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ABSTRACT The cardiac auscultation using the classical stethoscope (PCG: phonological cardiogram) is
known as the most famous method to detect Cardiovascular Disease (CVD). However, this exam requires
a qualified cardiologist which relies on the cardiac cycle vibration sound (heart muscle contractions and
valves closure) to detect abnormalities in heart during the pumping action. Many research works have been
conducted for detecting CVD from PCG signals by using public and private datasets. Due to the lack of CVD
recognition benchmark, classification results are very heterogeneous and can not be compared objectively.
In this paper, we apply transfer learning to Pascal public dataset and provide an experimental benchmark
without any denoising or cleaning steps. The main goal is to generate a set of experimental results which can
be used as starting reference for future CVD recognition research based on PCG.

INDEX TERMS Cardiovascular disease recognition, convolutional neural network, pre-trained model, deep
learning, transfer learning, benchmark.

I. INTRODUCTION
Heart is themost crucial part in human body since it is respon-
sible for pushing and flowing blood cycles to all other parts
in the body. Human heart rates generate Phono-cardiogram
(PCG) signals. These signals are measured by mechanical
vibrations coming from a stethoscope device being put on
the chest. Then, the signals are collected and recorded to
watch human heart normality and abnormality conditions.
Major abnormalities of heart rates, the so called cardiovas-
cular diseases (CVDs), can be the main cause for human
deaths. An estimated 17.9 million people died from CVDs
in 2016, representing 31% of all global deaths [1]. Therefore,
it is very critical to classify PCG signals to automate the
recognition for the heart rates normalities and abnormalities
accurately in real-time to save lives against CVDs. Figure 1
shows an example for normal and abnormal PCG signals
which represent human heart rates. One can notice that the
normal PCG signal includes more noise compared to the
abnormal one.

In fact, many research have been conducted in order
to classify automatically cardiovascular disease from
phono-cardiogram signal. The majority of existing works are
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FIGURE 1. An example of PCG signals for human heart rates. (A) Normal
(B) Abnormal.

focused on the improvement of the classification results based
on public or private PCG datasets. The main ascertainment
is that in the majority of proposed solutions, researchers
relayed on their own private dataset or a modified version
of existing public dataset such as Pascal. Consequently, the
obtained classification results cannot be compared accurately.
To the best of our knowledge, there is no common benchmark
acting as a starting reference for PCG classification. For this
reason, in this paper, we propose a new PCG classification
benchmark based on raw public PCG dataset (Pascal).

Transfer learning technique is widely used for several clas-
sification problems. It is considered as a powerful recognition
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method especially when it comes to small-scale training
dataset. In our context, we focus on transfer learning tech-
nique through CNN fine-tuning. We used many pre-trained
Convolutional Neural Network (CNN) models which are
retrained on the publicly available Pascal dataset which is
small size dataset containing three classes labeled PCG sig-
nals (normal, murmur, extrasystole).

The focus of this study is based on Pascal dataset, which is
to the best of our knowledge the only widely used and pub-
licly available multi-class labeled PCG dataset while other
dataset such as PyhsioNet is considered a binary labeled
dataset (i.e. normal or abnormal). Thus, we believe that
benchmarking the Pascal dataset is probably more significant
than considering the binary labeled dataset since it is widely
used by scientific community to study and enhance the clas-
sifications of multiple classes for Cardiovascular Diseases
(CVD). Therefore, the contribution of this work focuses on
a multi-class CVD classification and benchmark of Pascal
dataset which is proven to be a good starting option for
researchers in the field to test their methods. We believe that
our work is very useful to set a reference mark toward their
experimental comparisons.

Our main goal is to propose clear classification results
acting as a reference benchmark for future CVD recognition
research. The remainder of this paper is organized as follows.
In the remaining of Section I, related work is reviewed.
In Section II, we discuss the used dataset. In Section III,
we present our benchmark process. In Section IV, the exper-
imental results and evaluation are provided. Finally, we con-
clude our work in Section V.

A. RELATED WORKS
Many CVD recognition methods have been proposed in the
past decades. Potes et al. [34] only used a training set A,
which contains a total of 400 heart sound records from
Physionet [31]. They proposed a binary classifier (normal/
abnormal) starting from Mel-frequency cepstral coeffi-
cients using Support Vector Machines with a radial kernel.
Dave [12] presented a CVD classification solution (Normal
heart sound) based on the localization of S1 and S2 (Heart
cycle). Then, K-means and DNN are applied on a private
dataset.

Lawrence et al. [24] aimed to classify normal and abnormal
PCG singal based on Pre-emphasis filtering and window-
ing using a private dataset. Sandler et al. [38] proposed a
normal/abnormal classification method based on a Modified
Linear predictive Coding using a special PCG dataset (3M
poland composed only from 72 signals). Szegedy et al. [43]
proposed a binary classification solution (normal/murmur)
based on cepstrum coefficients and machine learning tech-
niques (Bayes Net, logit boost). They relayed on a modi-
fied (balanced) version of publicly available dataset Pascal
[8], but only 30 normal and 30 murmur examples are used.
Balili et al. [5] were focused on multi class (Normal/aortic
insufficiency, aortic stenosis, atrial spetal defect, mitral reg-
ulation and mitral stenosis) recognition based on Low pass

filtering, shannon energy envelop calculation, wavelet
decomposition, and SVM classifier. The authors experi-
mented their approach using a private dataset composed from
64 signals (Data recorded at Maulana Azad Medical Institute
in India).

Chollet [11] proposed amulti class (Normal/snaps/murmur/
clicks) recognition solution based on MFCC and Hidden
Markov Model using 41 samples from a private dataset.
Nogueira et al. [32] proposed a PCG classification (Nor-
mal/Murmur/Extrasystole) solution based on heart cycle
localization using a modified version of the training set
A in Pascal dataset (Unlabeled signals in the dataset A
were labeled by domain of experts). Similarly, deep learn-
ing has been tightened with only few work in this area.
Sidra et al. [39] converted segments of time series from Phy-
sioNet dataset into heatmaps. A CNN is designed and trained
from scratch to classify normal and abnormal heart rates
using the heatmaps. Redlarski et al. [36] used Adaboost
and CNN classifiers to classify normal and abnormal heart
sounds from PCG recordings. Dave [12] applied k-means
and deep neural networks to classify normal and abnormal
heart rates using their own private dataset. Zhang et al. [48]
used artificial neural network to classify normal and abnormal
heart sound recordings [48]. The aforementioned methods
used private datasets.

From the above literature review, we can conclude that
the majority of related works relies on either on a modi-
fied version of publicly available PCG dataset or on their
own privates dataset. In other words, the obtained classi-
fication results cannot be compared objectively. For this
reason, we propose a detailed benchmark process based
on pre-trained CNN models. Since a transfer learning
does not require a large number of training examples,
we apply transfer learning to classify PCG recordings for
both two classes (normal/abnormal) and three classes (nor-
mal/murmur/extrasystole) using Pascal dataset without any
data modification and pre-processing step.

II. PASCAL DATASET
In this section, first we describe the unbalanced Pascal raw
dataset. Then, the balanced Pascal dataset is described.

A. UNBALANCED (RAW) DATASET
The publicly available Pascal dataset [8] is popular for CVD
recognition research. The Pascal dataset consists of dataset A
and dataset B. Dataset A is collected publicly from iSteth-
scope Pro iPhone app which contains 176 files in WAV
format. The dataset provides four classes for heart audio.
Dataset B is collected from a clinical setting using a digital
stethoscope DigiScope. It is larger than dataset A which
contains 656 files in WAV format. Dataset B is used for our
experiment to classify normal and abnormal PCG images
since it contains more images and provides three classes
for heart audio. Extrasystole and murmur PCG images are
considered abnormal.
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TABLE 1. Unbalanced examples distribution for three classes in Pascal
dataset.

TABLE 2. Unbalanced examples distribution for two classes in Pascal
dataset.

TABLE 3. Balanced examples distribution for two classes in Pascal
dataset.

TABLE 4. Keras pre-trained CNN models.

In our work, we use the Pascal dataset. Tables 1 and 2 sum-
marize the structure and example distribution in this dataset.
Concerning normal class samples, we use 231 samples
obtained by merging the normal samples from training set
A and training set B without considering the samples in
Btraining_noisynormal. For murmur class samples, we relay
on 129 samples. The samples are obtained from merging
34 samples from training set Awith 95 samples frommerging
66 samples from training set B and 29 samples form Btrain-
ing_noisymurmur. Considering extrasystole class, we use
65 samples from merging 19 samples from training set A and
46 samples from training set B. In order to obtain two classes
dataset, we use the same pascal dataset by merging Murmur
and extrasystole samples into one class named abnormal.
We obtained 231 samples for normal class and 194 for abnor-
mal class.

FIGURE 2. The system architecture of our approach using Keras and
Matlab platform.

FIGURE 3. MFCC steps.

FIGURE 4. An overview of PCG MFCC outputs for Normal, Murmur, and
Extrasystole classes respectively from left to right.

TABLE 5. Matlab pre-trained CNN models.

B. BALANCED DATASET
For balancing the training examples in Pascal dataset,
We merge training set A normal samples with training set B
normal samples and Btraining_noisynormal which includes
120 samples. We obtain a total of 351 samples from normal
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FIGURE 5. The training validations and the loss curves using the Matlab pre-trained CNN models. (a) AlexNet. (b) SqueezNet.
(c) GoogLeNet. (d) Inception-v3. (e) DenseNet201. (f) MobileNet-v2. (g) ResNet101. (h) Figure legends. (i) Xception. (j) InceptionResNet-v2.
(k) ShuffleNet. (l) NASNetMobile.

class as shown in Table 3. Concerning abnormal class, we also
merge 53 samples (murmur = 34 with extrasystole = 19)
from training set A and 141 samples (murmur = 95 with
extrasystole = 46) from training set B. In order to obtain a
balanced (equal class samples) dataset, we chose randomly
the first 194 samples from normal class and all the 194 sam-
ples from abnormal class.

III. CNN BENCHMARK PROCESS
Themain objective in this work is to create a CNNbenchmark
for CVD recognition using Pascal dataset. Our approach is
designed to use several pre-trained CNN models to recog-
nize CVD by learning edges and corners from PCG image
representation. The complex signal features representation
for normal and abnormal heart cycles are learned to handle
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the recognition for signals variations. As shown in Figure 2,
starting from the PCGWAV signal classification using Pascal
dataset, the first processing step aims to transform WAV
signal into Mel-Frequency Cepstrum represented by a PNG
image. In the next step, we apply transfer learning and
fine-tune the pre-trained CNNmodels with the training exam-
ples. This choice is due to a small number of examples found
in Pascal dataset.

A. PRE-PROCESSING
Mel Frequency Cepstrum Coefficients (MFCC) have been
widely used in speech recognition field [2], [14], [18]. This
success has been to their ability to represent the speech
amplitude spectrum in a compact form. As shown in Figure 3,
the processing steps of MFCC starts by dividing the PCG
signal into frames usually by applying Hamming windowing
function at fixed interval (1024 in our case) in order to remove
edge effects. This step gives us a cepstral feature vector
for each frame. Then, Discrete Fourier Transform related to
each frame is computed by retaining only the logarithm of
the amplitude spectrum relative to each frame. The reason
for applying logarithmic operation is due to loudness prop-
erty of the signal that has been found to be approximately
logarithmic. Then, spectrum is smoothed in order to obtain
meaningful frequencies. Finally, Discrete Cosine Transform
is applied for the aim to obtain MFCC features.

In our work, we adopted MFCC signal representation by
transforming the output feature into an image which is used
as an input to our pre-trained CNN models. Figure 4 gives
an overview of PCGMFCC outputs for normal, murmur, and
extrasystole classes respectively.

B. PRE-TRAINED CNN MODELS
Deep learning has become an important research area in
computer vision, many deep learning models have been pro-
posed in many recognition tasks as seen in [3], [6], [21],
[28]. Our work is particularly motivated by Convolutional
Neural Network (CNN) deep architectures which tolerates
image distortion, illumination changes, and provide invari-
ance of image translation. High level features are extracted
and learned from images.

The first CNN architecture was introduced by LeCun [27].
CNN has been a remarkable success in many computer vision
tasks such as face detection [4], [16], [17], [29], [49], hand-
written recognition [27], face recognition [3], [26], and image
classification [25] from a large number of training image
examples. With the emerging of transfer learning, or the so
called knowledge transfer, as a new learning framework [47],
the same results can be achieved on deep learning applica-
tions by fine-tuning the existing pre-trained CNNmodels that
have been already trained on ImageNet. Thesemodels require
small number of training examples compared to designed
ones in which they require an effort to collect a large number
of training examples to train. In this case, transfer learning is
suitable and fits for training PCG recordings since a small of
training examples is only publicly available.

FIGURE 6. An overview of the average training time verses training
accuracy for the Matlab pre-trained models using 2 classes and 2 folds.

TABLE 6. Training accuracy of CNN models using 2 class and 2 folds.

TABLE 7. Validation accuracy of CNN models using 2 classes and 2 folds.

In this work, we plug deep learning in the medical domain
with the use of time series data and by applying transfer learn-
ing to classify CVD. Several deep pre-trained convolutional
Neural networks are fine-tuned and trained. In our approach,
the CNN input has the dimension size of 640× 480. By fine-
tuning the models, we preserve convolutional layers used
for feature extraction. Then, we add additional layers. The
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FIGURE 7. The training validations and the loss curves after training the Keras pre-trained CNN models
(VGG16, VGG19, and DenseNet201) using 2 classes and 3 folds.
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TABLE 8. Validation true positive rate (TPR) of CNN models using 2 classes and 3 folds.

FIGURE 8. An overview of training time verses validation accuracy using the Keras pre-trained models for
2 classes and 3 folds.

first added layer GlobalAveragePooling2D is used for better
representation for our feature vector. It uses a parser window
moving across the feature matrix and pools the data by aver-
aging it. The second and third added layers are dense layers
respectively 1024 and 512 to allow learning more complex
functions and to obtain better classification results. Finally,
the fourth added layer, characterizes the classification layer
through dense layer with softmax activation function. In the
CNN training process, we use stochastic gradient descent
optimizer for weight update. We use 0.0001 learning rate
and Keras default momentum. Batch size is set to 5 while
epochs are set to 30. In our experiments, we chose to use
both Keras and Matlab pre-trained CNN models as shown in
Tables 4 and 5 respectively.

Keras pre-trained CNNmodels are trained using the unbal-
anced Pascal dataset for two and three classes throughGoogle

Colab plateform allowing the use of a dedicated GPU. The
GPU is 1xTesla K80, having 2496 CUDA cores, compute
3.7, 12GB (11.439GB Usable) GDDR5 VRAM. In Matlab
platform, pre-trained CNN models are trained using Matlab
Pretrained Deep Neural Networks [33]. A balanced pascal
dataset for two classes is used. A Huawei laptop Intel(R)
Core(TM) i7 1.99 GHz CPU with 16 GB of RAM is used
to fine-tune and test the models.

IV. EXPERIMENTS AND RESULTS
In this section, we experiment the pre-trained CNN models
using PCG Pascal dataset. As discussed in pre-trained CNN
models section, we evaluate Keras models for the unbal-
anced two classes (normal/abnormal) as well as for the three
classes (normal/murmur/extrasystole) dataset. The Matlab
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FIGURE 9. An overview of training time verses validation accuracy using Keras pre-trained models for
2 classes and 2 folds.

pre-trained models are also evaluated for the balanced two
classes (normal/abnormal) dataset.

A. CLASSIFICATION USING BALANCED DATASET
In this subsection, we first explain the balanced Pascal dataset
classification. Second, the unbalanced Pascal dataset classi-
fication is explained.

1) TWO CLASSES (NORMAL/ABNORMAL) CLASSIFICATION
We fine-tuned eleven pre-trained CNN models by using
Matlab Pre-trained Neural Networks [33] on the balanced
pascal dataset. We apply 2-cross validation to 388 samples.
We use 194 samples merged from murmur and extrasystole
for the abnormal class. On the other hand, we use 194 normal
samples for the normal class. The number of epochs is set
to 20. The batch size is set to 5. We use 0.0003 Learning
rate. Figure 5 gives an overview of training validations and
their loss curves using the Matlab pre-trained CNN models.
As shown in Table 6 and Table 7, InceptionResNet-v2 model
achieves the best average test accuracy with 89.5% compared
to other models. As shown in Figure 6, the fastest training
time and worst training accuracy average is obtained by using
SqueezeNet. One can notice that AlexNet holds the best
average training accuracy with 84.5%.

B. CLASSIFICATION USING UNBALANCED DATASET
In this subsection we evaluate both two classes (normal-
abnormal) and three classes (normal-murmur-extrasystole)
for PCG recognition by using Keras pre-trained CNNmodels.
The result in this step is to generate a PCG recognition
benchmark using pre-trained CNN models.

1) TWO CLASSES (NORMAL/ABNORMAL) CLASSIFICATION
After applying transfer learning on two classes using Pascal
dataset, we obtain the following classification results:

TABLE 9. Validation accuracy for Keras pre-trained models using
2 classes and 3 folds.

(a) Using three folds:
We splitted the dataset into 66% for training and 34%
for testing. Where 128 samples for abnormal class and
231 samples for normal class are used for training
and 66 abnormal and 120 normal are used for testing.
We obtain the following results:
• Fold1: As shown in Figure 7, the VGG16 pre-trained
model reaches the highest training accuracy and high-
est test accuracy 94% and 76% respectively com-
pared to other models. As shown in Table 9, by
using VGG16 models or VGG19, we obtain 77%
as the highest accuracy average compared to all
evaluated Keras CNN models. In other words, the
extended depth for VGG19 compared to the depth
for VGG16 has no impact on the validation accuracy
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TABLE 10. Validation true positive rate (TPR) of CNN models using 2 classes and 2 folds.

as shown in Table 4. Despite the deep architec-
ture used in DenseNet201 with 201 layers, one can
notice its validation accuracy is less than VGG16 and
VGG19 which argues that the depth of the model
has no direct impact on the validation accuracy.
VGG16 achieves 64% and 87% test accuracy in the
abnormal and normal classes respectively as shown
in Table 8. These results are obtained using 194 sam-
ples (murmur and extrasystole) for abnormal class and
351 samples for normal class from Pascal dataset as
shown in Table 2. The CNNmodel training is affected
by the abnormal class sample number. Concerning the
True Positive Rate (TPR) relative to both VGG16 and
VGG19 (as seen Table 8), we can deduce the follow-
ing results: TPR value relative to class 1 (abnormal
class) is equal to 0.64 and TPR = 0.87 for class 2
(normal class) with TPR_average = 0.75. This result
could be explained through the unbalance property in
pascal dataset with 194 samples for abnormal class
(after merging murmur and extrasystole samples) and
351 samples for normal class (As seen in Table 2). The
CNN model trainining is affected by the abnormal
class sample number.

• Fold2: In the second fold, VGG16 achieved 80% clas-
sification accuracy for the abnormal class and 81%
classification accuracy for the normal class. Despite
the sample number of abnormal class used in the train-
ing process, the TPR values related to both classes
are close with TPR = 0.8 for class 1 and TPR =
0.81 for class 2.Whichmeans that the trained samples
in abnormal class are relevent and could be adopted
for building a useful signature.

• Fold3: In the third fold, the classification accuracy
of VGG16 is equals to 54% for the abnormal class
and 90% for the normal class. The used samples in

TABLE 11. Validation accuracy for Keras pre-trained models using
2 classes and 2 folds.

the training process are not relevant and cause confus-
ing issues with normal classes. This is deduced from
TPR = 0.54 related to class 1 and TPR = 0.90 char-
acterizing class 2.

In fact, Figure 8 gives an overview of the average train-
ing time verses the average validation accuracy using
Keras pre-trained models. We can see that ResNet50 and
ResNet50-V2 have the lowest training time. On the other
hand, NasNetLarge has the highest training time and the
lowest validation accuracy compared to other models.

(b) Using two folds: We relay on splitted dataset into 50%
for training and 50% for testing. It consists of 97 abnor-
mal samples and 176 normal samples are used for train-
ing and 97 abnormal samples and 175 normal samples
are used for testing.
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FIGURE 10. The training validations and the loss curves after training the Keras pre-trained CNN models (VGG16,
VGG19 and DenseNet201) for 2 classes and 2 folds.

TABLE 12. Validation true positive rate (TPR) of CNN models using 3 classes and 3 folds.

• Fold1: As shown in Figure 10 and Table 11,
the VGG19 pre-trained model achieved training and
testing classification accuracy respectively 92% (in

EPOCH = 27) and 78% (in EPOCH = 14). Con-
cerning the True Positive Rate (TPR) relative to
VGG19 (As seen in Table 10), Class 1 generates
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FIGURE 11. The training validations and the loss curves after training the Keras pre-trained CNN models (VGG16,
VGG19, and ResNest101) using 3 classes and 3 folds.
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FIGURE 12. An overview of the Keras pre-trained models training time verses validation accuracy using 3 classes and 3 folds.

TPR = 0.63 and TPR = 0.90 for class 2 with TPR
average = 0.76 (As seen in Table 10). As shown
in Table 2, we have abnormal training samples = 97
(194/2) and normal training samples = 176 (351/2)
which is approximately the 1.8 × 97 = 174.
This unbalancing problem decreases TPR validation
results.

• Fold2: VGG19 achieved training and testing classi-
fication accuracy equal 95% (in EPOCH = 27) and
76% (in EPOCH= 17). The average validation accu-
racy is 77% which is the same result obtained using
3 folds. For the second 50 % of the training sample
related to both classes, class 1 generated TPR =
0.68 and TPR= 0.83 for class 2 with TPR average=
0.75.

As shown in Figure 9, VGG16 and ResNet50V2 has the
lowest training time but VGG19 has a very close training
time compared to these models. While VGG19 achieved the
highest average validation accuracy, NasNetLarge generated
the lowest one.

2) THREE CLASSES (EXTRASYSTOLE/MURMUR/NORMAL)
CLASSIFICATION
(a) Using three folds: The dataset is splitted into 66% for

training and 34% for testing. Where 152 samples for
normal class, 85 samples for murmur and 43 samples
for extrasystole are used for training and 79 normal,
44 murmur and 22 extrasystole are used for testing (As
seen Table 1):
• Fold1: As shown in Table 13 and Figure 11,
VGG19 reached the highest validation and testing
accuracy respectively 88% (in EPOCH = 25) and
74% (in EPOCH = 8). Concerning the True Positive

TABLE 13. Validation accuracy for the Keras pre-trained models using
3 classes and 3 folds.

Rate (TPR) relative to both VGG16 and VGG19 (As
seen in Table 12), we can deduce that VGG16 TPR
value relative to class 1 (extrasystole) is equal to
0.045, TPR = 0.62 for class 2 (murmur) and TPR =
1 for class 3 (normal) with TPR average = 0.55.
In this case, the unbalancing property related to pascal
dataset especially for ExtraSystole class (just 43 sam-
ples for training), has a direct impact on TPR. In other
hand, VGG19 gives us the best TPR_average =
0.59 compared to all the other models.

• Fold2: Considering the second fold, VGG19 reached
also the highest validation and testing accuracy
respectively 87% (in EPOCH 28) and 76%
(in EPOCH 17). Considering the TPR metric,
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FIGURE 13. The training validations and the loss curves after training the Keras pre-trained models (VGG16,
VGG19, and ResNet101) using 3 classes and 2 folds.

FIGURE 14. An overview of the Keras pre-trained models training time verses validation accuracy using 3 classes and 2 folds.

VGG16 and VGG19 reached very close TPR aver-
age values with the very low TPR value related to
Extrasystole class.

• Fold3: In the third fold, VGG19 reached the high-
est validation and testing accuracy respectively 85%
(in EPOCH 29) and 75% (in EPOCH 23). As seen

VOLUME 8, 2020 109487



M. Boulares et al.: Transfer Learning Benchmark for CVD Recognition

TABLE 14. Validation true positive rate (TPR) of CNN models using 3 class 2 folds.

TABLE 15. Validation accuracy for the Keras pre-trained models using
3 classes and 2 folds.

in Table 13, the average test accuracy for VGG16 is
close to VGG19. We can deduce that the two extra
convolution layers in VGG19 architecture (As seen
in Table 4) have a direct impact on the classification
test accuracy. Considering TPR metric, VGG16 gives
us the best TPR average compared to all the models
(As seen in Table 12).

As shown in Table 12, the best TPR average related to all
the three folds could be obtained by adopting VGG16 or
VGG19 as CNN models. But if we consider the training
time vs validation accuracy (As shown in Figure 12) and
TPR average, we can conclude that VGG19 could be
considered for such configuration.

(b) Using two folds: The dataset is splitted into 50%
for training and 34% for validation. The training data

consists of 116 samples for the normal class, 65 samples
for the murmur class and 33 samples for extrasystole
class. The testing data consists of 115 samples for nor-
mal class, 64 for the murmur class, and 32 for extrasys-
tole class as shown in Table 1.
In the same manner as discussed above using the three
folds, VGG19 and VGG16 achieved 73% as average
classification test accuracy. As shown in Table 13, they
achieved the highest average classification test accuracy
compared to other models. Concerning the test accu-
racy related to the Keras pre-trained models as seen
in Table 14, we can deduce the following results:
Considering all the folds, the TPR related to the
ExtraSystole class is very low. Therefore, it decreases
the average classification TPR obtained from all the
pre-trained models applied in Keras. The highest TPR
validation average is achieved by using VGG16 or
VGG19.

As shown in Figure 14, VGG16 and VGG19 have the
same average training time and average validation accuracy.
In this experiment, MobileNet has the lowest training time
but its test accuracy is ranked on the 7th which comes after
VGG16, VGG19 ResNet101, ResNet151, DenseNet121, and
DenseNet169 models. Also, ResNet101, which ranks sec-
ond, has an average classification test accuracy close to
VGG19 and VGG16 models but with a larger training time.

In fact, in the work of [30], the authors presented a solution
for heartbeat classification based on CNN trained on Pascal
dataset. In the pre-processing step, the authors performed
cross-cutting and framing to enlarge the data. They obtained
327 multi-class sample from cutting dataset A samples into
5s samples and discard less than 5s. Then they applied Butter-
worth filter and Fast Fourier Transform in order to extract fre-
quency features to be trained by CNN. They obtained 0.98 as
global identification rate (As seen in Table 16). In [37],
the authors relayed on Multi-class Pascal dataset B in order
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TABLE 16. An overview of our model results compared to some related works.

to propose a solution for automatic heartbeat classification.
In the pre-processing step of this work, they are based on
noise filtering, down-sampling in order to clean the samples
and to obtain reduced domain features. For the classification
step, the authors applied Recurrent Neural Network (RNN)
which is based on Long Short-Term Memory (LSTM) to
train and classify the heartbeat samples. Similarly, in the
research [15], the authors presented a solution for heartbeat
classification based on CNN. In the pre-processing step, they
performed spectrogram generation and deep feature extrac-
tion. In the classification step, they used transfer learning
technique through the use of Pre-trained CNN models such
as VGG16, VGG19, and AlexNet. They obtained an average
of 0.71 as precision metric (as seen in Table 16). In other
word, the majority of previous work used pre-processing
step before implementing their solution. Even as shown
in Table 16, the majority of cited references does not consider
the entire Pascal dataset samples, which does not allow us to
compare results objectively. To our knowledge, there is no
similar work providing a Benchmark related to the widely
used Pascal dataset (as is) using deeper CNN models.

The novelty of our work is to use deeper CNN models
through the application of transfer learning technique related
to many deep CNN models in order to provide a useful
experimental results (Benchmark). All of the used models are
trained onto the most used public multi-class dataset (Pascal).
We exploited Pascal dataset in two different manner. At first,
in order to study the balancing effect onto the classification
results, we balanced Pascal dataset training samples by pre-
serving all the abnormal samples which are 194 and we chose
randomly 194 samples from normal samples. Concerning
our second study, we used the entire Pascal samples as is
without any change and we trained our different deep CNN
models in order to compare the different results. As seen
in Table 16, we can conclude that the balancing step has an
important effect on classification results.

V. CONCLUSION AND PERSPECTIVES
In this work, we presented experimental results based on
fine tuning pre-trained CNN models using Pascal dataset.

We performed CNN training relying on two different deep
learning platforms namely, Keras and Matlab Pre-trained
Neural Networks. The obtained results can be used as a
starting Benchmark reference for future PCG based CVD
recognition research. We plan to improve the average val-
idation accuracy and the average test accuracy by using a
denoising technique combined with a robust heartbeat cycle
segmentation and selection process.
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