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ABSTRACT The improved U_net algorithm based on mixed convolution blocks (McbUnet), which com-
bines the advantages of U-Net and residual learning, is proposed for cell image segmentation in this paper.
The network is mainly composed of two kinds of mixed convolution blocks. There are three main benefits to
this algorithm. First, the convolution block can utilize different size kernels to overcome the limitation of a
single size convolution kernel in traditional deep convolution. Second, in the mixed convolution blocks, two
hyperparameters (Width multiplier and Resolution multiplier) are used to quickly adjust the model to fit a
specific environment. Third, the residual paths are improved. We test the proposed network and compare
it with other recent segmentation methods based on deep learning. The proposed method is superior to
comparison methods, which shows its effectiveness.

INDEX TERMS Microscopy images, deep learning, cell segmentation, convolutional neural network.

I. INTRODUCTION
Quantitative analysis of microscopic images has been widely
used in medical research fields such as pathological man-
agement, pathological diagnosis system, estimates for cancer
grade, cancerous classification and so on. These applications
are closely related to the development of new technolo-
gies in computer vision and machine learning for image
segmentation and classification [1], [2]. Cell segmentation
and extraction is an important technology, which is directly
related to the reliability of the diagnosis and is also a difficult
problem in medical image processing. So far, there is no uni-
versal and efficient segmentation method that can be widely
applied to cell segmentation. There are several reasons for
its implementation. First, the size of the cells varies greatly,
and the shape of the nucleus is various. Second, cell images
are complex, not only white blood cells, red blood cells and
platelets but also other things, and are divided into many
different categories depending on the degree of maturation
of white blood cells. Third, cell images are often affected
by uneven staining and inconsistent illumination, resulting
in changes in grayscale values. Fourth, cell images often
overlap, with noise and artifacts, no obvious boundaries [3].
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All these decrease contrast between cells and background and
seriously affects the effective segmentation of cell image [4].
Therefore, cell segmentation is a difficult and challeng-
ing task. Research on cell image segmentation methods is
absolutely necessary.

Traditional segmentation methods, including histogram-
based method, contour-based method, watershed algorithm,
minimum-error-threshold method [3]–[6], can’t be directly
used to correctly segment cell images. Since the 1990s,
supervised learning methods using training data have become
increasingly popular in the aspect to medical image analy-
sis. The most reasonable idea is to let the computer learn
the data characteristics that best represent the current prob-
lem [7]. Deep learning is a computational model similar
to human cognitive systems and can be effectively used
in different applications [8]. In practice, the original deep
learning architecture was an artificial neural network with
many hidden layers. Convolutional neural networks (CNNs)
are the form of deep learning that suit medical image pro-
cessing very well [9]–[11]. CNNs composed of many layers,
in the process of converting input data to output data, learns
more and more advanced data features. The CNN proposed
by Krizhevsky and Sutskever [12], namely AlexNet, has
attained favorable results. In the following years, the research
on deeper convolutional network architecture has gained
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significant progress [13]. Research fields in computer
vision, deep convolutional networks have become the first
technology considered [14]. In medical image analysis,
the application research on deep learning methods was first
presented at conference, since then, it has developed rapidly.
Among some new CNN architectures related to medical
image analysis, the most well-known is the U-net, proposed
by Ronneberger et al. [15]. The main innovation of the U-net
structure is the integration by an equal number of downsam-
pling and upsampling layers. This way of connecting the
features in the reduction and expansion paths can process the
entire image forward and directly generate a segmentation
map. Some researchers have proposed new methods depend
on the U-net structure. For instance, Drozdzal et al. proposed
a method that added a short-hop connection structure sim-
ilar to ResNet on the basis of the U-net architecture [16].
According to the U-net structure, Milletari et al. performed
a 3D segmentation method utilizing a 3D convolution layer
withDice coefficient as the objective function, which is called
V-net [17]. Chen et al. combined a bidirectional LSTM-RNN
with a 2D U-net structure to construct a segmentation
structure to segment anisotropic 3D electron microscope
images [18]. Deep learning-basedmethodswork by automati-
cally learning increasingly complex functional layers directly
from the data. Ideally, the deeper the CNN’s architecture
design, the better the results. Therefore, the research focuses
on designing the architecture and improving the hierarchy.

Inspired by the pioneering work on deep CNNs by [15],
[19], [20], we propose an improved U-net algorithm for
medical cell image segmentation. One of the latest trends
in the design of convolutional neural networks is increasing
accuracy and efficiency. Medical image processing must be
more accurate. The fashion of a deep convolution kernel
applied to each individual channel can reduce the calculation
cost. When designing deep convolutional neural networks,
an important factor, kernel size, is often overlooked. Although
the 3 × 3 convolution kernel stack is often simply used
to replace large convolution kernels, recent research results
show that larger kernel sizes may improve the accuracy
and efficiency of the method [19]. We utilize convolution
kernels of different sizes to perform parallel transforma-
tion to form convolution blocks, in this paper. The original
U_Net layer convolution is replaced with a block of con-
volutions of different sizes stacked in parallel. We research
the application of the batch normalization method proposed
by Ioffe and Szegedy [21] in a pre-processing step that aims
to improve the model’s convergence speed, and alleviate the
‘‘gradient dispersion’’ problem in deep networks to a certain
extent, so that the training of deep network models is easier
and more stable. We also investigate the width multiplier and
resolution multiplier proposed by Howard et al. [22]. The
width multiplier is used to control the size of the input and
output channels, the resolution multiplier is employed con-
trolling the resolution of the input. The accuracy of the model
is improved without significantly increasing the magnitude
of the parameters. This article has made some contributions,

which are mainly reflected in the following three
aspects:

1) The operation of mixing multiple convolution kernels of
different sizes in one convolution block can utilize different
kernel sizes to overcome the limitation of a single convolution
kernel size in traditional deep convolution. In medical image
segmentation, not only large convolution kernels are required
to capture high-resolution features, but also small convolution
kernels are required to capture low-resolution features to
obtain better model accuracy and efficiency.

2) In the mixed convolution blocks, two hyper-parameters
(Width multiplier and Resolution multiplier) are used to
quickly adjust the model to fit a specific environment. Width
multiplier is used to control the number of input and output
channels, so that the size of the model can be controlled.
Resolution multiplier is used to change the internal structure
of the convolutional layer. The performance of the mixed
convolutional layer is optimized by changing the proportion
of convolution kernels with different resolutions.

3) A residual path can improve the efficiency of net-
work training. The connections within the residual unit and
between the high and low layers of the network will help the
information spread, which makes it possible to design neural
networks with fewer parameters. Thus, better performance
can be achieved in medical image segmentation.

The rest of this article is composed as follows: We
review related work on medical image segmentation
methods in Section II. The proposed approach is introduced
in Section III. Detailed description of the database used in
the experiment and the evaluation methods in Section IV.
We carry out analyzing and discussing for the experimental
results in Section V. At last, we summarize the full text in
Section VI.

II. PREVIOUS RELATED WORK
Due to the large differences in cell image data (different
morphologies, cell densities, cell types), automatic cell seg-
mentation is still considered a very challenging problem [23].
Currently, many algorithms have been proposed to solve
the problem of cell segmentation. Traditional cell segmen-
tation methods generally use basic image processing tech-
niques, such as intensity thresholding [24], morphological
filtering [25], watershed [26], active contour [27], and graph
cut [28]. These methods generally require manual adjustment
of parameters to optimize their performance.

Convolutional neural networks have recently been used
for semantic-based image segmentation tasks, which assign a
class label to each pixel. The early application of CNN was a
patch-based method in biomedical image processing, classi-
fying pixels with the help of their neighborhood attributes to
solve segmentation problems such as neural cells [29], [30].
Patch-based methods can produce highly localized output.
Such methods are less efficient due to redundant calculations
of the patch overlap. In addition, positioning accuracy and
availability of contextual information are greatly affected
by the choice of patch size. In the current, CNN-based
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image segmentation methods have become increasingly
popular. Long et al. [31] proposes a groundbreaking full
convolutional network (FCN) that enables pixel-level and
end-to-end semantic segmentation. Ronneberger et al. [15]
combined upsampling and downsampling layers of the net-
work by the corresponding skip connection and proposed the
U-net algorithm, which greatly improved the segmentation
effect. From a training perspective, the entire image can
be processed forward through U-net to directly generate
a segmentation map. This allows U-net to make full use
of the entire contextual information of the image, which
has a clear advantage over patch-based CNNs. Therefore,
many extended papers based on U-net have appeared. For
example, Milletari et al. [17] proposed a U-net-based 3D
structure called V-net, which performs 3D image segmenta-
tion using 3D convolution based on the objective function
of Dice coefficients. Drozdzal et al. [16] used the short-
hop connection similar to ResNet in addition to long-hop
connections in the U-net. Gu et al. [32] use pretrained ResNet
block as the fixed feature extractor and propose a DAC block
and RMP block to capture more high-level features and
preserve more spatial information. Fu et al. [33] proposed
the M-Net that mainly consists of multi-scale input layer,
U-shape convolutional network, side-output layer, and multi-
label loss function. Yi et al. [34] proposed an attentive cell
instance segmentation method that builds on a joint network
that combines a U-net and a single shot multi-box detector.
Ramesh and Tasdizen [35] uses multi-task learning in com-
bination with the similarity interface to detect and segment
cells in microscopy images. He et al. [36], proposed Mask
R-CNN algorithm that is very flexible and can be used to
complete a variety of tasks, including target classification,
target detection, semantic segmentation, instance segmenta-
tion, human pose recognition, and other tasks. It has very
good scalability and ease of use. Compared with traditional
methods, these CNN-based segmentation methods show
superior performance and have been widely used in medical
and biological image processing. For example, abdominal
aortic thrombosis [37], histological cell segmentation [38]
and multimodal biomedical image segmentation [20]. In this
paper, we use an improved U-net-based algorithm for
accurate cell segmentation.

III. METHOD
When designing deep learning network architecture with a
deep convolution kernel, an important factor is the kernel
size, but it is often overlooked. Although many approaches
replace larger convolution kernels with continuous 3 × 3
convolution kernels, recent research results show that larger
kernel sizes, such as 5 × 5 convolution kernels and
7× 7 convolution kernels, may increase model accuracy and
efficiency. To overcome the limitation of the single kernel
size, we need both to capture low-resolution modes by a
small convolution kernel and capture high-resolution modes
by a large convolution kernel in order to obtain better model
accuracy and efficiency [19]. Based on the above analysis,

we propose an improved method called the U_net algorithm
based on mixed convolution blocks (McbUnet). Our model is
an improvedmulti-scale deep network based onU_net. It uses
different sizes of convolution kernels to obtain different res-
olution modes to complete cell image segmentation. This
scheme is shown in Fig.1. Our model was originally based
on the architecture proposed by [15], [20], but it made some
structural improvements. First, we increased the depth and
width of the original convolutional networkmodel (more con-
volutional layers and parallel convolution kernels of different
sizes). Second, referring to the paper [22], we introduced a
width multiplier α and a resolution multiplier ρ in two types
of convolution blocks to adjust the size of the convolution
blocks. Third, in the convolution block, according to the
analysis of the paper [19], we used convolution kernels at four
different scales, 3×3, 5×5, 7×7 and 1×1 in parallel. Through
this modification, the network scale is controlled to a certain
extent and performance is improved.

The following concepts are the important aspects involved
in this cell segmentation model:

A. ARCHITECTURE OF McbUnet METHOD
To understand our McbUnet method, Fig.1 shows the entire
structure of the network. Our method is a deep network of
convolution blocks based on two multi-class convolution ker-
nels. The two convolution blocks are illustrated in Fig.2 and
Fig.3 respectively. Small kernels can save computing costs,
while large kernels can improve accuracy. Larger mixed
convolutional deep networks tend to use larger kernels and
more layers in pursuit of higher accuracy, but require more
parameters. In addition, we should also notice that the deep
convolution of oversized kernels will seriously reduce the
accuracy.

The network structure of the McbUnet method is shown in
the Fig.1, and is mainly composed of the encoding path on
the left, the decoding path on the right and residual paths.
In addition, we use 1 × 1 simple convolution to do linear
mapping transformation to ensure that the dimensions of the
‘‘add’’ layer are consistent at the dotted line. The McbUnet
method combines the advantages of U-Net and residual neu-
ral networks. Because the features in the encoder are rela-
tively lower level feature, while the corresponding features
in the decoder are relatively higher level, there is a semantic
gap between them [20]. It is not advisable to splice the two
parts directly. In this paper, inspired by the deep residual
learning [39], [40], we utilize residual paths corresponding
to different numbers of mixed convolution block II. The
encoding path consists of the composite convolution block I
(The structure is shown in Fig.2.) and a 2 × 2 max pooling
layer according to a stride of 2 for completing the downsam-
pling. During downsampling process, the number of channels
is actually doubled. The decoding path is composed of an
upsampling to halve the number of channels, a combination
with the relevant feature map of the residual path, and the
convolution block I. The residual paths corresponding to
different layers consist respectively of corresponding number
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FIGURE 1. Structure of the proposed method.

of composite convolution block II (The structure is displayed
in Fig.3.). In the end, each 32-dimensional feature vector
is projected to the required class number using a 1 × 1
convolution.

B. THE IMPORTANT ASPECTS OF THE McbUnet METHOD
1) PARAMETER INITIALIZATION
a: WIDTH MULTIPLIER α [19]
Different sizes of convolution kernels have different effects
on the segmentation results. Through experimental verifi-
cation, it can be known that a smaller width multiplier is
allocated to a larger convolution kernel, and a larger width
multiplier corresponds to a smaller convolution kernel. This
not only improves the segmentation accuracy, but also effec-
tively reduces the amount of calculations. Therefore, in the
convolution block I, the width multiplier assigned to the
3 × 3, 5 × 5, 7 × 7 convolution kernels are 0.5, 0.3 and 0.2,
respectively. In the convolution block II, the width multiplier
assigned to the 3 × 3, 5 × 5 convolution kernels are 0.6 and
0.4, respectively. They have been marked in Fig.2 and Fig.3.

b: RESOLUTION MULTIPLIER ρ [19]
Considering the size of the learning network, ρ is specified
as 1 in convolution block I and convolution block II.

c: BATCH NORMALIZATION
Deep learning can be considered as a feature learning process
performed layer by layer. The output of each layer is equiv-
alent to the extracted data features of this layer. The batch
normalization means [21], [41] is practically implementing
data normalization for each network layer. However, in each
layer, the calculation overhead to normalize all data is really
very great. Therefore, it is possible to refer to the same way
using the minimum batch gradient descent, a small batch data
is sampled, for this batch data, the output of each network
layer is normalized. Let Y nij denote the output value of the
i-th neuron model in the j-th layer for the n-th data in a certain
batch data.µij denotes the average of the output value for this
data batch at the i-th neuron in the j-th layer. σij indicates the
standard deviation of the output value for this data batch at
the i-th neuron in the j-th layer. After batch normalization,
the output value is displayed as follow:

Y
′n
ij =

Y nij − µij

σij
(1)

where the average output of the neuron is:

µij =
1
m

m∑
n=1

Y nij (2)
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FIGURE 2. Schematic diagram of composite convolution block I of the
proposed improved algorithm.

Here, m is the number of data in a batch data. The standard
deviation of the output value at the neuron is:

σij =

√√√√ε + 1
m

m∑
n=1

(
Y nij − µij

)2
(3)

Here, ε represents a very small number. The intent is to
avoid the denominator being zero.

Batch normalization is actually adjusting the input data of
each layer in the neural network so that its average value is
zero and its variance is 1. In this way, the activations and
gradients will be kept at a controlled level, otherwise the
gradient of backpropagation may disappear.

2) ACTIVATION FUNCTION
The essence of deep learning is to characterize the internal
complex structural characteristics of the problem and perform
arbitrary nonlinear transformations between neuron input and
output. The formula for rectifier linear units (ReLU) is as
follows:

h (x) = max (0, x) (4)

Krizhevsky et al. [12] found that the convergence speed
of SGD using ReLU is much faster than the hyperbolic
tangent, or classical sigmoid functions, and better results is

FIGURE 3. Schematic diagram of composite convolution block II of the
proposed improved algorithm.

achieved. However, setting the constant to 0 may damage the
gradient change and affect the adjustment of the weights [42].
Here, to address these limitations, we refer to the method in
[42], [43] and introduce a small slope in the negative part of
the function. The specific method is as follows:

h (x) = max (0, x)+ βmin (0, x) (5)

where β is the leakage parameter. Equation (5) is called leaky
rectifier linear unit (LReLU).

3) MAXPOOL
The pooling operation combines spatially adjacent features in
the feature map. This combination makes the representation
more compact and constant for small image changes [44].
Therefore, applying the pooling layer can decrease the model
size, increase the calculating speed, and enhance the feature
robustness. The effect of the maximum pooling operation is
that as long as a feature is extracted in any quadrant, it will
remain in the maximized pooling output.

4) LOSS FUNCTION
Themain purpose of the loss function is tomeasure the degree
of inconsistency between the true value Y and the predicted
value f (x,W ) and to use it to optimize the model parameters.
It can be expressed as L (Y , f (x,W )). Here, W represents
the parameters. Generally, the smaller the value of the loss
function, the better the robustness of the model. Given a set
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of samples (xi, yi) , i = 1, 2, · · · ,N . Where xi denotes the
i-th pixel and yi represents the label corresponding to the
i-th pixel. Then the loss function of this set of samples can
be defined as follows:

L (W ) =
1
N

N∑
i=1

Li (yi, f (xi,W ))+ γ ϕ (W ) (6)

where, the previousmean is a data loss function, which is used
to match the model’s predicted value with the actual value.
The latter part is the regularization term to avoid overfitting.
r is the parameter that weights the second loss component
relative to the first component, and L (W ) represents the loss
function.

U-Net optimizes the model by using pixel-wise cross-
entropy as a loss function. Let hθ (x) be the predicted value.
g (z) is the sigmoid function. Then, we can get the following
expression:

g (z) =
1

1+ e−z
(7)

hθ (x) = g
(
θT x

)
=

1

1+ e−θT x
(8)

In deep learning networks, the sigmoid function is the
activation function in the final output layer during binary
classification.

Standard form of log loss function:

L (Y ,P (Y |X)) = −logP (Y |X) (9)

The objective of the loss function L (Y ,P (Y |X)) is to max-
imize the probability P (Y |X) when the sample X is classi-
fied Y . Because the log function is monotonically increasing,
logP (Y |X) also reaches its maximum value. Therefore, with
a negative sign in front, maximizing P (Y |X) is equivalent to
minimizing L (Y ,P (Y |X)). To unify the category labels y to
1 and 0, the P (Y = y|x) expression for logistic regression is
as follows:

P (Y = y|x) =


hθ (x) if y = 1

1− hθ (x) if y = 0

(10)

Taken together, it can be denoted as follows:

P (y|x; θ) = (hθ (x))y (1− hθ (x))1−y (11)

Take the likelihood function as:

L (θ) =
N∏
i=1

P (yi|xi; θ)

=

N∏
i=1

(hθ (xi))yi (1− hθ (xi))1−yi (12)

The log-likelihood function can be written as:

l (θ) = logL (θ)

=

N∑
i=1

(yiloghθ (xi)+ (1− yi) log (1− hθ (xi))) (13)

Maximum likelihood estimation is to find the value of θ
when l (θ) is maximized. To use gradient descent to find the
optimal solution, take J (θ) as:

J (θ) = −
1
N
l (θ)

= −
1
N

[
N∑
i=1

(yiloghθ (xi)+(1− yi) log (1− hθ (xi)))

]
(14)

When y = 1, this sample is assumed to be positive. If the
predicted value hθ (x) = 1 at this time, the loss for this sample
alone is 0. This means that the predictions for this sample are
completely accurate. Then if all the samples are accurate, the
total loss = 0. But if the predicted value hθ (x) = 0 at this
time, in this case, since the sample is a positive sample at this
time, but the predicted result P (y = 1|x; θ) = 0, that is, the
probability of predicting y = 1 is 0. Then a great punishment
term is attached to the loss function. In the same way, when
y = 0, the same derivation is also used, which is not repeated
here. The logic loss function is to convert the predicted value
into a probability value through sigmoid function, and then
calculate it through the likelihood loss function.

5) FINE-TUNING
In addition, for the convolution framework, we added 1 × 1
convolutions in block I to decrease the number of parameters,
thereby reducing the amount of calculation. Since the batch
normalization and activation function LReLU are added after
each convolution, the nonlinearity is also added. We use the
Adam optimization algorithm here [45], which can iteratively
renew the weights of the neural network according to the
training data. The learning rate of the traditional stochas-
tic gradient descent (SGD) is manually set and cannot be
changed during the entire training process. Only a single
learning rate can be used to update the weight. Adam’s algo-
rithm is distinct from the SGD. Adam is an adaptive learning
rate that is designed to use the first and second moment
estimators for calculating gradients and can vary according
to different parameters.

C. TIME COMPLEXITY ANALYSIS OF THE McbUnet
METHOD
Here, we simply analyze the complexity of the model pro-
posed in this paper. The time complexity of a single convolu-
tional layer is:

Time ∼ O
(
M2
· K 2
· Cin · Cout

)
(15)

where K is the side length of each convolution kernel, Cin is
the number of channels of each convolution kernel, that is,
the number of input channels. Cout is the number of convo-
lution kernels in this convolution layer, that is, the number of
output channels.M is the side length of the output featuremap
of each convolution kernel. The lengthM of the output feature
map is determined by the four parameters of the input image
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size X , the convolution kernel size K , Padding and Stride,
which can be expressed as follows:

M =
X − K + 2 ∗ Padding

Stride
+ 1 (16)

It can be seen that the time complexity of each convolu-
tional layer is determined by the output feature map areaM2,
convolution kernel area K 2, input Cin and output channel
number Cout . The time complexity of the entire model is
mainly determined by the cumulative results of the time
complexity of all convolutional layers.

In the composite convolution block I of the proposed
improved algorithm, we constructed four parallel convolu-
tional blocks of different sizes (as shown in Figure 2), effec-
tively increasing the width of the network. But doing so also
increases the time complexity of the network. The counter-
measure is to add 1 × 1 convolution to reduce the number
of input channels to a lower value, and then perform real
convolution.

On the 1× 1 convolution branch, the time complexity is:(
M2
· 12 · Cin · Cout

)
On the 3× 3 convolution branch, the time complexity is:(

M2
· 32 · Cin · Cout

)
∗ 0.5

On the 5× 5 convolution branch, the time complexity is:(
M2
· 12 · Cin · C−1out

)
+

(
M2
· 52 · C−1out · Cout

)
∗ 0.3

Here, C−1out are the number of output channels of the 1× 1
convolution of the added down channel.

On the 7× 7 convolution branch, the time complexity is:(
M2
· 12 · Cin · C−1out

)
+

(
M2
· 72 · C−1out · Cout

)
∗ 0.2

We add up the time complexity of these four branches and
multiply it by resolution multiplier 1.1 to get the time com-
plexity ofmixed convolution block I.We use a similar method
to obtain the time complexity of the composite convolution
block II of the proposed improved algorithm. Furthermore,
the time complexity of the entire model can be obtained.
When the shape of the input image in cell segmentation is
(256, 256, 3), the time complexity of the entire model is about
1.16× 107.

IV. EXPERIMENTAL SETUP
A. DATABASE
The proposedmethodwas validated on the 2018Data Science
Bowl. The data set is composed of many segmented images.
The images are obtained under various conditions and differ
in imaging methods (fluorescence and brightfield), cell type,
and magnification. This data set requires higher abstraction
ability of the algorithm to generalize these changes. For each
image, there is a corresponding ImageId. The training set
contains the original images and the segmented image of
each nucleus in the image. For the test set, there are only the
original images. Among them, the test set_1 has 65 images

and contains 11 types of resolution images, the training set
has 670 images and contains 9 types of resolution images.
The original image is divided into a grayscale image and a
color image. (Although they are all 3 or 4 channels, some of
the images have the same value for multiple channels, which
is actually a grayscale image.). Each image in the training set
corresponds to multiple masks, that is, there will be multiple
cell nuclei in one image.

B. PARAMETER SELECTION
Some basic parameters in the proposed deep learning net-
work architecture are shown Table. 1. The width multiplier
and the resolution multiplier are specified with the help of
experiments in Table. 2.

TABLE 1. Hyperparameters of the proposed method.

C. EVALUATION
To evaluate the segmentation effect of the algorithm, we use
four evaluation indicators. The Sensitivity, Positive Predictive
Value (PPV), Accuracy, and Intersection Over Union (IOU)
were calculated. Their calculation formula is shown below:

Sensitivity represents the ratio of the number of pixels that
are correctly judged positive to the number of all positive
pixels. The definition is as follows:

Sensitivity (SEN ) =
TP

TP+ FN
(17)

PPV represents the ratio of true positives in positive pixels.
It is defined as:

PPV =
TP

TP+ FP
(18)

Accuracy indicates the percentage of the pixels that are
correctly evaluated against the total number of pixels, defined
as:

Accuracy (ACC) =
TP+ TN

TP+ FP+ TN + FN
(19)

where, TP, TN, FP and FN are respectively the numbers of
true positive, true negative, false positive and false negative.
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TABLE 2. Hyperparameters selection experiment of the proposed method.

The IOU indicator is the ratio of intersection over union,
which has been used as a standard measure in semantic
segmentation. The calculation formula is:

IOU =
target ∩ prediction
target ∪ prediction

(20)

V. EXPERIMENTS AND RESULT ANALYSIS
We will analyze the capability of the proposed method in this
section. In addition, we compared the method of this arti-
cle with the latest medical image segmentation technology,
namely CE-Net [32] and MultiResUNet [20] on the same
database.

A. SELECTION OF WIDTH MULTIPLIER AND RESOLUTION
MULTIPLIER
Here, we choose the values of the width multiplier and the
resolution multiplier parameters through experiments on the
training set. For this reason, we consider the combined value
of these two parameters and choose the combination with the
best performance. The specific results are shown in Table. 2.

According to the results of the possible combinations of
different parameters in Table.2, the parameter combination
that produces the highest val_accuracy is selected. Large
convolution kernels capture high-resolutionmodes, and small
convolution kernels capture low-resolution modes. It can
be known from experiments that, for specific databases,

constructing mixed convolution blocks with appropriate pro-
portions of convolution kernels of different sizes can obtain
better model accuracy and efficiency. As the resolution fac-
tor decreases, the number of parameters reduces signifi-
cantly, so the amount of calculation also goes down quickly.
Considering the segmentation precision and calculation
amount, we choose the parameter value of Experiment 4 in
Table.2. Fig.4 shows the variation of the accuracy value and
loss function for the fivemethods that are used to select model
parameters in the training and validation set. Experiment 1
stopped training after the 30th epoch because EarlyStopping
reached the patience value.

B. ALGORITHM VERIFICATION
We confirm the usefulness of the new method by studying
the improvement of the segmentation performance of the
McbUnet method through 10-fold cross-validation. We use
the metrics proposed earlier, namely the Sensitivity, Positive
Predictive Value (PPV), IOU indicator and Accuracy, to eval-
uate the average gain of performance. The comparison of
our approach with state-of-the-art methods on the 2018 Data
Science Bowl is shown in Table. 3. and Fig.5.

As shown in Table. 3, the compound convolution kernel is
composed of a large convolution kernel and a small kernel,
which can produce better results, due to the performance of
the larger neighborhood in the cell image.
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FIGURE 4. Diagram for training and verifying the accuracy and learning curve of nucleus segmentation. The five columns a1 and a2, b1 and b2,
c1 and c2, d1 and d2, e1 and e2 in the figure are the results of experiments 1, 2, 3, 4 and 5 in Table 2, respectively.

TABLE 3. The experimental results of verifying the standard U_net, multiresunet, CE-NET and the McbUnet method respectively foR 40 epochs.

Fig.5 showed nucleus image segmentation results. For
illustrative purposes, we have shown the original images,
ground truth images, and 10-fold cross-validation segmenta-
tion images of five nucleus images for the fourth methods.

C. QUALITATIVE ANALYSIS EXPERIMENT IN TEST SET
We assess the property of the proposed architecture through
the test set_1 of the 2018 Data Science Bowl. Since there
are only the original images in the test set and no segmented
contrast image. Therefore, we can only show the qualitative
segmentation results as shown in Figure 6.

Figure 6 qualitatively analyzes the effect of nucleus seg-
mentation in the test set_1. The result shows our method
yields best performance over other competitors in general,
especially for the nuclei in smaller size.

The above experimental results show that the pro-
posed algorithm has good performance as a whole. The
MultiResUNet [20] and CE-Net [32] methods showed
slightly worse results. One possible reason is that they use
continuous 3 × 3 convolution kernels to replace larger-scale
convolution kernels, which can reduce the number of param-
eters to a certain extent, but ignore the limitation of the size
of a single kernel. In the segmentation algorithm, both large

TABLE 4. Quantitative results of the proposed method for image
segmentation in ISIC-2017 dataset.

convolution kernels are needed to capture high-resolution
modes, and small convolution kernels are required to cap-
ture low-resolution modes to obtain better model accuracy
and efficiency. The main reason why our proposed method
has better performance is that mixing different convolution
kernels can improve efficiency and accuracy. Convolution
kernels of different scales are mixed together, and larger
size kernels can obtain more stable accuracy.
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FIGURE 5. Examples of segmentations show the effect of the proposed method. The first line images (a_1-a_5) are different original images.
The second line images (b_1-b_5) represent the ground-truth cell nucleus obtained by pathology and verified by image processing methods.
The third line images (c_1-c_5) show the segmentation result images using the U_net method. The fourth line images (d_1-d_5) show the
segmentation result images using the MultiResUNet [20] method. The fifth line images (e_1-e_5) show the segmentation result images using
the CE-Net [32] method. they look like there are some errors in their segmentation. In contrast, the method proposed in this paper can better
identify and reject those outliers, as shown in the sixth line images (f_1-f_5).
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FIGURE 6. Qualitative examples of segmentations show the effect of the proposed method in the test set_1. The first line images (a_1-a_6) are different
original images. The second line images (b_1-b_6) show the segmentation result images using the U_net method. The third line images (c_1-c_6) show
the segmentation result images using the MultiResUNet [20] method. The fourth line images (d_1-d_6) show the segmentation result images using the
CE-Net [32] method. they look like there are some errors in their segmentation. In contrast, the method proposed in this paper can better identify and
reject those outliers, as shown in the fifth line images (e_1-e_6).

D. APPLICATION TO OTHER DATASETS
In order to verify the generalization ability of the method
proposed in the paper, we apply this method to the public
ISIC-2017 dataset. Here, it is used in our extended experi-
ments to show that the method proposed in this paper has
a certain generalization ability and is suitable for different
types of image data. In the experiment, we divided the
training datasets (2000 images) into two parts: the training

set (1800 images) and the validation set (200 images).
We use the same architecture settings as cell segmentation
and select two evaluation indicators, IOU and Accuracy.
The quantitative and qualitative results of the experiments
on the validation set are respectively shown in Table. 4
and Fig.7. It can be seen that the method proposed in the
paper can be applied to other biomedical image segmentation
tasks.
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FIGURE 7. Qualitative results of image segmentation by the method
proposed in this paper. The first column images (a_1-e_1) are different
original images. The second column images (a_2-e_2) represent the
ground-truth in the dataset ISIC2017. The method proposed in this paper
shows good segmentation effect, as shown in the third column
images (a_3-e_3).

VI. CONCLUSION
This letter has proposed a McbUnet method for cell nuclei
images segmentation. First, our proposed method uses con-
volution kernels of different sizes in the same layer, and
adds a 1× 1 convolution before the large convolution kernel
convolution. In the convolution block, we introduced two
hyperparameters to quickly adjust the model to adapt to
a specific environment, and selected the more appropriate
parameters by measuring the impact of the parameters on the
model performance and scale. Resolutionmultiplier is used to
control the resolution of the input, which can quickly reduce
the number of parameters and the amount of calculation, and
can easily control the model size. Width multiplier is used
to control the number of input and output channels. In this
paper, it is used to adjust the proportion of different kernel
convolutions, thereby improving the segmentation accuracy
of the model.When designing a convolutional neural network
with a deep convolution kernel, an important factor that is
often overlooked is the kernel size. Although the common
practice is to simply use 3 × 3 convolution kernels, research

results show that larger kernel sizes, such as 5× 5 convolution
kernels and 7 × 7 convolution kernels, will improve the
accuracy and efficiency of themodel.We need both large con-
volution kernels to capture high-resolution modes and small
convolution kernels to capture low-resolutionmodes to obtain
a better image segmentationmodel. Here, we usemixed depth
convolution, fuse convolution kernels of different sizes in
a convolution block, and employ Width multiplier to adjust
the proportion of different convolution kernels, so that it can
easily capture different resolution modes. This improves the
adaptability of this method to different resolution features.
Second, we use the activation function LReLU to replace
ReLU for more efficient performance. In the neural network,
some nonlinear factors need to be introduced to better solve
complex problems, and the activation function can just help
the neural network to do this. The ReLU activation function
forces the output result of the input value x less than 0 to
become 0, so that the network has sparse expression ability,
which can effectively alleviate the occurrence of overfitting.
However, sparseness will reduce the effective capacity of the
model and may cause ‘‘necrosis’’. The LReLU function is a
modification of the ReLU function. When the input value x
is less than 0, the output is no longer forced to 0, but the
output ax (a is a small constant), so that negative activation
can be propagated in CNNS, thereby improving the efficiency
of feature learning. Third, our learning model introduces
residuals to solve the problem of deep networks that are dif-
ficult to train and have poor effects. After the introduction of
residuals, the mapping becomes more sensitive to the output
changes, and the output changes have a greater effect on
the adjustment of the weights, so the segmentation effect
of the model is better. The idea of the residual is to remove
the same main part, so as to highlight the small changes,
and the residual structure can be easily adjusted to a better
effect. Our model structure has multiple bypass branches
to connect the input to the later layers, so that the latter
layers can learn the residuals well. This solves the problems
of information loss in the traditional convolutional layer or
fully connected layer when information is transmitted. At the
same time, the integrity of information is protected, and the
entire network only needs to learn the part of the difference
between input and output, simplifying the learning objectives
and difficulty. In addition, we use 1 × 1 simple convolution
to do linear mapping transformation to ensure that the dimen-
sions of the ‘‘add’’ layer are consistent. Again, our model
has been fine-tuned for better performance, for example, our
model employs Batch Normalization to make the model more
robust and prevent overfitting. In summary, our proposed
method combines the advantages of the residual learning and
the U-Net. The path between the corresponding layers of
the encoding and decoding of the network is connected by
block II, so that useful information is propagated forward
and backward in the calculation. We assessed the usefulness
of the McbUnet method in the 2018 Data Science Bowl and
the public ISIC-2017 dataset. The algorithm in this paper has
high segmentation accuracy.
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Deep convolution is becoming more and more popular
in modern efficient convolutional neural networks, but its
kernel size is often ignored. In this paper, by increasing the
size of the kernel, such as 5 × 5 convolution kernel and
7 × 7 convolution kernel, on the one hand, the accuracy
and efficiency of the model are improved, but on the other
hand, the parameters are also increased. To this end, width
multiplier and resolution multiplier are introduced to adjust
the complexity of the model. The shortcoming of this paper is
that the large convolution kernel acquires high-resolution fea-
tures with more details at the cost of adding more parameters
and computation. The comparison of the number of training
parameters among the four methods is that the method in
this article is the most, followed by the MultiResUNet [20]
method, and again the CE-Net [32] methods, and the least is
the standard Unet. Therefore, the algorithm proposed in this
paper is the most complex, which is also the weakness of this
method. This is also the direction of our next research. In the
future, we will strengthen research and exploration in the
following aspects: 1) We start by improving the structure of
the convolutional layer and conduct a study to reduce the
number of convolutional layer parameters. 2) Starting from
the shape of the convolution kernel, we explore whether the
deformed convolution kernel can be used to analyze only the
image area of interest, so that the recognized features will be
more conducive to improving the segmentation performance.
3) We study the loss function and find a loss function that is
more suitable for image segmentation using deep learning.
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