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ABSTRACT Due to the low recognition rate of weeds in wheat fields and the inability to accurately locate
weeds, we propose a recognition method for weeds in natural wheat fields based on the fusion of RGB
image features and depth features. The method breaks through the limitations of the two-dimensional spatial
features extracted from RGB images when recognizing grass weeds similar to wheat. According to the
species, distribution of weeds in wheat fields, we extracted the color, position, texture, and depth features of
weeds in wheat fields from RGB and depth images during the tillering and jointing stages. And then used
the AdaBoost algorithm for the integrated learning of multiple classifiers, thereby achieving the recognition
of weeds in wheat fields. The experimental results revealed that the recognition speed of weeds during the
tillering stage was 0.2 s and the accuracy rate was 88%. The recognition speed of weeds during the jointing
stage was 0.69 s, and the accuracy rate of weed recognition was 81.08%. These results are significantly
higher than the weed recognition rate based on features extracted from RGB images.

INDEX TERMS Recognition of weeds in wheat fields, RGB-D images, depth features, AdaBoost.

I. INTRODUCTION
Weeds compete with wheat for light, water, fertilizer, and
growth space [1]–[3], and have become major biological
disasters that restrict wheat yield and quality. Among many
weed control methods, chemical weeding has become the
main approach used in field weeding due to its high efficiency
[4], [5]. Due to the lack of weed species and distribution
information, the use of chemical herbicides mostly consists
of extensive spraying. Excessive application can cause seri-
ous environmental pollution [6], affect the yield and quality
of agricultural products, and reduce agricultural production
efficiency. In order to address the issue of extensive spraying,
the study of site-specific weed management (SSWM) is very
important [7], [8]. The recognition of weeds in wheat fields
is a key step in the implementation of SSWM, and is also the
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core technology being used in the development of intelligent
weeding robots.

The types of weeds in wheat fields can mainly be divided
into grass weeds and broad-leaved weeds [8]. Grass weeds
(Poaceae family) are monocotyledonous plants with long
and narrow leaves, extremely similar to wheat. Broad-leaved
weeds with relatively broad leaves are more different from
the shape of wheat than grass weeds. In recent years, changes
in farming methods and the frequent introduction of seeds
in various wheat areas have led to great changes in the
species and emergence degree of weeds in wheat fields. Grass
weeds have invaded wheat fields and become the dominant
populations, and, like broad-leaved weeds, their presence has
become a prominent issue affecting wheat production [9].

Spectrum, image, and spectral imaging technologies are
currently the main research methods for the rapid recognition
of field weeds. The classification method of weeds based
on spectral technology consists of recognizing differences in
the reflectance of wheat, weeds, and soil within a certain
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band [10], [11]. Due to the similar leaf layer structure of
grass weeds and wheat, however, the spectral features of
reflectance at specific wavelengths are very much alike [12],
making it difficult to distinguish the two via differences in
spectral reflectance. The classification technology of weeds
in wheat fields based on image processing consists of recog-
nizing weeds in wheat fields by analyzing the color, position,
shape, and texture of wheat and weeds in wheat field images
[13], [14]. It is difficult, however, to distinguish grass weeds
from the features extracted from two-dimensional images.
Spectral imaging technology uses the comprehensive fea-
tures of images to segment soil background, and combines
multi-feature information in order to complete the automatic
recognition of weeds in wheat fields [15], [16]. However, the
features of wheat and weeds obtained through spectral imag-
ing technology are still limited to two-dimensional space,
which cannot fundamentally solve the issue of grass weed
recognition and spectral imaging equipment is too expensive
to truly apply in practical agricultural production.

Existing recognition methods for weeds in wheat fields
mostly focus on wheat seedlings, but as the wheat grows,
the leaf layers close the rows, and the degree of leaf over-
lap increases. The use of two-dimensional features greatly
reduces the recognition effect of weeds in wheat fields. Stud-
ies have shown that plant height information is an impor-
tant characterization of crop growth status, and weeds and
crops often exhibit large differences in height due to growth
competition and other factors [17], [18]. By acquiring the
height information of crops and weeds, and combining image
features and height features to classify weeds and crops, the
accuracy of weed recognition is improved [19]. At present,
the main technical methods for obtaining depth informa-
tion include RGB-D cameras, lidar, and stereovision [20].
Although highly accurate height information can be obtained
using radar, the equipment structure is complex and the cost
is high, making it difficult to put into practical use in the field.
When obtaining three-dimensional information via stereovi-
sion, the image-matching algorithm requires a large amount
of calculation, which is not conducive to the real-time acqui-
sition of weed depth in wheat fields. Therefore, developing a
feasible method for obtaining the depth information of weeds
in wheat fields quickly and at low cost is the first issue that
needs to be solved in practical applications.

In order to overcome the inherent challenges in the recogni-
tion of weeds in wheat fields, we accomplished the following
in this study:

1) A fast recognition method for weeds in wheat fields
combining RGB images and depth images was proposed. For
the first time, RGB-D fusion information was applied to the
classification of weeds in wheat fields.

2) Focusing on the issue of holes in depth images, a depth
information repair method based on RGB image information
guidance was proposed that utilizes the object consistency of
RGB and depth image acquisition.

3) A more robust classification algorithm of the various
weed species in wheat fields was proposed. The different

FIGURE 1. Image collection scene and acquisition equipment: (a)
Intel R©RealSenseTMD415 camera; (b) Image acquisition equipment.

features of weeds in wheat fields at the peak of weed emer-
gence were analyzed. Color, position, texture, and depth
information was extracted. The AdaBoost algorithm was
employed for integrated learning in order to achieve accurate
recognition of weeds in wheat fields.

In the follow sections, the experimental design and
data acquisition methods will be introduced in section II.
In section III, the distribution features of weeds in wheat
fields at different stages are analyzed, and a data gap repair
algorithm and classification method for weeds in wheat fields
are proposed. Section IV provides the experimental results.
Our conclusions are presented in the final section.

II. RGB-D DATASET COLLECTION
A. EXPERIMENTAL DESIGN
From December 2017–April 2018, wheat trials were con-
ducted at the National Engineering and Technology Center
for Information Agriculture Base in Rugao City, Nantong
City, Jiangsu Province, China. The wheat varieties selected
for the test were Shengxuan 6 (V1) and Sumai 8 (V2).
There were 3 nitrogen treatments in the experiment, N0 (0 kg
N/ha), N1 (180 kg N/ha), and N2 (360 kg N/ha); and the
test area was 100 m long and 12 m wide. Weeding was
not carried out during field management. In addition, the
seeds of 6 weed varieties commonly found in wheat fields
were randomly sown in order to simulate the growth of field
weeds. These included the grass weeds foxtail grass, annual
bluegrass, brome, and barnyard grass, and the broad-leaved
weeds redroot pigweed and shepherd’s purse, a mix that was
comparable to the actual range of weed varieties in wheat
fields.

B. ACQUISITION EQUIPMENT
Wheat field RGB and depth images were acquired using the
Intel R© RealSenseTMDepth Camera D415 as shown in Fig. 1.
The infrared stereo cameras were used to generate the depth
images, and the color sensor was used to generate the RGB
images, both with resolutions of 1280 × 720 pixels. Field
images were obtained during the tillering and jointing stages
of wheat, one being an RGB image and the other being a
depth image. The camera was positioned 70 cm from the crop
canopy. The images taken were based on a row of crops and
soil on both sides. The actual field shooting device is shown
in Fig. 1.

VOLUME 8, 2020 110363



K. Xu et al.: Recognition of Weeds in Wheat Fields Based on the Fusion of RGB Images and Depth Images

FIGURE 2. Distribution of weeds in wheat fields at different stages, the
weeds framed in red: (a) Image of weeds during the tillering stage;
(b) Image of weeds during the jointing stage(R2C2).

III. RECOGNITION METHODS FOR WEEDS IN WHEAT
FIELDS
A. ANALYSIS OF DISTRIBUTION FEATURES OF WEEDS IN
WHEAT FIELDS
There are 2 weed maxima during the growth of winter wheat.
The first peak occurs approximately 40 days after the wheat
is sown, specifically, before and after the tillering stage,
and the second peak occurs around the jointing stage of the
next year [8]. There are 2 types of weeds in wheat fields:
between-row weeds and in-row weeds. During the tillering
stage of wheat, the plants are low, there is no interconnection
across crop rows, the spacing between rows is clear, weeds
andwheat leaves basically do not overlap, andweeds between
rows are easy to recognize, as shown in Fig. 2. (a). In order
to analyze the distribution features of between-row weeds
and in-row weeds in the tillering stage, we collected 50 RGB
images during this wheat growth stage and manually counted
the emergence of between-row weeds and in-row weeds.
The statistical results, listed in TABLE 1, revealed that the
total weed density is effectively determined by the density of
between-row weeds at the tillering stage.

With the jointing and row-closing of wheat, the crop leaves
become overlapped and blocked, and between-row weeds are
no longer clearly visible. Weeds and wheat leaves overlap
significantly, making it difficult to use spatial features to
statistically classify the distribution of weeds, as shown in
Fig. 2. (b). In the wheat field images, the proportion of soil
pixels in the image decreases with the growth of wheat.
Seeded wheat and clustered weeds usually present different
textures. In addition, the height of wheat plants after jointing
should also be different from the height of weeds. In order
to prove this conjecture, 50 pixels of wheat and weeds were
selected in the depth images of different experimental treat-
ments in order to calculate the average height. The calculation
results are shown in Fig. 3. These results demonstrated that
for the 2 varieties and 3 different nitrogen treatments, wheat
and weeds exhibited significant height differences, thus prov-
ing that height can be used as one of the classification features
to distinguish wheat and weeds.

B. RECOGNITION METHOD FOR WEEDS IN WHEAT
FIELDS DURING THE TILLERING STAGE
1) EXTRACTION OF THE FEATURES OF WEEDS IN WHEAT
FIELDS IN THE TILLERING STAGE
During the tillering stage of wheat, the color of the plant con-
trasts distinctly with the soil, there are abundant between-row

TABLE 1. Distribution of weeds in the tillering stage.

weeds, and the positions of wheat and weeds are significantly
different. Therefore, we extracted position and color features
for weed recognition. In terms of color features, the Excess
Green (ExG) color vegetation index [21] was used to convert
RGB images into grayscale images in order to remove the
effect of soil pixels on subsequent segmentation. When cal-
culating the ExG, the values of the 3 channels R, G, and B are
first normalized, and the range of pixel values is reduced to
[0,1]. A second normalization is then performed [22], so that
the value of a given pixel in the 3 channels sums to 1. The
calculation formula of the ExG index is as follows:

ExG = 2g− b− r (1)

After using the color feature to complete the soil back-
ground segmentation, we employed the position feature to
recognize the weeds located between the crop rows. The
obtained gray image was binarized using Otsu’s method of
maximum class variance, thereby obtaining a binary image
consisting of only wheat and weeds.

2) CLASSIFICATION AND EVALUATION OF WEEDS IN WHEAT
FIELDS DURING THE TILLERING STAGE
Since the wheat images collected during the tillering stage
contained only 1 crop row, we calculated the area of each
connected domain in the binary image, and then removed the
largest connected domain in the image, which was the crop
row. The remaining connected domains were considered to be
weeds. We then divided the obtained image into 225 64 × 64
image blocks, manually labeled the image blocks in each
image, and compared and analyzed the results obtained by
the algorithm in order to evaluate the accuracy of the classi-
fication method for weeds in wheat fields.

C. CLASSIFICATION METHOD FOR WEEDS IN WHEAT
FIELDS DURING THE JOINTING STAGE
1) DEPTH IMAGE REPAIR
Although RealSense technology provides a low-cost,
real-time way to obtain depth information, due to lighting
conditions, infrared reflection characteristics of the surface
material of the measured object, and area occlusion, there
will be missing data, i.e., the issue of data gaps, which will
decrease the accuracy of the target object information and
affect subsequent feature extraction. We propose a data gap
repair algorithm based on RGB information, including image
alignment and gap repair.

Because the imaging origin of RGB images and depth
images are not consistent, before performing data gap repair,
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FIGURE 3. Results of height analysis of wheat and weeds under different
treatments during the jointing stage(V1 and V2 represent test varieties;
N0, N1, and N2 reflect nitrogen treatment.).

we aligned the coordinate systems of the depth images and
the RGB images. The internal parameters matrix, rotation
matrix, and translation vector of the depth camera and RGB
camera were obtained from the System Design Kit (SDK)
provided by Intel. The process of image alignment consists of
first restoring the depth point of the depth image coordinate
system to the world coordinate system, with Pir set as the
spatial coordinate of a point in the depth camera coordinate
system, pir as the projection coordinate of the point on the
image plane, and Hir as the internal parameter matrix of
the depth camera. As can be seen from the pinhole imaging
model, these variables satisfy the following relationship:

pir = HirPir (2)

Pir = H−1ir pir (3)

Next, the depth point in the world coordinate system is con-
verted into the RGB image coordinate system, and Prgb is set
as the spatial coordinate of the same point in the RGB camera
coordinate system, with prgb as the projection coordinate of
the point on the RGB image plane, and Hrgb as the internal
parameter matrix of the RGB camera. Since the coordinates
of the depth camera and the RGB camera are different, they
must be connected by rotation and translation transformation,
where R is the rotation matrix and T is the translation vector.
Specifically,

Prgb = RPir + T (4)

prgb = HrgbPrgb (5)

The accuracy of the data gap repair has a great impact on
the subsequent feature extraction. Since the object species of
data gap points cannot be confirmed, the method of neighbor-
hood interpolation may fill in data gap points with the depth
information of other species, thereby causing an error [23].
The depth estimation algorithm requires a large amount of
calculation, making it difficult to meet real-time requirements
[24], [20]. In this section, we propose using the known object
information in the RGB image as a priori knowledge and as
a guide to fill data gaps.

After the depth information has been aligned with the
RGB image, the data gap point index in the depth image
will correspond to the pixel value of the RGB image pixel
point. At the same time, the pixel value of the RGB image
pixel point corresponding to the effective depth information

in the 5 × 5 area centered on the data gap point is indexed.
The pixel coordinates with the greatest similarity to the pixel
points in the RGB image corresponding to the data gap points
are then determined, and the gaps are repaired according to
the depth information corresponding to the pixel coordinates.
Equation (6) is the calculation formula of pixel similarity,
where Rc, Gc, and Bc is the color channel information of
the RGB image corresponding to the data gap point; Ri,Gi,
and Bi is the color channel information of the RGB image
corresponding to the effective point; i = 1, ...N ; and N is the
number of valid points within the 5 × 5 area.

S = |Rc − Ri| + |Gc − Gi| + |Bc − Bi| (6)

2) EXTRACTING THE FEATURES OF WEEDS IN WHEAT
FIELDS DURING THE JOINTING STAGE
Based on the analysis results of weed distribution during the
jointing stage, texture and depth features were used to classify
weeds in wheat fields. In the calculation process, segmenting
a wheat field image into 64 × 64 image blocks to extract
texture features effectively avoids the repetitive calculation
of similar textures while considering regional consistency.
Since the hue, saturation, intensity (HSI) color model can
better express the hue and saturation information of the
image, the HSI color space was used to calculate the texture
information of wheat and weeds. We employed the color co-
occurrence matrix (CCM) to extract texture features. The
CCM not only considers spatial interaction between pixels,
but also measures color distribution in the image [25]. The
color co-occurrence matrix usually contains a large amount
of information and cannot be used directly. In order to reduce
the feature space dimensions as much as possible to decrease
the amount of calculation, while still retaining the description
of the image texture information, Maheswari selected 5 fea-
ture statistics—entropy, inverse moment, contrast, corre-
lation, and angular second-order moment—to characterize
texture [26].

The calculation process for the texture feature was as
follows: First, the RGB image was subjected to color space
conversion, and its corresponding value in the HSI color
space model was calculated. In this study, the H, S, and I
components were non-uniformly quantized into 8 parts in
order to reduce color redundancy; this 8-level quantization
has the added benefit of simplifying the calculation of the
CCM. When calculating the CCM, the 512× 512 image was
divided into 64 × 64 × 64 image blocks from left to right
and top to bottom. The 3 components of the color space were
set as C1, C2, and C3, respectively; m = Ck and n = Ck ′
were the 2 components in the 3-color component combination
space (k, k ′ ∈ {1, 2, 3}). Therefore, the color co-occurrence
matrix CCMm,n was used to represent the measurement of
the pixel color components Ck and Ck ′ in the image; specif-
ically, the space interaction between m and n. From this,
the CCMHH , CCMSS , CCMII , CCMHS , CCMHI , and CCMSI
matrices could be calculated. For any pixel in the image,
assuming the value of the k th color component is i, i.e.,m = i
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and the value of the k ′th color component is j, i.e., n = j, the
elements CCMm,n(i, j) in the matrix are used to represent the
number of times such pixels appear in the image. The formula
for calculating the color co-occurrence matrix is as follows:

CCMm,n(i, j)=
∑
1x

∑
1y


1 m(x +1x, y+1y)
= i&n(x+1x, y+1y)= j)

0 others

(7)

Here, the elements in the ith row and jth column of the color
co-occurrence matrix are represented by p(i, j), and L is
the quantization level of the image. Each matrix calculates
the 5 texture features of entropy, inverse moment, contrast,
correlation, and angular second-order moment.

Although texture features can effectively recognize
broad-leaved weeds in wheat fields, it is difficult to distin-
guish wheat from grass weeds, which affects the classifi-
cation results. Therefore, the depth features of wheat and
weeds were extracted from the depth information in order
to recognize weeds in wheat fields during the jointing stage.
Because the depth information displayed by a depth sensor
is the straight line distance between the pixel and the sensor,
there will be errors in the height of the pixels at the edge of the
image, which is consistent with the RGB image. Similarly, a
512× 512 area in the middle of depth image was selected for
calculation.

The height information presented in depth images is the
distance from the sensor to the target object. Therefore,
during calculation, the maximum value, which is the height
above the ground of the sensor, is first extracted, from which
the depth information of each pixel is then subtracted in order
to obtain the actual height of each pixel. Because the image
block is small, the height information of each pixel in the
region is similar. The depth information in the image block
is de-zeroed and averaged to reflect the height features of
all plants in the region. In addition, in the calculation of
texture features, there are samples with a high proportion
of soil pixels in the 64× 64 image samples, which affects the
classification of sample species and the calculation results of
texture features. Therefore, we used the height information
to remove samples in which the soil height (0 mm) pixels
accounted for more than 90% of the total pixels.

3) CLASSIFICATION AND EVALUATION OF WEEDS IN WHEAT
FIELDS DURING THE JOINTING STAGE
Due to the multi-dimensional features involved when using
texture features to classify weeds in wheat fields, 3 types of
classic classifiers were selected: the backpropagation (BP)
neural network, k-nearest neighbors (k-NN), and support vec-
tor machine (SVM). The distribution of the dataset consisted
of 192 pieces of 64× 64 image blocks for the training set and
test set of wheat, with a corresponding texture feature matrix
size of 192 × 15. The training set and test set of weeds both
consisted of 70 pieces of 64 × 64 image blocks, with a cor-
responding texture feature matrix size of 70 × 15. The depth
features were extracted by comparing wheat canopy height

FIGURE 4. Histogram of depth information of the wheat field during the
jointing stage: (a) Depth image; (b) Histogram of depth information.

with sample height information. Fig. 4. (b) is a histogram of
the height information for all pixels in an image taken during
the jointing stage of wheat. We defined the most frequent
height information to be the canopy height of the wheat. The
canopy height was then compared with the average value
calculated in units of image blocks. Image blocks less than the
canopy height were regarded as weeds, while image blocks
greater than or equal to the canopy height were regarded as
wheat. In order to combine texture features with depth fea-
tures, Bagging (Bootstrap aggregating) and Boosting meth-
ods were used for ensemble learning respectively. The basic
idea of both is to superimpose a large number of simple
classifiers with general classification capabilities using a par-
ticular method in order to form a strong classifier with strong
classification capabilities. In the Bagging algorithm [27], the
training sets of each model are independent from each other
and extracted from the original sample set, and the weight
of each prediction function is equal. In Boosting algorithm,
the weights of samples and classifiers will change and the
AdaBoost algorithm [28] was used in this paper. First, the
weight distribution of the data is initialized and the same
weight is assigned to each sample. Then the weak classifier
is trained, and the weights are assigned according to the
accuracy of the classifier of weeds in wheat fields, which is
based on texture features and depth features. The weight αm
calculation formula is (8), where m represents the number of
iterations and em represents the error rate of the classifier.

αm =
1
2
log(

1− em
em

) (8)

The weight N update formula of samples is (9), where is
the total number of samples, i represents the ith sample, G
represents the classifier, y is the sample label, and zm is the
normalization factor, such that the sum of the weights of all
samples is 1.

wm+1,i =
wmi
zm

exp(−αmyiGm(xi)) (9)

zm =
N∑
i=1

wmi exp(−αmyiGm(xi)) (10)

The evaluation method is divided into 2 steps. The first
step is to evaluate the data gap repair algorithm. Due to the
lack of a true value in the gap of the depth information of
weeds collected in the field, it is difficult to evaluate the
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FIGURE 5. Test images: (a) RGB image; (b) Depth image.

FIGURE 6. Weed recognition results during the tillering stage: (a) Original
image of wheat tillering stage; (b) Binary image; (c) Manual labeling
result; (d) Algorithm recognition result.

repair accuracy. We conducted tests on the building blocks
(Fig. 5). The volume of each block was 25 × 25 × 25 mm
and we used different color wooden blocks to build different
structures. Since the true height of the block was known, the
repair algorithm could be evaluated by comparing it with the
repair results.We used RMSE to calculate the repair accuracy.

The second step is the evaluation of the classification
method of weeds in wheat fields. The results of manual
annotations were compared with the results of the algorithm
calculations. In addition, the analysis of the weed species
(broad-leaved and grass weeds) in the sample was performed
in order to test the classification results of different methods
for different weed species

IV. EXPERIMENTAL RESULTS
A. CLASSIFICATION RESULTS FOR WEEDS IN WHEAT
FIELDS
The results of the algorithm during the tillering stage are
shown in Fig. 6. By comparing the results of manual anno-
tation of 50 photos with the recognition results of the algo-
rithm, the rate of correct weed recognition was 88%, and the
execution (run) speed of the algorithm was approximately
0.2 s. By analyzing the classification results of the algorithm
for weeds in wheat fields during the tillering stage, it was
discovered that a small portion of between-row weeds were
close to the crop rows, and the areas of weeds and crop rows
that were interconnected were thus difficult to distinguish.

B. CLASSIFICATION RESULTS FOR WEEDS IN WHEAT
FIELDS DURING THE JOINTING STAGE
1) DATA GAP REPAIR ALGORITHM RESULTS
In order to reduce the loss of depth features and more
accurately express the height information in the samples,
the results of the data gap repair algorithm were analyzed.

TABLE 2. Data gap repair algorithm results.

TABLE 3. SVM kernel function test results.

FIGURE 7. k-NN classification results for different k values.

TABLE 2 lists the calculation results of RMSE and the speed
of the algorithm, proving that our algorithm can fill the
missing information accurately and quickly.

2) CLASSIFIATION RESULTS FOR WEEDS IN WHEAT FIELDS
BASED ON TEXTURE FEATURES
Before using wheat classifiers to classify weeds in wheat
fields, we performed pre-tests to determine the structure and
parameters of each classifier. During the structural design of
the BP neural network, given the requirements for real-time
performance, we designed 2 hidden layers. The transfer func-
tion of the first hidden layer is a hyperbolic tangent sigmoid
function, and the transfer function of the second hidden
layer is a logarithmic sigmoid transfer function. The training
function of back propagation adopts the momentum gradient
descent algorithm of variable learning rate. And the learning
rate is set to 0.01. For the selection of the kernel function
of the SVM, we calculated and compared the classification
results of 3 kernel functions, i.e., the polynomial function,
Gaussian kernel function, and sigmoid function. In Poly-
nomial kernel function, the degree of the polynomial is 3.
In Gaussian kernel function and sigmoid function, the kernel
parameters are set to 0.5, this parameter is the inverse of
the number of categories. TABLE 3 shows that the Gaussian
kernel function performed well. For the setting of the hyper-
parameter k in the k-NN classifier, we also compared the
classification effect of k ranging from 1–10, which revealed
(Fig. 7) that the classification accuracy was relatively high
when k = 5.

Considering that wheat varieties may affect the classifi-
cation results of wheat and weeds, we selected 15 images
under the same nitrogen treatment in each variety for texture
calculation. Figure 9 shows the texture analysis results of two
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FIGURE 8. Texture feature analysis based on CCM_HS_ENT.

FIGURE 9. Texture feature analysis of two varieties of wheat.

wheat varieties and proves that the texture difference between
different varieties is small. TABLE 4 shows the accuracy of
the 3 classifiers based on texture features. It can be seen
from the results that the recognition accuracy of wheat is
significantly higher than that of weeds. After analyzing the
sample set, we found that one reason for the poor accuracy of
texture features in weed recognition was the impact of grass
weeds on recognition accuracy. In addition, the image blocks
at the edges of crop rows usually contain some soil, which is
very similar to the content of theweed image blocks.We com-
pared the texture calculation results of these 15 samples with
the texture calculation results of 15 randomly selected weed
samples. Fig. 8 shows the high similarity in the texture results
of the 2 types of samples. Because the number of wheat
samples was larger than the number of weed samples, the
misrecognition of the wheat samples exerted a great impact
on the accuracy of weed recognition.

3) CLASSIFICATION RESULTS FOR WEEDS IN WHEAT FIELDS
BASED ON DEPTH FEATURES
We performed a height comparison between crop row edge
samples and weed samples, and found that the height dif-
ference was large, as shown in Fig. 10. The classification
results listed in TABLE 5 indicate that the accuracy of weed
recognition based on depth features is significantly higher
than that based on texture features. Since depth features are
not sensitive to weed species information, the recognition

FIGURE 10. Depth feature analysis of samples.

FIGURE 11. Weed recognition results during the jointing stage.

TABLE 4. Classification results of weeds in wheat fields based on texture
features from RGB images.

TABLE 5. Classification results of weeds in wheat fields based on height
information from depth images.

accuracy of grass weeds is also high. The recognition accu-
racy of wheat is slightly lower than the recognition results
based on texture features, which may be due to the uneven
distribution of the wheat canopy height.

4) INTEGRATED LEARNING RESULTS
The number of our data set is 524, including 384 wheat
samples and 140 weed samples. In order to facilitate data set
partitioning, 4-fold cross-validation is applied to integrated
learning, with each data set containing 96 wheat samples and
35 weed samples. In the classification results of weeds in
wheat fields based on texture features, the k-NN and SVM
classifiers exhibited relatively high accuracy, so we employed
the AdaBoost algorithm to calculate the weight distribution of
the 3 classifiers (k-NN, SVM, and depth-based linear weed
recognition), which were 0.34, 0.18, and 0.53, respectively.
TABLE 6 shows that the identification accuracy of wheat
based on Bagging is higher than the Ada Boost. Since all
classifiers are equal in weight, the accuracy of wheat based
on RGB image classifier is higher. However, the accuracy
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TABLE 6. Classification results of weeds in wheat fields based on the
fusion of RGB images and depth images.

of weeds based on Ada Boost is significantly higher than
Bagging. Because in Ada Boost, the classifier based on depth
information, which is sensitive for weed recognition, is given
biggest weight.

The results demonstrated that the fusion of texture and
depth features can recognize weeds in wheat fields well, and
due to the addition of depth features, the algorithm is robust to
weed species, and displays good recognition results for grass
weeds and broad-leaved weeds. Because Ada Boost performs
better in weeds recognition, we input the photos collected in
the field into this model for the classification of weeds in
wheat fields. Fig. 11 shows that the model can recognize most
weeds. However, from the recognition results, we found that
some image blocks contained both wheat and weed targets,
and the overlap of the leaves of the 2 targets was serious,
resulting in missed weed detection. In addition, due to the
real-time nature of the method, we utilized hard segmentation
in the acquisition of the samples and ignored the impact of
different areas of weed blocks on the segmentation of image
blocks. As a result, although small areas of weeds appeared
in some image blocks, they were missed.

V. CONCLUSIONS
Due to the limitations inherent in the extraction of two-
dimensional spatial features using RGB images, current
research on the classification and recognition of weeds in
wheat fields has mostly focused on the wheat tillering stage.
Given the high similarity in appearance between grass weeds
and wheat, the number of recognized weed species is limited,
making it impractical for field application. In our proposed
method, the distribution features of weeds at the peak of emer-
gence in wheat fields were first analyzed in combination with
actual agricultural production, and the classification features
applied at different growth stages were extracted. Second, the
depth feature of weeds in wheat fields extracted from depth
information breaks through the limitation of two-dimensional
spatial features in grass weed recognition. In addition, when
performing depth feature extraction, we proposed a data gap
repair method for the depth information in order to avoid
feature loss caused by missing information. The test results
revealed that the recognition accuracy levels of the depth fea-
tures and texture features of broad-leavedweeds were similar,
and the depth feature was 2.2 times the texture feature in the
recognition accuracy of grass weeds. Using the AdaBoost
algorithm to perform integrated learning on 3 outstanding

classifiers (k-NN, SVM, and depth-based linear classifiers),
the recognition accuracy of grass weeds was improved to
81.08%, which is 2.5 times the accuracy based on texture
feature recognition.

The classification results of weeds in wheat fields during
different growth stages revealed that the accuracy of weed
recognition was 88% during the tillering stage of wheat,
and it took approximately 0.2 s to calculate a 1280 × 720
image. During the jointing stage of wheat, the classification
accuracy of weeds in wheat fields was 87.4%. Calculating
a 512 × 512 image took about 0.69 s, which meets the
needs of fast and accurate weeding in the field. In order to
further improve the classification accuracy of weeds in wheat
fields, the issue of missed weed detection due to the hard
segmentation of images should be examined in future work.
In addition, we will further study and calculate the volume
and density of weeds based on the test results, so that they
can be better applied to precise weeding in the field.
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