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ABSTRACT RDF and Property Graphs are data models that are being used to represent Knowledge
Graphs. The definition of methods to transform RDF data into Property graph data is fundamental to
allow interoperability among the systems using these models. Although both models are based on a graph
structure, they have special features that complicate the definition of data transformation methods. This
article presents an ontology-based approach to transform (automatically) property graphs into RDF graphs.
The ontology, called PGO, defines a set of terms that allows describing the elements of a property graph.
The algorithm corresponding to the transformation method is described, and some properties of the method
are discussed (complexity, data preservation, and monotonicity). The results of an experimental evaluation

are also presented.

INDEX TERMS RDF, property graphs, data transformation, OWL, ontology.

I. INTRODUCTION
A graph is a powerful abstract model that allows representing
different types of interconnected data. Its use in different
application domains (like social networks, biological sci-
ences, multimedia, and geography [1]), has motivated the
production of large graph-based datasets, and the develop-
ment of graph-oriented systems and technologies. In this
paper, we concentrate our interest in two popular approaches
for graph data management: Resource Description Frame-
work (RDF) databases and Property Graph (PG) databases.
RDF database systems (also called Triple Stores) [2] are
systems designed to store and query linked data [3]. These
systems are based on Semantic Web standards, in particular
the Resource Description Framework (RDF) [4], [5] and the
SPARQL query language [6]. RDF is a graph data model
that allows to describe the attributes and relationships of web
resources in the form of labeled, directed multigraphs.
Property Graph database systems [7] are systems designed
to store and query property graphs. A Property Graph [8] is an
extension of a labeled directed graph where nodes and edges
can have properties (i.e. property-value pairs). There are no
current standards for property graph databases. However,
the authors of this article are participating in working groups
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concerning the future standards'. In particular, there is an
ISO/IEC project created to design a standard query language
for property graphs?.

Given the importance of RDF and PG database systems in
the area of graph data management, we decided to study the
interoperability between them. The interoperability between
database systems is relevant for several reasons [9]: promotes
data exchange and data integration [10]; facilitates the cre-
ation, reuse, sharing and querying of data [11], [12]; extends
the use of available systems and tools [13]; enables a fair
comparison of systems (by using benchmarks) [14], [15];
allows to explore and compare the best features of different
approaches and systems [16].

In March of 2019, the W3C Workshop on Web Stan-
dardization for Graph Data® joined people from academy
and industry related to graph data management. One of the
objectives of the workshop was to create bridges between the
adjacent worlds of RDF and property graphs. The attendants
agreed with respect to the importance of developing standard
methods to allows the interoperability between PG and RDF
database systems.

1 https://www.gqlstandards.org
2https J/Iwww.iso.org/standard/76120.html
3 https://www.w3.org/Data/events/data-ws-2019/
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FIGURE 1. Graphical representation of a property graph.

Database interoperability concerns the development of
applications that exchange and share information across the
boundaries of existing databases [10], [17]. A common way
to support interoperability among database systems is the
definition of data transformation methods. Although the RDF
data model and the property graph data model are based on
a graph-like structure, they have special features that com-
plicate the definition of data transformation methods. To the
best of our knowledge, the research about such methods is
very limited (see the related work in Section VI).

1) CONTRIBUTIONS

In this article, we present an automatic ontology-based
method to transform property graph data into RDF data.
The main contributions are the description of the proposed
ontology (called PGO), the definition of the algorithm to
transform PG data to RDF data using the PGO ontol-
ogy, and the implementation of the proposed transformation
method.

2) LIMITATIONS

According to the classification criteria presented in [18],
our proposal is automatic and does not support manual cus-
tomization to model domain semantics. Moreover, our pro-
posal omits schema mapping including extracting domain
information from the input schema. This is due to the lack
of a uniform support for schemas in property graph database
systems.

3) ORGANIZATION

The remainder of this article is organized as follows:
Section II presents the main concepts related to prop-
erty graphs and RDF graphs. Section III introduces PGO,
an ontology to describe a property graph using RDF
Section IV includes the description of the transformation
method. Section V presents the experimental evaluation of
our approach. Section VI is devoted to discuss the related
work. We close the article with some conclusions.

Il. PRELIMINARIES

In this section we present formal definitions for the property
graph data model, the RDF data model, and Web Ontology
Language (OWL). These definitions will be the basis to
describe our transformation method.
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A. PROPERTY GRAPHS

In general terms, a property graph is a directed labelled
multigraph whose main characteristic is that nodes and edges
could maintain a set of properties. A property is composed of
a name and a value, and such value has a specific datatype.
Nodes, edges, and properties could have labels that are used
to describe their roles, types or classes in the data domain.
Figure 1 shows an example of property graph.

Most of the current graph database systems are designed to
manipulate property graphs. However, each system supports
a particular set of features allowed by the property graph data
structure (see Table 1). Next, we provide a formal definition
of the property graph data model which includes all the
features presented in Table 1.

Assume that L is an infinite set of labels (for nodes, edges
and properties), V is an infinite set of (atomic or complex)
values, and T is a finite set of data types (e.g. string, integer,
date, etc.). Given a value v € V, the function type(v) returns
the datatype of v. The values in V will be distinguished as
quoted literal. Given a set S, we will use P(S) to denote the
power set of S (i.e. the set of all subsets of S, including the
empty set and S itself).

Definition 1 (Property Graph): A  property graph is
defined as a tuple: G = (N, E, P, §, A, 0, p) where:

1) N is a finite set of nodes, E is a finite set of edges,
P is the finite set of properties, and N, E, P are mutually
disjoint sets;

2) § : E — (N x N)is atotal function that associates each
edge in E with a pair of nodes in N;

3) 1 :(NUE) — P(L)is a partial function that associates
nodes and edges with a set of labels (possibly empty);

4) o : (NUE) — P(P)is apartial function that associates
nodes and edges to a set of properties (possibly empty),
satisfying that o(01) N o(02) = @ for each pair of
objects 01, 02 € dom(o);

5) p : P - (L xV)is a total function that assigns a
label-value pair to each property.

The above definition supports property graphs with the
following features: each node or edge can have zero or more
labels; each node or edge can have zero or more properties;
each pair of nodes can be connected by zero or more edges;
each node or edge can have multi-value properties (i.e. mul-
tiple properties with the same property name).

VOLUME 8, 2020
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TABLE 1. Property graph features supported by graph database systems.

Systems Node labels Edge labels Edges Properties
] Q
2l ol = | 9 \ 7| g
cl ol Bllel ol BIlB|ElE|%5] 22|24
) <] s 3 <) S B =) E] 5] S E] E]
N|O|=|N|O|=|Aa|p|=Z|A|=]|=]|=
Neodj . B . . ° ° °
Datastax . . . . . .
OrientDB . . o | o . . o | o
ArangoDB ° . . ° ° . . .
JanusGraph . . . ° . . .
Amazon Neptune . ° . . . . .
TigerGraph . . o | o ° .
InfiniteGraph . . o | o . . o | o
InfoGrid 0 ° . o | o ° .
Sparksee . . . ) ) . . .
Memgraph . ° . . ) . . .
VelocityDB . . o | o . . o | o
AgensGraph . ) . . . . . .
TinkerGraph . . . ° . .
HGraphDB . . . . . ° .

Figure 1 shows a graphical representation of a sample
property graph containing bibliographic information based
on the BibTeX format. This sample graph is formally defined
asG=(N,E,P,4, A, 0, p) where:

o N = {n,n2, n3},

o E={ey, e},

o P={p1,....pn}

o 8(ey) = (m2, ny),
d(e2) = (n2, n3),

e A(n;) = {Person},
A(np) = {Entry, Inproceedings},
A(n3) = {Person},

o o(ny) = {p1,p2},

o(er) = {p3},

o (n2) = {pa, ps, pe, P7, s}
o(e2) = {po},

o(n3) = {p1o, p11},

e p(p1) = (Name, “S. Abiteboul”),
p(p2) = (Affiliation, “Stanford”),
o(p3) = (Order, “17),
p(pa) = (Title, “Queries ...on the Web”),
p(ps) = (Booktitle, “ICDT"),
p(pe) = (Year, *1997"),
p(p7) = (Keyword, “Datalog”),
p(pg) = (Keyword, “ieb”),
p(p9) = (Order, “2"),
o(p10) = (Name, “W. Vianu”),
p(p11) = (rffiliation, “UCSD").

B. RDF GRAPHS

The Resource Description Framework (RDF) [4], [5] is
a standard data model proposed by the World Wide
Web Consortium (W3C) to describe resources (i.e. real
or abstract things) occurring in any application domain.

VOLUME 8, 2020

The “description of a resource” means an explicit represen-
tation of the attributes and relationship of the resource.

Assume that I, B and L are disjoint infinite sets, where
I is the domain of web resource identifiers represented
as IRIs, B is the domain of anonymous resources called blank
nodes, and L is the domain of simple values called Literals.

The RDF data model is based on the notion of an RDF
triple. An RDF triple is a tuple (v, v2, v3) where vi € I UB
is called the subject, vo € I is the predicate and v3 € T U
B U L is the object. Here, the subject represents a resource,
the predicate represents either an attribute or relationship of
the resource, and the object represents either the value of the
attribute or the related resource, respectively.

A set of RDF triples intrinsically represents a labeled
directed multi-graph where the nodes represent subjects
and objects, and the edges represent the predicates. Hence,
an RDF graph is the description of resources for a given
application domain.

An RDF document is a document that encodes an RDF
graph in a concrete RDF syntax, such as Turtle [19] or
RDF/XML [20]. In order to facilitate the presentation of
examples, we will use the syntax defined by Turtle.

Syntactically, an IRI is very similar to a URL, and
can be abbreviated by using a prefix definition. For
instance, a full URI http://www.example.org/personl
can be abbreviated as the prefixed name ex:personl,
where ex: is a prefix that represents the namespace
http://www.example.org/. In this article we use the pre-
fixes and namespaces shown in Table 2.

A blank node is usually represented by an expression of
the form _:b123 where b123 is a label that works as a
local identifier. There are other ways to encode blank nodes
(e.g. [1), but we will use the above for simplicity.

We will consider two types of literals: a simple
literal which is a collection of Unicode -characters
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TABLE 2. Prefixes, namespaces and domains used in this article.

[ Prefix [ IRI | Domain
rdf http://www.w3.0rg/1999/02/22-rdf-syntax-ns# Resource Description Framework
rdfs | http://www.w3.0rg/2000/01/rdf-schema# RDF Schema
owl http://www.w3.0rg/2002/07/owl# ‘Web Ontology Language
xsd http://www.w3.0rg/2001/XMLSchema# XML Schema Datatypes
swrl | http://www.w3.0rg/2003/11/swrlx Semantic Web Rule Language (SWRL)
pgo http://ii.uwb.edu.pl/pgo# Property Graph Ontology
ex http://example.com/ Namespace for examples
skos | http://www.w3.0rg/2004/02/skos/core# Simple Knowledge Organization System
bag http://www.ontologydesignpatterns.org/cp/owl/bag.owl# | Parts and Collections: Bag
set http://www.ontologydesignpatterns.org/cp/owl/set.owl# Parts and Collections: Set
list | http://www.ontologydesignpatterns.org/cp/owl/list.owl# | Parts and Collections: List
foaf | http://xmlns.com/foaf/0.1/ Friend of a Friend ontology
dblp | http://dblp.uni-trier.de/rdf/schema-2015-01-26# DBLP Schema
dbo http://dbpedia.org/ontology/ DBPedia Ontology

(e.g. “ontology”), and a typed literal which consists of a

string and a datatype IRI (e.g. “Ontology” "~ "xsd: string)t.

C. owL

The Web Ontology Language (OWL) [21] is a W3C rec-
ommendation designed to describe ontologies. Specifically,
it allows to describe classes, properties, individuals, and data
values.

In order to describe a domain of interest, OWL defines
a set of terms — often called a vocabulary — where each
term has a specific meaning, e.g. the term owl:Class
represents the class of all classes of resources. An OWL
ontology can be described using RDF with a precise for-
mal meaning [22]. For instance, an RDF triple of the form
(C, rdf:type, owl:Class) defines that C is a resource of
class type.

Consider the prefix names presented in Table 2, which
are used in OWL 2. Next, we present the most important
OWL terms used to describe the ontology proposed in this
article.

o The term owl:Class identifies the class of resources
that are RDF classes. An RDF triple (C, rdf:type,
owl :Class) defines that C is a class in the data domain.

e (C1, rdfs:subClassOf, C») defines that C; is a sub-
class of Cj.

e owl:DatatypeProperty identifies the class of prop-
erties that link objects to data values. The triple expres-
sion (P, rdf : type, owl :DatatypeProperty) defines
that P is a datatype property.

e owl:ObjectProperty identifies the class of proper-
ties that relates objects to other objects. The expression
(P, rdf:type, owl:0bjectProperty) defines that
P is an object property.

e (P, rdfs:domain, C) defines that the resource class C
is the domain of the predicate P.

e (P, rdfs:range, C) defines that the resource class C is
the range of the predicate P.

4According to the W3C Specification of RDF 1.1 [5], simple literals are
syntactic sugar for abstract syntax literals with the datatype IRI xsd:string.
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e (P1,rdfs:subPropertyOf, P;)defines that Py is a sub
property of P».

e (R, rdfs:1label, lab) defines that lab is a human read-
able label (name) for the resource R.

e (R, rdfs:comment, com) defines that com is a human
readable description of the resource R.

e (C, owl:unionOf, list) defines that C is the union of
the classes in the collection [ist.

e (P, rdf:type, owl:AnnotationProperty) defines
that P is an annotation property.

e (R, rdf:type, rdfs:Datatype) defines that R is
a (personalized) datatype.

The OWL terms described above will be used next to define
an ontology for describing property graphs.

Ill. THE PROPERTY GRAPH ONTOLOGY (PGO)

In this section, we present our ontology for describing prop-
erty graphs, called PGO. In order to create the ontology,
we followed a methodology for ontology development whose
stages will be described below.

A. METHODOLOGY
Several methodologies for ontology development
exist [23]-[25]. They are not interchangeable so we decided
to use one main methodology and additional elements
from two others. The main methodology is Ontology
Design 101 (OD101) [26] and the additional methodologies
are METHONTOLOGY [27] and Griininger & Fox [28].

We choose OD101 as a basic methodology because it
is strongly associated with OWL. Moreover, OD101 is
compatible with Protégé, a software tool that supports
the creation of OWL ontologies by using a friendly user
interface. METHONTOLOGY is used because it provides
the most accurate descriptions of each activity (see [25]).
We also use competency questions proposed in the method-
ology by Griininger & Fox, because it is a good comple-
ment to OD101. We also use some formalisms introduced
in [29].

The domain ontology building process is composed of
seven main steps presented next.

VOLUME 8, 2020
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1) STEP 1: DETERMINE THE DOMAIN

The domain of interest needs to be described and analyzed
to obtain the most needed knowledge to build our ontology.
We reviewed the definitions of ““property graph” in the litera-
ture, as well as, extracted core knowledge about that domain.
In particular, we studied the functional requirements of the
property graph model and its serializations [30].

According to [29], the level of formality is also deter-
mined in this step. Such formality depends on whether terms
and their meanings are codified in a formal language or
a natural language. In our case, we choose the rigorously
formal level that is based on Definition 1. This step is based
on [26] and [29].

2) STEP 2: DETERMINE THE SCOPE
Specifying competency questions [28] allows us to determine
the ontology scope. These questions and their answers are
used to extract the main concepts and their properties, rela-
tions and formal axioms of the ontology.

Among the main competency questions that cover the main
concepts of an ontology for property graphs are:

1) What is the base datatype for a property graph?

2) What are the components of a node?

3) What are the components of an edge?

4) What are the components of a property?

5) What is the meaning of “‘label”’?

6) How to ensure interoperability between the ontology
and other graph data formats?

This step is based on [26], [27] and [28].

3) STEP 3: DEFINE THE CLASSES AND CLASS HIERARCHY
To identify the classes in the ontology, Uschold & Griininger
mention three strategies: bottom-up, top-down, and middle-
out. We followed a middle-out strategy which suggests
identifying first the core of basic terms and then defin-
ing and generalizing them as required. This step is based
on [26] and [29].

Assume that pgo is the prefix name of our ontology, and
it is associated with the IRI http://ii.uwb.edu.pl/pgo#. In this
step we create five OWL classes:

e pgo:Graph which represents an abstract graph;

e pgo:PropertyGraph which represents a property

graph (pgo:PropertyGraph L pgo:Graph);

e pgo:Node which represents a node;

e pgo:Edge which represents an edge; and

e pgo:Property used to define properties for nodes and

edges.

With respect to the class hierarchy, we just have that
pgo:PropertyGraph is subclass of pgo: Graph, i.e. a prop-
erty graph is a special type of graph.

4) STEP 4: DEFINE THE PROPERTIES AND FACTS OF
PROPERTIES

The concepts alone will not provide enough information
to answer the competency questions. Hence, in this step,
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we define the properties that connect the classes. For each
property, we define its domain, range, and cardinality. This
step is based on [26].

We identify the following properties

e pgo:hasEdge is used to define the edges of a property
graph;

e pgo:hasNode is used to define the nodes of a property
graph. pgo :hasNode should be used to define isolated
nodes”.

e pgo:startNode allows to indicate the source node of
a property;

e pgo:endNode allows to indicate the target node of a
property;

e pgo:hasNodeProperty is used to define zero or more
properties for nodes;

e pgo:hasEdgeProperty is used to define zero or more
properties for edges;

e pgo:hasProperty is used to define zero or more
properties for nodes and edges, applying that
pgo:hasProperty £ pgo:hasNodeProperty U
pgo:hasEdgeProperty;

e pgo:label is used to define zero or more labels for
nodes and edges.

¢ pgo:key allows to define the name of a property;

e pgo:value allows to define the value of a property.

Here we have that both, pgo:hasNodeProperty

and pgo:hasEdgeProperty, are sub-properties of the
property pgo:hasProperty. Our ontology contains
a core set of terms to describe a property graph,
and we can include SWRL [31] rules to infer other
properties e.g. hasEdge(g,e) ~ startNode(e,n) ->
hasNode (g, n).

5) STEP 5: DEFINE THE DATATYPES

Usually, an ontology requires the definition of datatypes.
The PGO ontology defines three datatypes: pgo:yarspg,
pgo:graphml and pgo:graphson. These datatypes have
been included to describe the terms using other data formats.
These datatypes can be used to attach documentation to the
instances defined in PGO. This step is based on [26].

6) STEP 6: INTEGRATE WITH OTHER ONTOLOGIES
Reusing existing ontologies is a requirement when an ontol-
ogy is thought to interact with other applications. In our case,
we re-used the following ontologies and terms:
o GraphJSON datatype as a subclass of csvw: JSON;
o GraphML datatype as a subclass of rdf:XMLLiteral;
« property value range to support bags (bag:Bag) as com-
plex types;
o property value range to support sets (set : Set) as com-
plex types;
o property value range to support lists (1ist:List) as
complex types.
This step is based on [27] and [26].

STsolated nodes are nodes without any incident edges.
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TABLE 3. Restrictions of the properties defined by the PGO ontology.

[ Domain [ Property | Range | Cardinality |
pgo:PropertyGraph pgo:hasEdge pgo:Edge *
pgo:PropertyGraph pgo:hasNode pgo:Node *
pgo:Edge pgo:startNode pgo:Node 1
pgo:Edge pgo:endNode pgo:Node 1
pgo:Edge Upgo:Node | pgo:label xsd:string ®
pgo:Edge Upgo:Node | pgo:hasProperty pgo:Property *
pgo:Edge pgo:hasEdgeProperty | pgo:Property *
pgo :Node pgo:hasNodeProperty | pgo:Property *
pgo:Property pgo:key xsd:string 1
pgo:Property pgo:value xsd:stringUbag:BagUset:Set Ulist:List | 1

7) STEP 7: CREATE THE DOCUMENTATION

Classes, datatypes and properties are usually commented by
using the terms rdfs:comment, rdfs:isDefinedBy and
rdfs:label [32]. Additionally, the term rdfs:seeAlso
is used to include further explanation on webpages. These
annotation properties are used to provide a human-readable
name and description of a resource, and to include additional
information about the ontology. This step is based on [27].

B. FINAL ONTOLOGY

In summary, the PGO ontology is formed by the following
terms:

« Resource classes: pgo:Graph, pgo:PropertyGraph,
pgo:Node, pgo:Edge and pgo:Property;

o Object properties: pgo:hasEdge, pgo:hasNode,
pgo:hasProperty, pgo:hasNodeProperty,
pgo:hasEdgeProperty, pgo:startNode, and
pgo:endNode;

« Datatype properties: pgo:label, pgo:key and
pgo:value;

o Datatypes: pgo:graphml, pgo:graphson and
pPgo:yarspdg.

Figure 2 shows the relationships between the resource
classes and properties. The domain, range and cardinality
restrictions of the properties are shown in Table 3. The
OWL2/RDF description of the PGO ontology is available at
http://ii.uwb.edu.pl/pgo.

The operators used in PGO are atomic negation, universal
restrictions, limited existential quantification, role hierarchy,
datatypes, concept union and intersection. The ontology con-
tains 78 axioms. The description logic expressivity of PGO
is ALH(D) [33]. The satisfiability reasoning problem for the
ontology is EXPTIME-complete: the upper bound is due to
correspondence with SH variant [34].

In addition, the ontology defines datatypes to ensure com-
patibility with existing graph formats, e.g. GraphML [35],
YARS-PG [30]. These datatypes ensure interoperability
between PG and RDF. They can be used for additional doc-
umentation of the data and for inserting additional (system-
specific) annotations, e.g. for better reverse conversion from
RDF to PG. The following fragment shows a fragment of
Turtle document using a SKOS vocabulary with a GraphML
literal:

118360

has subclass

’Property Graph’

has edge’ (Domain>Range)

’has node’ (Domain>Range)

’start node” (Domain>Range)

’has property’ (Domain>Range) @

’has property’ (Domain>Range)

’end node’ (Domain>Range)

Property

FIGURE 2. Classes and properties defined by the PGO ontology.

nmn

_:n skos:example

<node id="1">

<data key="labelV">Person</data>
<data key="name">John</data>
<data key="age">29</data>
</node>

nnn A/\pgo . GraphML .

IV. DESCRIBING PROPERTY GRAPHS WITH PGO

This section how to use the PGO ontology to describe
property graphs. Specifically, we define a data mapping to
translate a property graph into an RDF graph.

A. DATABASE MAPPINGS

In general terms, a database mapping is a method to translate
databases from a source database model to a target database
model. We can consider two types of database mappings:
direct database mappings, which allow an automatic trans-
lation of databases without any input from the user [36]; and
indirect database mappings, which require additional infor-
mation (e.g. an ontology) to conduct the database translation.
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Let M be a database model. A database schema in M is
a set of semantic constraints allowed by M. A database
instance in M is a collection of data represented according
to M. A database in M is an ordered pair D = (S, I), where
S is a schema and / is an instance. In this paper, we are not
considering schema information. Hence, we restrict our study
to databases instances.

Let M; and M; be two database models. A data mapping
from M, to M, is a function M from the set of all database
instances in M to the set of all database instances in M>.
This notion is used next to transform property graphs into
RDF graphs.

B. A DATA MAPPING BASED ON PGO

Let 7 be the set of all property graphs and 7, be the set of
all RDF graphs. We will define the indirect data mapping
M : I} — T such that, for any property graph G € 7,
M(G) returns an RDF graph § € 7, which is based on the
PGO ontology.

Let G = (N,E,P,5,1,0,p) be a property graph.
An IRI-assignment for G is a bijective function ¢ : N U
E U P — [ that assigns a unique URI to nodes, edges
and properties in G°. Additionally, assume the existence of
a function t(v) which allows to transform a property value v
into a string literal.

The data mapping M is defined by the procedure shown in
Algorithm 1. The procedure initializes the set S with the RDF
triple (g, rdf:type, pgo:PropertyGraph) that describes
that g is the IRI identifier for the input property graph (line 3).
After that, the procedure is divided into two phases: transfor-
mation of nodes (lines 4 to 17) and transformation of edges
(lines 18 to 36). In both cases there are iterations to transform
labels (I € A(0)) and properties (p € o(0)).

Note that each value property v is transformed into a simple
RDF literal by using the function 7(v) (see lines 14 and 33).
However, the function t can be modified to produce typed
literals. To do this, we need to assume the existence of a func-
tion f which allows to map PG datatypes to RDF datatypes
(e.g.f(integer) =xsd:int). Then, the function t(v) can be
defined to return a typed literal of the form “v” " ~f(type(v)).

C. EXAMPLE OF TRANSFORMATION

Let G be the property graph presented in Figure 1. The set of
RDF triples (presented in Figure 3) resulting from M(G) will
be the following:

= {
ex:qg, rdf:type, pgo:PropertyGraph),
ex:nl, rdf:type, pgo:Node),

ex:nl, pgo:label, "Person"),
ex:nl, pgo:hasNodeProperty, ex:pl),
ex:pl, rdf:type, pgo:Property),
ex:pl, pgo:key,
ex:pl, pgo:value, "S.

"Name") ,

S
(
(
(
(
(
(
( Abiteboul"),

5Note that the function ¢ can be adapted to any application domain.
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Algorithm 1: § = M(G)

Input: A property graph G =

Let

(N,E,P,8,),0,p)anda
IRI-assignment function ¢.

Output: A set of RDF triples S.
begin

gelbealRlfor G

S = {(g, rdf:type, pgo:PropertyGraph)}
foreachn € N do

(¢(n), rdf : type, pgo:Node) € §
foreach [ € A(n)) do
‘ (¢(n), pgo:label,) €S
end
foreach p € o(n) do
(¢(n), pgo:hasNodeProperty, ¢p(p)) € S
(¢(p), rdf:type, pgo:Property) € §
if p(p) = (k, v) then
(¢(p), pgo:key, k) € S
(@), pgo:value, T(v)) € S
end

end

end
foreach e € E do

(#(g), pgo:hasEdge, ¢(e)) € §
(p(e), rdf:type, pgo:Edge) € S
if 5(¢) = (n1, ny) then
(p(e), pgo:startNode, ¢p(ny)) € S
(p(e), pgo:endNode, ¢p(n2)) € S
end
foreach [ € A(e)) do
‘ (p(e),pgo:label,l) €S
end
foreach p € o(e) do
(p(e), pgo:hasEdgeProperty, ¢(p)) € S
(¢(p), rdf:type, pgo:Property) € S
if p(p) = (k, v) then
(@(p), pgo:key, k) €S

(¢(p), pgo:value,T(v)) € S
end

end

end
return S

end

:nl,
:p2,
:p2,
:p2,
:n2,
:n2,
:n2,
:n2,
:p3,
:p3,
:p3,

pgo:hasNodeProperty, ex:p2),
rdf:type, pgo:Property),
pgo:key, "Affiliation"),
pgo:value, "Stanford"),
rdf:type, pgo:Node),
pgo:label, "Entry"),
pgo:label, "Inproceedings"),
pgo:hasNodeProperty, ex:p3),
rdf:type, pgo:Property),
pgo:key, "Title"),
pgo:value, "Queries and
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computation

ex:n2, pgo:
ex:p4, rdf:
ex:p4, pgo:
ex:p4, pgo:
ex:n2, pgo:
ex:p5, rdf:
ex:p5, pgo:
ex:p5, pgo:
:hasNodeProperty, ex:p6),
ex:p6, rdf:
ex:pb6, pgo:
ex:p6, pPgo:
ex:n2, pgo:
:type, pgo:Property),
ex:p7, pgo:
ex:p7, pgo:
ex:n3, rdf:
ex:n3, pgo:
:hasNodeProperty, ex:p8),
ex:p8, rdf:
ex:p8, pgo:
ex:p8, pgo:

ex:n2, pgo

ex:p’7, rdf

ex:n3, pPgo

ex:p9, rdf:
ex:p9, pgo:
ex:p9, pgo:

on the web"),
hasNodeProperty, ex:p4),
type, pgo:Property),
key, "Booktitle"),
value, "ICDT"),
hasNodeProperty, ex:pb),
type, pgo:Property),
key, "Year"),

value, "1997"),

type, pgo:Property),
key, "Keyword"),

value, "Datalog"),
hasNodeProperty, ex:p7),

key, "Keyword"),
value, "Web"),

type, pgo:Node),
label, "Person"),

type, pgo:Property),
key, "Name"),

value, "V. Vianu"),
hasNodeProperty, ex:p9),
type, pgo:Property),
key, "{\AA}ffiliation"),
value, "UCSD"),

ex:g, pgo:hasEdge, ex:el),

ex:el, rdf:
ex:el, pgo:
ex:el, pgo:
ex:el, pgo:
ex:el, pgo:

type, pgo:Edge),
startNode, ex:n2),
endNode, ex:nl),

label, "Author"),
hasEdgeProperty, ex:pl0),

ex:pl0, rdf:type, pgo:Property),
ex:pl0, pgo:key, "Order"),
ex:pl0, pgo:value, "1"),

ex:g, pgo:hasEdge, ex:e2),

ex:e2, rdf:
ex:e2, pgo:
ex:e2, pgo:
ex:e2, pgo:
ex:e2, pgo:

type, pgo:Edge),
startNode, ex:n2),
endNode, ex:n3),

label, "Author"),
hasEdgeProperty, ex:pll),

ex:pll, rdf:type, pgo:Property),
ex:pll, pgo:key, "Order"),
ex:pll, pgo:value, "2")

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(ex:n3, pgo:
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
}

D. PROPERTIES OF THE TRANSFORMATION

In this section, we analyze three properties of the data map-
ping M: complexity, data preservation, and monotonicity’.

1) COMPLEXITY OF M

Let us analyze Algorithm 1. We can observe two recursive
steps. The first step (lines 4 to 17) executes a sequential

TThe notions of data preservation and monotonicity are based on the work
of Sequeda et al. [36].
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FIGURE 3. Graphical representation of an RDF graph.

revision of all the nodes in the graph, and includes recur-
sive procedures to extract node labels and node properties.
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Assuming that, the number of labels plus the number of
properties is a constant ¢ in average, then the complexity of
this step is O(|N| X ¢).

The second step (lines 18 to 36) performs a sequential
revision of all the edges in the graph. It is very similar to the
first step, but including instructions to extract the start and the
end node of the processed edge. In this case, the complexity
is O(JE| x c¢) where c is the average number of labels and
properties. Hence, the complexity of Algorithm 1 will be
O(c(IN|+|E])), i.e. it is linear with respect to the elements in
the property graph (i.e. nodes, edges, labels, and properties).

Additionally, we can analyze the size of the output RDF
graph. Considering that we are describing the property graph,
the number of elements in the RDF graph will be bigger than
the elements in the original property graph. Specifically, each
node requires 1 triple, each edge requires 4 triples, each label
requires 1 triple, and each property requires 4 triples.

Given the above condition, we can also suppose than the
disk space required to store the output RDF file will be bigger
than the original property graph. However, it depends on
the data format used. For example, Turtle allows a compact
encoding of RDF graphs by using abbreviated IRIs.

2) DATA PRESERVATION OF M

Let M| and M; be two database models. A data mapping M
from M| to M> is data preserving if there is a computable data
mapping M ™! from M, to M such that for every database
instance D in My, it applies that D = M~ 1(M(D)).

Data preservation indicates that, for some data mapping
M, there exists an “inverse” data mapping M ~! that allows
recovering recover a database instance transformed with M.
Data preservation is a fundamental property because it guar-
antees that the mapping does not lose data.

In order to prove that the data mapping M is data preserv-
ing, we need to find an inverse data mapping M ~!, such that
for any property graph G, it applies that G = M~ (M(G)).

The inverse data mapping M~ is defined by the procedure
shown in Algorithm 2. This algorithm is divided in two steps.
The first step (lines 2 to 14) iterates over the resources of type
pgo:Node, and obtains the RDF triples describing labels and
properties. The second step (lines 15 to 31) is very similar
to the first step, but applied to resources of type pgo:Edge.
In addition to the instructions to obtain labels and properties
for edges, the second step obtains the start node and the end
node for each edge. We can observe that both steps include
instructions to re-construct all the elements (nodes, edges,
properties and labels) of the original property graph. Hence,
we can conclude that the data mapping M is data preserving.

3) MONOTONICITY OF M

Given two database instances, I; and I, over a database
model M1, we say that I} is contained in /5, denoted I} C I,
if for every element e in I; it applies the e also exists in /5.
A data mapping M from data model M, to data model M; is
considered monotone if for any such pair of instances in M,
it applies that M(I1) € M(1).
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Algorithm 2: G = M~1(S)
Input: A set of RDF triples S.
Output: A property graph G = (N, E, P, 8, 1, 0, p).

1 begin
2 foreach (r|, rdf:type, pgo:Node) € S do
3 N =N U {n}
4 foreach (r|, pgo:label,l) € S do
5 ‘ An) = A(n) U {1}
6 end
7 foreach (r|, pgo:hasNodeProperty, 1) € S
do
8 P=PU{p}
9 o(n) =o(m)U{p}
10 if (r, pgo:key, k) € S and
(r2, pgo:value,v) € S then
1 | p() = (k. v)
12 end
13 end
14 end
15 foreach (r3, rdf:type, pgo:Edge) € S do
16 E=FEUle}
17 if (r3, pgo:startNode, r4) € S and
(r3, pgo:endNode, rs) € S then
18 é(e) = (n1, n) such that n; corresponds to
r4 and ny correspond to ;5
19 end
20 foreach (r3, pgo:1abel,l) € S do
21 | Ae) = Ae) U {1}
22 end
23 foreach (r3, pgo:hasEdgeProperty, ry) € S
do
24 P=PU{p}
25 o(e) =a(e)U {p}
26 if (r3, pgo:key, k) € S and
(r3, pgo:value,v) € S then
2 | p(p) = (k. v)
28 end
29 end
30 end
31 return S
32 end

Monotonicity indicates that a data mapping is consis-
tent with respect to the creation of new input data, i.e.
the output data increases as the input data increases. It is
a desirable property because it would avoid recalculat-
ing the mapping for the entire database after new data is
inserted.

Given two property graphs G = (Ny, Ey, Py, 61, A1, 01, p1)
and G» = (N2, Ea, P2, 82, A2, 02, p2), we say that Gy is a
subgraph of G, denoted G| C Gy, if it applies that N| € N,
E1 C Ej;, Py C P, §1(e) = 8z(e) for every e € E,
A(x) = Aa(x) for every x € Ny U Eq, o1(x) = oa(x) for
every x € N1 U Eq, and p1(p) = p2(p) for every p € P;.
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In order to prove that the data mapping M is monotone,
we need to verify that for any pair of property graphs G and
G», such that G| C Gy, it applies that M(G1) € M(G»), i.e.
the set of RDF triples returned by M(G}) is a subset of the
set of RDF triples returned by M(G>).

Note that Algorithm 1 defines a sequential procedure
where, for each element in the graph (node, edge and prop-
erty), the algorithm generates an specific number of triples for
the output RDF graph. There are not special conditions that
could affect the number of triples generated for each element.
It implies that the more elements the input property graph
has, the more elements the procedure creates. This condition
reflects the monotonic behaviour of the data mapping M.

V. EVALUATION
In this section, we present an experimental evaluation of our
implementation. Specifically, we evaluate the efficiency to
transform different property graph datasets (Subsection V-A).
Additionally, we present case studies and show
how our proposal can be extended with additional
semantics (Subsection V-B).

The following hypotheses are listed, where efficiency (in
terms of storing) is related to the size of the output file, and
extensibility refers to the ability to enrich data:

1) Regardless of serialization, the transformed graphs are
stored efficiently.

2) Despite the lack of semantic descriptions before trans-
formation, the data can be extended with appropriate
vocabularies and ontologies.

All the input and output files of our experimental evalua-
tion are available in [37]. All experiments were executed on
an Intel Core i7-4770K CPU @ 3.50GHz (4 cores, 8 threads),
16GB of RAM (clock speed: 1600 MHz), and an HDD with
reading speed rated at 160 MB/sec (we testitin hdparm -t).
We used Linux Mint 19.1 Tessa (kernel version 4.15.0).

A. EFFICIENCY OF THE TRANSFORMATION

The transformation method presented in this article was
implemented in Python, and the source code is available
in GitHub (https://github.com/domel/graphConv) [38]. The
current version supports the YARS-PG and GraphML data
formats for the input property graph, and different RDF data
formats for the output RDF graph (e.g. Turtle, JSON-LD,
RDF/XML).

The efficiency of our implementation was evaluated by
using four property graphs, whose number of nodes and edges
is presented in Table 4. The first dataset (DS1) mainly con-
cerns persons, their activities, and relations with other people.
This dataset was crawled from the Web. The next dataset
(DS2) describes a co-authorship network of scientists work-
ing on network theory and experiment, which is presented
in [39]. The third dataset concerns a graph of disorders and
disease genes linked by known disorder-gene associations,
which is presented in [40]. The last dataset (DS4) consists into
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TABLE 4. Description of datasets.

[Cardinality | DSI | DS2__ | DS3 | Ds4 ]
#modes OSIT | 1580 | 1419 | 327588
#edges 11845 | 2742 | 3926 | 1477965
Hriples 128136 | 25986 | 43422 | 10337997

a social network produced with data generator of the LDBC
Social Network Benchmark (SNB) [41].

For each property graph, we generated a file in YARS-PG
and a file in GraphML. Table 4 shows the number of RDF
triples obtained after transforming the input property graphs.

Table 5 shows the time required to transform each prop-
erty graph file. The first part of the table presents transfor-
mation times from YARS-PG to RDF serializations (Turtle
with labelled blank nodes, Turtle with nested blank nodes,
JSON-LD, and RDF/XML). The second part of the table
shows transformation times from GraphML to other RDF
serializations. The generation times show that the transfor-
mations between these two models are very fast.

Table 6 shows file sizes before and after transformation.
The first part of the table presents data formats for property
graphs: YARS-PG and GraphML. The second part of the
table shows RDF serializations, such as Turtle, JSON-LD,
and RDF/XML. It is worth mentioning that Turtle syntax
allows blank nodes to be written in the two forms, labelled
and nested (unlabeled), and this has a significant effect on
the file size.

Moreover, we decided to test our solution for compression
that can be streaming to improve transfer speed, capacity,
and bandwidth utilization. We use Gzip/Deflate® algorithm
because it is widely supported by various Internet protocols.
We define compression ratio cr as “ZPo=, where
textual _size is the size of a current serialization file. In Table 7
we present these compression ratios.

Table 6 shows a comparison of the data formats used in
our experiments. We can see that property graph data formats
allow to write graph data in a compact form. This is mainly
because more RDF triples are needed to map nodes and
edges. However, formats that occupy more space compress
better (Table 7).

B. CASE STUDIES

The property graph model is not semantic (unlike RDF), i.e.
it does not describe the meaning of the data. Dealing with
semantics in such databases is possible but not supported
natively. Therefore, the main inconvenience posed by our
automatic mapping is the lack of support for vocabularies
and/or ontologies.

An optional step after transformation is to enrich the graph
with vocabularies and ontologies that will better describe the
transformed data. This step is not necessary for the transfor-
mation but it is useful because it eliminates the disadvan-
tages of property graphs (lack of support for vocabularies

8https://tools.ie:tf.org/html/rfc1952
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TABLE 5. Generation times in seconds.

[ Input and output [ DS1 [ DS2 | DS3 [ DS4 |
YARS-PG — Turtle with labelled blank nodes [seconds] 1.317 | 0.124 | 0.168 | 33.231
YARS-PG — Turtle with nested blank nodes [seconds] 0.847 | 0.066 | 0.081 | 25.362
YARS-PG — JSON-LD [seconds] 1.101 | 0.083 | 0.112 | 29.968
YARS-PG — RDF/XML [seconds] 1.561 | 0.152 | 0.202 | 40.152
GraphML — Turtle with labelled blank nodes [seconds] 1.461 | 0.136 | 0.183 | 35.454
GraphML — Turtle with nested blank nodes [seconds] 0.941 | 0.072 | 0.092 | 28.908
GraphML — JSON-LD [seconds] 1.223 | 0.092 | 0.121 | 31.736
GraphML — RDF/XML [seconds] 1.751 | 0.161 | 0.223 | 44.014

TABLE 6. Amount of space occupied before (PG) and after (RDF) in bytes. The best results were marked with italics.
[ Data formats | DS1 | DS2 | DS3 | DS4 |

YARS-PG [bytes] 1882718 | 105297 | 132029 44 517 935

P GraphML [bytes] 2875036 | 265192 | 338842 140 894 498

G YARS-PG (deflate) [bytes] 556 955 23771 28 054 7168 226

GraphML (deflate) [bytes] 627 827 33127 42 420 12 735294

Turtle with labelled blank nodes [bytes] 5059289 | 886038 | 1448491 [ 363819201

Turtle with nested blank nodes [bytes] 2680687 | 406 551 | 620 874 183412 476

R JSON-LD [bytes] 3851878 | 616083 | 999 572 281354 270

D RDF/XML [bytes] 6970412 | 704497 | 1178567 | 546411111
F Turtle with labelled blank nodes (deflate) [bytes] | 590 671 71 800 112 234 38493 537
Turtle with nested blank nodes (deflate) [bytes] 417 954 41 935 61018 23 990 442
JSON-LD (deflate) [bytes] 607 546 79 521 121 487 41 048 056
RDF/XML (deflate) [bytes] 688 083 49752 65 220 47 320 003

TABLE 7. Compression rates. The best results are marked with italics.

[ Compression ratio | DST | DS2 | DS3 | DS4 |
CTyarspg 29.58% | 22.57% | 21.25% | 16.10%
CTgraphml 21.84% | 12.49% | 12.52% | 9.04%
crlabelled 11.67% | 8.10% | 7.75% | 10.58%
ernested 1559% | 1031% | 9.83% | 13.08%
erisonld 15.77% | 1291% | 12.15% | 14.59%
Crrdfzml 9.87% | 7.06% | 5.53% | 8.66%

and ontologies). It is worth remembering that enrichment,
depending on the clauses written, may change the structure
of graphs. This brings benefits, e.g. deletion of data that may
no longer be needed, but also has disadvantages, e.g. it can
cause that after the reverse transformation the graphs will not
be the same.

Here we present a way to enrich our RDF with new vocab-
ularies and ontologies. The user can create arbitrary queries,
but we choose three that are representative (see Table 8).
These queries uses SPARQL CONSTRUCT clause’. In this
section, we propose three case studies to demonstrate the use
of enriching semantics and its deployment according to [42]
guidelines. The queries are executed in Apache Jena 3.12 and
available on [37].

1) OBJECTIVES

We evaluate DS1, DS2, and DS3 in different conversions. The
main hypothesis is that the conversion is possible without
incurring into particular additional requirements that could
change the proposed ontology.

9https://WWW.W3.org/TR/20 13/REC-sparqll1-query-20130321/
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TABLE 8. Description of query features. o - query uses the feature,
o* — query uses two triple patterns, ¢** — query uses three triple patterns.

[ Query features [Q1 ] Q2] Q3]
simple construct .
multiple constructs o* | o*F
multiple objects °
matching literals B °
functions °
multiple vocabularies .

2) RELATED STUDIES
Many academic papers include examples of using different
approaches to convert RDF-to-RDF [43]-[45].

3) CASE 1 IMPLEMENTATION

The first query creates FOAF names from PGO. The query
is for the DSI1, where all crawled names are mapped to
foaf:name. All RDF triples have IRI references generated
as a subject using the IRI () function.

4) CASE 2 IMPLEMENTATION

The second query creates DBLP person instances and full
names from PGO. The query is for the DS2, where the data
is filtered so that it shows the authors of the publications.

5) CASE 3 IMPLEMENTATION

The third query creates DBpedia diseases with names and
medicine subjects from PGO. The query is for the DS3, where
names of disease are mapped to skos:prefLabel and
medicine subjects are mapped to dbo:eMedicineSubject.
The conversion uses two ontologies: DBO and SKOS.
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TABLE 9. Times of enriching RDF.

RDF data formats [Q1 Q2 Q3 |
Turtle (Iabbeled) [seconds] | 0.224 | 0.284 | 0.599
Turtle (nested) [seconds] 0.253 | 0.304 | 0.603
JSON-LD [seconds] 0.389 | 0.343 | 0.706
RDF/XML [seconds] 0.233 | 0.293 | 0.730

TABLE 10. Transformation approaches.

[ Approaches | Format | Automation degree |

RDF*[49] PG automatic
Das et al. [50] PG manual
NSMNTX [51] PG automatic
rdf2neo [52] PG semi-automatic
SRDS [53] PG automatic
YARS [54] PG automatic
*DM [16] PG automatic
Triplify [18] RDB manual
StdTrip [55] RDB semi-automatic
RDOTE [56] RDB manual
D2RQ [57] RDB automatic
AuReLi [58] RDB semi-automatic
OntoAccess [59] RDB manual
SquirrelRDF [60] RDB automatic and manual
R2RML [61] RDB manual
TARQL [62] CSv manual
CSV2RDF [63] CSV manual
Cruz et al. [64] XML automatic
Deursen et al. [65] XML manual
X20WL [66] XML automatic
WEESA [67] XML automatic
JXML20OWL [68] XML automatic
XSPARQL [69] XML manual
Gloze [70] XML automatic
GRDDL [43] XML manual
SPARQL-Generate [45] | XML, JSON, | manual

CSV, HTML
RML [44] XML, JSON, | manual

CSV, RDB

6) FINAL REMARKS

The three queries can be executed in different SPARQL tools.
We test these queries in Sesame, Jena Fuseki, and Jena arq.
We also consider different RDF serializations, e.g. Turtle,
JSON-LD, RDF/XML. In Table 9 we present creation times.
Turtle with labeled blank nodes had the best performance. All
the results are the same, the generated RDF triples represent
the same data. The output data can be represented in different
RDF serializations. All queries are published in [37].

V1. RELATED WORK

In this section, we present the approaches for mapping prop-
erty graph databases to RDF (Subsection VI-A), relational
databases to RDF (Subsection VI-B) and the approaches for
mapping XML to RDF (Subsection VI-C). A summary of
approaches is shown in Table 10. It should be mentioned
that some works have studied the problem of object-oriented
programming languages to RDF (e.g. [13], [46]-[48]).

A. PROPERTY GRAPH DATABASES
There exist only a few proposals for the PG-to-RDF transfor-
mation, such as Das et al. [S0] and Hartig [49], that mainly use
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RDF reification methods (including blank nodes) to convert
nodes and edge properties in a property graph to RDF data.
While [49] propose an in-direct mapping that requires con-
verting to the RDF* model, [50] lacks a formal foundation.

In [49] Hartig et al. propose transformations between PGs
and RDF. Unfortunately, this proposal uses an extension of
RDF that is called RDF*. RDF* is not widely supported by
the systems and cannot be implemented based on the system
that has not been optimized for this proposal. The basis of
the proposal is to extend the RDF data model with a notion
of nested triples that is not standardized'’. In contrast to the
above approach, our proposal is based only on standards and
widely supported languages.

Das et al. [50] present an approach based on a commer-
cial relational database. That paper proposes three models:
1) extended reification based, 2) subproperty based, and
3) named graph based. Unfortunately, all presented model
have some limitations. The first model requires reification,
which does not have formal semantics and makes data dif-
ficult to query. The second model needs inference, which
is time-consuming. The third model supports named graphs,
which are not supported by all RDF systems.

Another group of proposals uses Neo4j databases [51],
[52]. The main disadvantage of these solutions is a strong
relationship with only one database.

Barrasa [51] proposes NSMNTX, a plugin that enables the
use of RDF in Neo4;j. This plugin allows the import and export
of both schema and data. NSMNTX is basaed on neose-
mantics!! and the previous author works!?. The problem
with this approach is that NSMNTX is not formally defined
and the mappings do not satisfy the property of information
preservation.

Brandizi et al. [52] propose rdf2neo, a tool that can be
used to map any RDF schema to a desired PG schema. This
hybrid architecture facilitates access to knowledge networks
based on shared data models. This solution maintains a more
complex infrastructure that works well in the paper use case,
but not for more general applications.

In [53] Virgilio proposes an approach (SRDS) for convert-
ing an RDF data store to a graph database by exploiting the
ontology and the constraints of the source.

Tomaszuk [54] proposes YARS serialization for transform-
ing RDF data into PGs. This approach performs only a syn-
tactic transformation between encoding schemes.

In [16] Angles et al. propose an approach that con-
sists of three direct mappings, namely Simple Database
Mapping (SDM), Generic Database Mapping (GDM), and
Complete Database Mapping (CDM)!3. This approach is
well-formalized and the mappings GDM and CDM are sat-
isfy the property of information preservation, i.e. there exist
inverse mappings that allow recovering the original data and

1011 the present year, an informal work is ongoing on standardizing RDF*.
1 https://github.com/neo4;j-labs/neosemantics/
12https://jbarrasa.com/ZO16/06/07/imp0rting-rdf—data—into—neo4j/

Bwe put these three mappings in the table as *DM.
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schema without the loss of information. Furthermore, all pro-
posed mapping are semantics preserving, i.e. it indicates that
the output of a database mapping is always a valid database.
A general limitation of the three mappings is that they are not
support reified RDF data and RDF inference rules.

B. RELATIONAL DATABASES AND TABULAR DATA

At the beginning, we focus on solutions [18], [55], [56] based
on SQL as mapping representation. Triplify [18] is based
on the mapping of HTTP requests onto database queries
expressed in SQL queries, which are used to match sub-
sets of the store contents and map them to classes and
properties. The next approach is StdTrip [55], which pro-
poses a structure-based framework using existing ontology
alignment software. The approach finds ontology mappings
between simple vocabulary that is generated from a database.
RDOTE [56] also uses SQL for the specification of the data
subset. In that proposal, the suitable SQL query is stored in
a file. That approach transforms data residing in the database
into RDF graph dump using classes and properties.

The next group of approaches [57], [58] uses D2RQ as
mapping representation. D2RQ [57] supports both automatic
and manual operation modes. In the first mode, RDFS vocab-
ulary is created, by the reverse engineering methodologies,
for the translation of foreign keys to properties. In the sec-
ond mode, the contents of the database are exported to an
RDF in accordance with mappings stored in RDF. Another
D2RQ-based proposal is AuReLi [58], which uses several
string similarity measures associating attribute names to
existing vocabulary entities to complete the automation of the
transformation of databases.

Another group of proposals [59], [60] use RDF. The first
approach is OntoAccess [59], which is vocabulary-based
write access to data. This approach consists relational
database to RDF mapping language called R3M, which
consists of an RDF format and algorithms for translating
queries to SQL. The next proposal is SquirrelRDF [60], which
extracts data from several databases and integrates that data
into a business process. That proposal supports RDF views
and allows for the execution of queries against it.

R2RML [61] is the best-known RDF language-based
for expressing mappings from relational databases to RDF
datasets because it is a W3C recommendation. R2ZRML is
a language for specifying mappings from relational to RDF
data. A mapping takes as input a logical table. In the next step
a logical table is mapped to triples map that is a set of triples.

Another group are solutions that map only CSV to
RDF [62], [63]. TARQL [62] converts CSV files using
SPARQL 1.1 syntax. CSV2RDF [63] specification proposes
the rules to be applied when converting tabular data into RDF.
CSV data can be described with metadata annotations that
explain its structure.

C. XML
At the beginning, we focus on solutions [64]-[68] that use
existing vocabulary and/or ontology. This means that the

VOLUME 8, 2020

XML data is transformed according to the mapped vocab-
ularies. Cruz and Nicolle [64] propose basic mapping rules
to specify the transformation rules on properties, which are
defined in the XML Schema. Deursen er al. [65] propose
the method for the transformation of XML data into RDF
instances in an ontology-dependent way. X20WL [66] is
a tool that builds an OWL ontology from an XML data
source and a set of mapping bridges. That proposal is based
on an XML Schema that can be modeled using different
styles to create the vocabulary structure. The next proposal
is WEESA [67], which is an approach for Web engineering
techniques and developing semantically tagged applications.
Another tool is JXML2OWL [68]. It supports transformation
from syntactic data sources in XML format to a common
shared global model defined by vocabulary.

Another subgroup of approaches [43], [69], [70] supports
mutual transformation. XSPARQL [69] is a query language
based on SPARQL and XQuery for transformations from
RDF into XML and back. It is built on top of XQuery in
a syntactic and semantic view. Gloze [70] is another tool
for bidirectional mapping between XML and RDF. It uses
information available in the XML schema for describing how
XML is mapped into RDF and back again. GRDDL [43]
is a markup language that obtains RDF data from XML
documents. It is represented in XSLT.

Moreover, there are some approaches [44], [45] that sup-
port XML and other formats at the same time. SPARQL-
Generate [45] generates RDF from RDF datasets and a set of
documents in arbitrary formats. It is designed as an extension
of SPARQL 1.1. SPARQL-Generate supports XML, JSON,
CSV, GeoJSON, HTML, and CBOR!. Another approach
is RML (RDF Mapping language) [44]. It is a generic
mapping language defined to express rules that map data
in heterogeneous structures and serializations to the RDF
data model. RML supports JSON, XML, CSV, and rela-
tional databases. RML is defined as a superset of RZRML
(see Subsection VI-C). Furthermore, for a more comparison
of the above mentioned approaches addressing data and query
interoperability, we point the interested reader to [13].

VIl. CONCLUSIONS
Interoperability is an important characteristic of databases
whose interfaces are completely understood, to work with
other systems. In this article, we have presented a method to
transform a property graph database into an RDF triplestore.
We propose an ontology mapping from PGs to RDF, which
is simple and domain-independent. Our proposal was based
mainly on OD101 and METHONTOLOGY. We also study
fundamental properties in the context of our transformation.
Moreover, our proposal allows for automatic transformations.
As part of future work, we will consider possibilities for
manual and/or semi-manual transformations that will allow
defining fragments which and how can be mapped. Further-
more, we will try to take into account a database schema.

14CBOR (Concise Binary Object Representation) is a binary representa-
tion of JSON.
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