to iden-
tify the maximum, if the coefficient difference at the corre-
sponding position is greater than the preset threshold, then
the logical value corresponding to that point in the logical
graph is 1; otherwise, the value is 0. In the process of logical
weighted fusion, the points with relatively obvious features
correspond to a logical weight of 1, and the weights of the
corresponding points are then reversed to preserve details.

D. IMAGE RECONSTRUCTION
Inverse NSST was performed on the fused low-frequency
coefficients LF and high-frequency coefficients H j

F to obtain
the fused base subband BF , and the sparse noise subband
{NI ,NV } was discarded. Secondary reconstruction was per-
formed by combining the fused saliency subband SF to obtain
the fusion image F . The corresponding formula is as follows:

F = BF + SF (16)

IV. EXPERIMENTAL EVALUATION
A. PARAMETER SETTING
To verify the feasibility and effectiveness of the proposed
algorithm, infrared and visible images were selected from
the TNO Image Fusion Dataset for fusion experiments. The
experimental simulation platform was equipped with an Intel
Core i7-9700k CPU with a main frequency of 3.6 GHz,
64 GB running memory, and a 64-bit Windows 10 system;
the programming environment was MATLAB 2018b.

The parameters of this algorithm were set as follows: the
number of LatLRR decomposition layers was 1, the number
of NSST decomposition layers was 4, the filter parameter was
‘‘maxflat’’, and the number of decomposition directions was
[8, 8, 16, 16]. The regional energy ratio threshold coefficients
were th1 = 2 and th2 = 4, the image patch size of the sparse
representation was 8×8, the sliding step was s = 1, the error
tolerance was ε = 0.1, and the threshold was T = 4.

B. FEASIBILITY ASSESSMENT
For feasibility assessment, 32 groups of infrared and visible
images of the Camp sequence were selected for experiments.
By observing the image effect after fusion and calculating the
entropy (EN) [25], average gradient (AvG), spatial frequency
(SF) [26] and standard deviation (Std) of the source image
of the sequence and the fused image, four quality evaluation
indexes of the unreferenced image were comprehensively
evaluated. EN is used tomeasure the information contained in
the image, AvG is used to measure the gradient of the image,
SF is used to measure the rate of change of the image gray
level, and Std is used to measure the dispersion degree of the
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FIGURE 7. Image sequence fusion.

gray level of pixels. These metrics are positive indicators, and
the larger the value is, the better the result.

The Camp sequence image fusion results are shown
in Fig. 7. Among them, rows 1, 4, 7 and 10 are infrared images
used to capture heat source objects in the scene, and rows
2, 5, 8 and 11 are visible images used to capture detailed
information related to houses, fences, and trees in the scene.
Rows 3, 6, 9 and 12 are the fused images. According to the
fusion results, the fusion algorithm in this paper can effec-
tively integrate the contour features of heat source objects

in the infrared image with the background details of the
visible image, thusmaking the fused imagemore clear and the
contrast enhanced, which reflects the observation capabilities
of human vision.

The four indexes of Camp sequence source image and
fusion image are shown in Fig. 8, including EN, AvG, SF
and Std from top to bottom. As shown in the line chart, since
the scene in the entire sequence of images does not change
much, the curve of a single image index does not considerably
fluctuate. Compared with the source image, the fused image
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FIGURE 8. Image sequence evaluation indexes.

has different degrees of superiority for the four indicators,
indicating that the fused image includes richer information
and achieves a better overall visual effect, which is consistent
with the subjective visual evaluation of human observation.
In summary, this algorithm can integrate effective informa-
tion in infrared and visible images to achieve image fusion,
and the visual effect of the fused image is good; therefore,
this approach can feasibly further improve the recognition of
a scene.

C. VALIDITY ANALYSIS
Effectiveness analysis was performed to select 7 different
groups of infrared and visible images. The fusion results
of the algorithm in this paper are compared with those of
guided filtering based fusion (GFF) [27], a convolution sparse
representation (CSR) method [12], a joint sparse representa-
tion (JSR) method [28], a joint sparse representation method
based on saliency detection (JSRSD) [29], cross-bilateral
filtering (CBF) [30], a Siamese convolution neural network
(SCNN) [17], and DenseFuse [18]. The results were com-
pared by subjective and objective evaluations.

Subjective evaluation involves intuitively assessing the
advantages and disadvantages of the fusion results based on
human vision. The fusion results of seven groups of infrared
images and visible images are shown in Fig. 9, where row
(a) shows the infrared images, (b) shows the visible images,
(c) (i) present the fusion image of compared methods, and
(j) gives the fusion image produced by the algorithm devel-
oped in this paper. From the fusion results, the images of
the comparative methods have two problems: first, the fused
images are often incomplete, resulting in the loss of image
information; second, the fused images are generally dark,
and regional fusion distortion and the loss of detailed infor-
mation occur. For the above reasons, the visual effect of

the fused images is generally not good, and the images do
not effectively improve the visualization of the scenes. The
two methods based on deep learning produce an image with
moderate brightness and rich details, but the recognition of
significant objects in the scene is poor. The fused image
obtained by the algorithm proposed in this paper has high
contrast and can fully integrate the effective information from
the source image, making the contours of the target objects
in the scene clear; therefore, this approach is conducive to
understanding the scene.

To observe the differences among the fused images, local
areas were selected from the third, fourth, fifth and seventh
groups of images for amplification, as shown in Fig. 10.
Clearly, the subjective effect is largely consistent with the pre-
vious description. Based on the subjective evaluation results
of the above seven groups of images, it can be concluded
that the algorithm proposed in this paper provides prominent
image features and a good visual effect; therefore, the fused
image is consistent with the observation behaviors of the
human eye vision system.

Subjective evaluation can be used to directly determine
the merits of the fusion result, but there are differences in
visual sensitivity among different people, and the evaluation
result can be one sided. Therefore, comprehensive evaluation
should be based on comprehensive and objective evaluation
indexes. Based on the SF and EN indexes, four forward eval-
uation indexes were calculated: the peak signal-to-noise ratio
(PSNR),Qab/f [31], the sum of the correlations of differences
(SCD) [32] and structural similarity (SSIM) [33].

I Peak signal-to-noise ratio (PSNR)
The PSNR is the ratio between the important information

in an image and the noise, and it is used to measure the
distortion degree of a fused image in the fusion process. The
PSNR of image X and reference image R is defined as:

PSNRX ,R = 10 log
k2

1
M×N

M∑
i=1

N∑
j=1

(X (i, j)− R(i, j))2
(17)

where M and N represent the image size dimensions, (i, j)
represents the pixel position, and k represents the maximum
grayscale level of the image. The PSNR formula used in this
experiment is as follows:

PSNR = (PSNRI ,F + PSNRV ,F )/2 (18)

where PSNRI ,F and PSNRV ,F are the PSNRs of fused image
F when infrared image I and visible image V are used as
reference images, respectively. The larger the value of the
PSNR is, the better the image fusion effect.

I Qab/f

Qab/f is used to measure the transfer of edge information
from the source image to the fused image in the fusion
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FIGURE 9. Image fusion. (a) Infrared image. (b) Visible image. (c) GTF. (d) CSR. (e) JSR. (f) JSRSD. (g) CBF. (h) SCNN. (i) DenseFuse. (j) Our
method.

process, and it is defined as follows:

Qab/f =

M∑
i=1

N∑
j=1

(QAF (i, j)ωA(i, j)+ QBF (i, j)ωB(i, j))

M∑
i=1

N∑
j=1

(ωA(i, j)+ ωB(i, j))

(19)

where M and N represent the image size dimensions, (i, j)
represents the pixel position, and {QAF ,QBF } are the edge
strength and orientation preservation values, respectively.
{ωA, ωB} are the weights that express the importance of each
source image to the fused image. The closer the value ofQab/f

is to 1, the better the retention effect of edge information.
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FIGURE 10. Image block from left to right: Infrared image, Visible image, GFF, CSR, JSR, JSRSD, CBF, SCNN, DenseFuse, Our method.

I Sum of the correlations of differences (SCD)
The SCD is used to measure the sum of the difference

in complementary information between a fused image and
a different image (including the difference between a fused
image and an infrared image or a visible image); this variable
is defined as follows:

SCD = r(F,F − I )+ r(F,F − V ) (20)

r(F,X ) =

M∑
i

N∑
j
(F(i, j)− F̄)(X (i, j)−X̄ )√

(
M∑
i

N∑
j
(F(i, j)−F̄)2)(

M∑
i

N∑
j
(X (i, j)−X̄ )2)

(21)

where M and N represent the image size dimensions, (i, j)
represents the pixel position, and F̄, X̄ are the average pixel
values of F,X , respectively. The r(F,X ) function is used
to calculate the correlation between fused image F and the
image difference X . The higher the value of the SCD is,
the higher the quality of the fused image.

I Structural similarity (SSIM)
SSIM is used to measure the structural similarity of two

images, with a numerical range of [0, 1]. From the perspective
of the image composition, the definition of SSIM reflects the
distortion of an image and considers the image brightness,
contrast and structure. The mean is the estimation of bright-
ness, the standard deviation is the estimation of contrast, and
the covariance is the measurement of SSIM.

The SSIM between image X and image F is defined as:

SSIMX ,F =
∑
x,f

2µxµf + C1

µ2
x + µ

2
f + C1

·
2σxσf + C2

σ 2
x + σ

2
f + C2

·
σxf + C3

σxσf + C3
(22)

where x, f are the image blocks of images X and F , respec-
tively; µx , µf are the mean values; σx , σf are the standard
deviations; σxf is the covariance; andC1,C2,C3 are the stable
constants of the algorithm. The formula for calculating the

SSIM in this experiment is as follows:

SSIM = 0.5× SSIMI ,F + 0.5× SSIMV ,F (23)

where SSIMI ,F , SSIMV ,F represent the structural similarity of
infrared image I and fused image F and visible image V and
fused image F , respectively. The larger the SSIM value is,
the better the fusion effect. Six evaluation indexes for seven
groups of images are shown in Fig. 11.

As shown in Fig. 11, the algorithm presented in this paper
performs well based on the SF and EN indexes, and it is
superior to most of the other methods to different degrees,
indicating that the fused image contains abundant informa-
tion and has an appropriate level of brightness and high
definition. The SCD index of the proposed method is much
higher than those of the other methods, suggesting that impor-
tant information is transferred from the source image to the
fused image. The Qab/f and SSIM index differences are
not large among models, and the fused image and overall
structure of the source image are generally similar. The PSNR
index margin is also small because the transfer between the
original and fused images corresponding to pixel decisions
did not consider the visual characteristics of human vision.
Additionally, the sensitivity of the error is not absolute, and
objective and subjective evaluation results can yield different
outcomes. In summary, the objective evaluation results are
generally consistent with the subjective evaluation results,
and the algorithm in this paper has certain advantages over
the other algorithm investigated; therefore, this new method
is practical and effective.

The complexity of the algorithm is generally measured by
the temporal complexity; therefore, the run times of differ-
ent algorithms under the same conditions were determined.
In this approach, the complexity of the initial algorithm can be
reflected, and the computational efficiency of the algorithm
can be evaluated. Therefore, to evaluate the performance of
the algorithm proposed in this paper, the run time results of
the algorithms discussed above are obtained and compared.
The results are shown in the Fig. 12.
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FIGURE 11. Image sequence evaluation indexes.

FIGURE 12. Time complexity comparison.

In the comparison, the GFF and CBF algorithms are based
on the theory of traditional filtering, and fusion rule is simple;
therefore, the algorithm run time is relatively short, and the
image fusion effect is limited. The CSR, JSR, and JSRSD
methods had high run times, mainly because the three algo-
rithms are all based on the sparse representation algorithm
was improved in this paper. Notably, the number of required
operations makes the complexity of the algorithm high. The
SCNN and DenseFuse algorithms are based on deep learning
models without training. The corresponding testing phase
does not require much time, and the fusion effect is sat-
isfactory. Although the nested-frame image decomposition
algorithm in this paper takes more time than some other
methods, the network model uses fusion rules in the training
process to avoid information loss in the early stage of training.
Overall, the complexity of the approach is moderate, and

FIGURE 13. Image fusion; (a) Infrared image; (b) Visible image; (c)
LatLRR; (d) NSST; (e) LatLRR+NSST.

the fusion effect is the best among those of all the models
considered, thus reflecting generally superior performance.

To verify the correlations obtained by the LatLRR and
NSST algorithms were compared with that of the hybrid
algorithm proposed in this paper. The parameter setting and
fusion rules of the algorithms were consistent with those used
for the model developed in this paper. The fusion results of
the four groups of images are shown in Fig. 13.

Notably, the LatLRR algorithm and NSST algorithm can
achieve image fusion for a cognitive scene, but the advantages
and disadvantages are also relatively obvious. Specifically,
the expression of the target area is not outstanding, but
detail processing is good, as most image details are retained.
However, the edges of targets are largely insufficient.For the
algorithm proposed in this paper, the fused image is clearer
and has more details, contrast and definition than the other
images. Thus, this fused image reflects human visual patterns,
making image scenes easy to understand.
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V. CONCLUSION
This paper proposes a model based on a combined LatLRR
and NSST algorithm for image fusion. LatLRR is used to
extract the image features and perform simple filtering. The
multiscale characteristics of NSST and the feature extraction
capability of VGG-16 can retain information in a source
image; combined with the regional energy intensity ratio
fusion rules, the characteristics of the original image can be
maintained in the fused image. The proposed logical weight-
ing method based on maximum filtering can enhance contour
edge detail, thereby improving the image resolution, the rich-
ness of details, and target edges. By comparing source images
and fused images based on four evaluation indexes, we verify
that the proposed algorithm is feasible. The comparison of
the fused images of the proposed algorithm and those of
seven other methods shows that the algorithm developed in
this paper can fully integrate the information from the source
image and highlight the prominent features.
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