
Received May 21, 2020, accepted June 2, 2020, date of publication June 11, 2020, date of current version June 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3001756

A Clutter-Resistant SLAM Algorithm for
Autonomous Guided Vehicles in Dynamic
Industrial Environment
WEI WANG , YAOHUA WU , ZHENYU JIANG , AND JIAHUI QI
School of Control Science and Engineering, Shandong University, Ji’nan 250061, China

Corresponding author: Yaohua Wu (yaohua.wu@sdu.edu.cn)

ABSTRACT In dynamic and complicated industrial environments, feature-based SLAM based on laser
scanner is a popular choice to achieve localization of autonomous guided vehicles. However, there are
many clutters and dynamic objects degrading SLAM performance. This paper proposes a clutter-resistant
SLAM solution where both point features generated from reflectors and line features are employed to
improve SLAM robustness. First, a point feature recognition method based on geometrical characteristics of
reflectors is developed to filter out clutters and identify true reflector landmarks; Then a dual-map based map
management scheme is proposed for EKF-SLAM to further eliminate both types of fallacious landmarks
and enhance its clutter resistance capability. The proposed methods eliminate adverse impact of clutters
and thus improve SLAM performance in terms of accuracy, consistency and efficiency. The effectiveness
of the proposed clutter-resistant SLAM solution is validated through real-time experiments. The absolute
localization error is controlled within 19 mm and 31mm in X-axis and Y-axis respectively. The improved
SLAM algorithm is proved to be accurate and efficient enough for practical application in dynamic and
complicated industrial environments.

INDEX TERMS EKF, autonomous guided vehicle, SLAM, industrial environment.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is a funda-
mental problem in the field of robotics research [1], which
has been regarded as a ‘‘holy grail’’ [2]. A SLAM solution
enables a mobile robot to incrementally build an environment
map while localizing itself without any priori knowledge of
the environment. Autonomous guided vehicle (AGV) is an
important branch of mobile robots which is widely applied to
transport heavy goods in industry [3]. The SLAM problem
for AGV requires higher robustness and accuracy due to
complicated and dynamic industrial environments and the
demands for precise loading or unloading operation.

In the past thirty years, many notable achievements for
SLAM problem have been obtained [4]–[7]. Scan match-
ing is an effective method to solve SLAM problem [8],
but it is not suitable for large scale scene due to high
computational complexity. Estimation-theoretic approaches,
based on Bayesian estimation framework, have been
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developed to solve SLAM problem [4], [9], [10].
Filtering-based algorithms have played an important role
in SLAM solution, such as the extended Kalman Filter
based SLAM (EKF-SLAM) [11], [12], noise-inclusive
unscented Kalman filter based SLAM (UKF-SLAM) [13]
and particle filter SLAM (FastSLAM) [14]. EKF-SLAM is
the earliest approach and a number of derivative meth-
ods of which are developed to solve SLAM problems in
indoor [12], outdoor [15], and underwater [16] environments.
A novel method for online estimation of the input- and
output-noise covariance matrices is proposed to improve con-
vergency and stability of EKF-based localization [17], [18]
and SLAM [11]. Reference [19] performs an EKF-based
visual-inertial odometry to track the robot motion in SLAM
process, where the optimized global map are fed back to
the VIO to improve its accuracy. A point feature approach
in [20] is recommended to lower computational complexity
of EKF-SLAM. An invariant EKF-SLAM is proposed in [21]
to achieve accurate map building in 1D/2D/3D scenarios,
the accuracy is comparable to that of least square optimiza-
tion based SLAM. Optimization-based algorithms consist of
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bundle adjustment [22] and pose-graph [23] etc., which have
been widely applied in visual SLAM and are proved to have
high consistency [24], [25].

SLAM in dynamic scenes is challengeable since dynamic
objects may degrade SLAM performance. In visual SLAM,
the dense information from images supports semantic seg-
mentation to segment out movable objects in dynamic envi-
ronments [26]–[28]. Sun et al. develop a motion removal
approach and integrate it into the front end of RGB-D
SALM, to detect dynamic objects during the RGB-D data
pre-processing stage [29]. A deep learning method is applied
for image semantic segmentation to reduce the interference
of dynamic objects on the SLAM [30]. In [31], a dynamic
deep learning SLAM is proposed for dynamic environ-
ments, in which a convolutional neural network is com-
bined with multi-view geometry to identify dynamic objects.
Dymczyk et al. develop a CNN classifier to recognize sta-
ble features on the basis of their expected lifetime [32].
Demim et al. point out that extraction often produces a high
spatial uncertainty due to the sparse information of the raw
laser LiDAR data compared to images, and they propose
a new approach to filter features within a certain temporal
window [33]. They also develop an adaptive SVSF-SLAM
solution for dynamic environments, which can detect and
remove dynamic parts of measurements [34]. In industrial
environments with large size area, appearance-based maps
are too large to handle [32] while sparse features are more
suitable for SLAM solution, lowering computational com-
plexity. Line features are widely employed for SLAM in
many indoor scenes. Vakhitov et al. propose a learning
method based on a fully-convolutional network to construct
line segment descriptors [35]. However, in some dynamic
industrial environments, line features may be unavailable
in a short period of time when being occluded by some
movable objects, e.g. forklifts and production materials.
A stereo visual SLAM system is proposed in [36], which
combines both points and line segments to enhance its
robustness. Wang et al. also recommend a point-line feature
based SLAM method [37], following which this paper also
combines line features and point features to enhance the
SLAM performance.

The point features generated from artificial reflectors are
employed as secondary landmarks, to improve SLAM robust-
ness in dynamic environments. The reflectors can be detected
due to its property of reflecting laser beams with high inten-
sity [38], [39]. However, there are some other substance,
such as glass wall and metal racks with smooth surface,
which can also reflect scattered laser beams in high qual-
ity. These substance can be identified as point features by
mistaken. Besides, some unreliable line features are also
generated in unstructured and cluttered industrial environ-
ments. All these unreliable features are known as ‘‘fallacious
landmarks’’, which may have following adverse impacts on
SLAM performance: first, fallacious landmarks may increase
the difficulty of data association process and the probability
of mismatching, which may cause divergence eventually;

second, unstable features may generate inconsistent infor-
mation when being observed at different positions or time,
thus leading to more uncertainty and even divergence; third,
excess fallacious landmarks may cause the computational
complexity of EKF-SLAM increasing dramatically due to the
higher dimension of covariance matrix.

The main purpose of this study is to present effective
techniques for eliminating fallacious landmarks in clut-
tered industrial environments, which contributes to a better
SLAM performance in terms of EKF convergency, accu-
racy and efficiency. The main contribution consists of two
parts: first, a reflector landmark recognition method based
on geometrical characteristics of reflectors is designed to
identify true reflector landmarks during the sensor data
pre-processing phase; second, referring to landmark manage-
ment method in [40], a dual-map based EKF-SLAM frame-
work is proposed. While a temporary map is maintained to
filter out fallacious landmarks and generate candidate per-
manent landmarks, an official map is created to model the
environment precisely.

The remainder of the paper is organized as follows.
Section 2 presents a description of the mobile robot kinematic
model, measurement model and the reflector landmark recog-
nition method. Section 3 introduces the proposed dual-map
based EKF-SLAM and the robust data association method.
In section 4, the results of the proposed SLAM algorithm
implemented in real industrial environment are presented and
discussed. Section 5 draws conclusions and gives insights into
future research.

II. MOBILE ROBOT SENSOR MODELS
A. MOTION MODEL
The robot state vector Xr =

[
xr yr θr

]T is estimated at each
discrete sampling instant k . In this study, a differential drive
robot is used. The odometry information ur =

[
dl dr

]T
is obtained from incremental wheel encoders, where dl and
dr are the distance traveled by left and right wheels respec-
tively. The robot motion model can be denoted as:

Xr (k + 1)= f (Xr (k), u(k)+ w(k)) (1)

f (Xr (k), u(k))=

 xr (k)yr (k)
θ (k)

+
1x1y
1θ



=


xr (k)+

dr+dl
2
∗ cos(θr (k))+1θ

yr (k)+
dr+dl

2
∗ sin(θr (k))+1θ

θr (k)+
dr−dl
L

 (2)

where L is the wheelbase of robot, w(k) represents the input
noise and ismodeled asGaussian distributionwith zeromean.
The covariance matrix of w(k) is defined as

Q(k) =
[
ε2 ∗ d2l + γ

2 0
0 ε2 ∗ d2r + γ

2

]
(3)
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FIGURE 1. The line segment features and point features in global frame
and local robot frame.

where ε is the scale factor, indicating that the input uncer-
tainty is proportional to the distance traveled. γ is added to
compensate for the uncertainty of noise without movement.

B. MEASUREMENT MODEL
As shown in Fig. 1, two types of landmarks are employed in
the proposed SLAM solution.

The line segment features can be denoted as polar
coordinates:

Xl =
[
rg,i θg,i

]T
, i = 0, 1 . . . n (4)

The states of reflectors are recorded by cartesian coordinates
in the global frame:

Xp =
[
xg,i yg,i

]T
, i = 0, 1 . . . n (5)

Despite the different forms of these two types of landmarks,
the observation equation can be described in a centralized
format as:

z(k) = h(Xr (k))+ v(k) (6)

where z(k) represents the observation at time k , and h(Xr (k))
is the measurement model with respect to robot state at
time k . v(k) describes the measurement noise with covariance
matrix R.
This paper employs the split and merge algorithm for

line feature extraction [41], since it can provide the end
points of the extracted line segments incidentally. Then the
least-squares method (LSQ) is employed for line fitting [11],
to calculate line parameters in normal form:

x ∗ cos θl + y ∗ sin θl = rl (7)

where rl is the distance from origin to the extracted line
and θl denotes the angle between perpendicular and x-axis,
in the local robot frame. The noise covariance matrix of line
segment features Rl can be derived from the nominal values
of laser sensor [11]. The measurement model in (6) for line
features can be derived from transform equation as follows,

hl,i(Xr (k)) =
[
rg,i − xr ∗ cos θg,i − yr ∗ sin θg,i

θg,i − θr

]T
(8)

FIGURE 2. Reflector detected by laser beams.

Similarly, the measurement model h(Xr (k)) for point features
is:

hp,i(Xr (k)) =


√
(xg,i − xr )2 + (yg,i − yr )2

arctan
yg,i − yr
xg,i − xr

− θr


T

(9)

C. POINT FEATURE EXTRACTION
1) LASER BEAMS CLUSTERING
Fig. 2 illustrates how the laser scanner perceive the envi-
ronment, where there are four reflectors in the robot’s field
of view. As shown in the figure, Dr is the diameter of the
reflectors which is 80mm, whereas δ is the angular resolution
of laser beams from the laser scanner. The laser beams are
indexed by m, n, o, etc.

Usually, the reflectors can be detected based on their strong
reflective properties. However, we cannot ignore the fact
that some materials can also reflect laser beams with high
intensity, which may cause false positive detection. Most
existing methods for reflector recognition are based on the
priori known position of reflectors in the map [42], [43].
In SLAM process, the landmark position information is
unknown, which imposes extra difficulty on recognizing true
reflectors from clutters. The reflector detection method pro-
posed in this paper is rigorous, and it considers more compli-
cated situation, which is introduced in Algorithm 1.

In step 1, we select all the laser beams in a scan cycle which
are reflected with high intensity. A series of consecutive
laser beams (e.g. {bm . . . bn} in Fig. 2) are divided into a
cluster Cj.
The consecutive laser beams in a cluster collected in step 1

may come from different objects. For instance, laser beams
{bp . . . bt } hit different reflectors but are gathered in the same
cluster. This may happen occasionally when these objects
are detected by laser scanners from a special point of view.
Therefore, a mean error analysis method (MEA) is proposed
in step 2 to determine whether laser beams in a cluster
are from a single object. The MEA method calculates the
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Algorithm 1 Reflector Extraction
Input:

Dr ;
laser beam measurements bi, i ∈ [1, 720];

Output:
Relative reflector positions, {(dp, θp)j};

1: Find laser beam clusters {Cj} that may come from reflec-
tors based on reflection intensity;

2: Use the MEA method to determine whether each cluster
comes from a single object;

3: Identify clusters that come from reflectors based on its
geometrical property;

4: Calculate relative reflector positions {(dp, θp)j};
5: return {(dp, θp)j};

mean measurement distance of laser beams in a cluster, and
then the mean error of these measurement distance from the
mean value is obtained. If the mean error is less than the
pre-determined threshold τe, the laser beams in the cluster
are reflected by a single object. Otherwise, the cluster should
be reallocated according to the measurement distance of each
laser beam in the cluster. In general, the mean error should be
less than the half of reflector radius if all laser beams are from
a single reflector. Based on this, we empirically set the value
of τe as 30mm.

In step 3, a reflector recognition method is developed to
determine whether laser beams in each clusterCj are reflected
by a reflector. The recognition method is based on the geo-
metrical characteristics of reflectors and is described in detail
in next subsection.

In step 4, the relative positions of all the identified reflec-
tors are calculated, as well as the noise covariance matrix.

2) REFLECTORS RECOGNITION
Generally, reflectors can reflect a number of consecutive
laser beams while the cluttered substance can only reflect
sparse laser beams occasionally. Taking an example of
reflector A, which is hit by laser beams {bm . . . bn}, the recog-
nition method is described as follows.

The number of the laser beams hit onto the reflector is
negatively proportional to the observation distance. The min-
imum number of laser beams Nmin that hit the reflector can
be calculated even though the number in practical may be
higher thanNmin. First, the shortest distance between the laser
scanner and the edge of reflector d is obtained by (10), then
Nmin is calculated by (11).

d =

∑n
i=m di

n− m+ 1
(10)

Nmin = b
Dr

2sin( δ2 ) ∗ d
c (11)

where di is the measurement distance of laser beam bi, and
the operator b · c denotes the lower integer bound. Based
on this restriction, an observed object is recognized as an

available reflector landmark only if the number of detected
laser beams satisfy: n − m + 1 ≥ Nmin. Once a reflector
landmark is identified, the polar coordinates of the reflector
landmark (dp, θp) in the local robot frame can be calculated
approximately as follows:

dp = d +
Dr
2

(12)

θp =

∑n
i=m θi

n− m+ 1
(13)

where θi is the angle of bi. The noise covariance matrix Rp
can be obtained by (14),

Rp =

 1
σ 2 (n− m+ 1) 0

0 (
1
4
δ(n− m+ 2))2

 (14)

where σ denotes the standard deviation of rangemeasurement
uncertainty for laser beams.

III. DUAL-MAP BASED EKF-SLAM ALGORITHM
A. EKF-SLAM
The SLAM problem comprises two main subproblems:
robot localization and environment mapping. In EKF-based
SLAM, a state vector X , consisting of 2-D robot position and
landmark positions, is employed to record estimation results:

X =
[
Xr Xl Xp

]T (15)

Besides, the covariance matrix P is also computed to describe
the estimation uncertainty and correlation between the states
of the robot and landmarks, which consists of four blocks,

P =
[
Pr,r Pr,m
Pm,r Pm,m

]T
(16)

where Pr,r denotes the uncertainty of robot state estimation
and Pm,m represents estimation uncertainty of landmark posi-
tions. Pr,m and its transpose Pm,r are the cross-covariance
matrices which represent correlation between the robot state
estimation and landmark state estimation.

1) PREDICTION STEP
In the prediction step, the state of robot at current sampling
instant k is estimated and denoted as X̃ (k) on the basis of
posterior robot state estimate X (k − 1) and odometer infor-
mation. The covariance matrix is updated correspondingly,
while landmarks remain stationary.

X̃ (k) = f (X (k − 1), u(k − 1))

=

 fr (Xr (k − 1), u(k − 1))
Xl(k − 1)
Xp(k − 1)


P̃(k) =

[
P̃r,r (k) P̃r,m(k)
P̃m,r (k) P̃m,m(k)

]
(17)

=

[
FXPr,r (k−1)FTX +FuQ(k−1)F

T
u FXPr,m(k−1)

PTm,r (k−1)F
T
X Pm,m(k−1)

]
(18)
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fr gives a prediction for robot pose according to (2), whereas
FX and Fu are the jacobian matrices of fr with respect to Xr
and u.

2) CORRECTION STEP
Supposing that data association is completed, the main objec-
tive of the correction step is twofold: First, to update the state
of robot and landmarks, as well as the covariance matrix,
on the basis of paired observations; Second, to append newly
observed landmarks to the global map.

The observed landmarks at time instant k are denoted by
z(k) =

[
zM (k) zN (k)

]T , where zM (k) represents paired
landmarks list, and zN (k) is the newly observed landmarks
list which have never been observed before. Assume that the
ith landmark in zM (k) is paired with jth landmark in global
map, then the innovation of the observed landmark i can be
derived from (19), considering a centralized form of both line
segment features and cylinder reflectors.

vj(k) = zMi (k)− hj(Xr (k)) (19)

Then the posterior system state and the covariance matrix can
be updated in batch as follows:

S(k) = H (k )̃P(k)HT (k)+ R(k) (20)

K (k) = P̃(k)HT (k)S−1(k) (21)

X (k) = X̃ (k)+ K (k)V (k) (22)

P(k) = P̃(k)− K (k)S(k)KT (k) (23)

where H (k) is the jacobian matrix of h(Xr (k)) (see (8) or (9))
with respect to X̃r (k) and zM (k) , according to the type of the
paired landmarks. Kj(k) is the Kalman gain.V (k) denotes the
innovation matrix which is composed of vj(k) for all paired
landmarks.

Then the newly observed landmarks zN (k) should be added
to the global map, by appending the state vector. The covari-
ancematrix is also upgraded. First, the landmarks coordinates
in global frame should be derived from that in local robot
frame through coordinates transformation. The coordinates
transformation formulas of the line segment features gl(·),
and reflector landmarks gp(·) are given by (24) and (25)
respectively.

Xl =
[
rg θg

]T
= gl(rl, θl)

=

[
xrcos(θl + θr )+ yrsin(θl + θr )+ rl

θl + θr

]
(24)

Xp =
[
xg yg

]T
= gp(dp, θp)

=

[
xr + dpcos(θp + θr )
yr + dpsin(θp + θr )

]
(25)

The state vector is augmented by (26):

Xp =
[
X (k) Xl,new Xp,new

]T (26)

where Xl,new and Xp,new are newly observed landmark lists
which are transformed into the global frame through (24)

FIGURE 3. The augment of system covariance matrix.

and (25). The covariance matrix can be augmented as shown
in Fig. 3, where:

Pr,n = Pr,rGTX (k) (27)

Pm,n = Pr,mGTX (k) (28)

Pn,r = PTr,n (29)

Pn,m = PTm,n (30)

Pn,n = GX (k)Pr,rGTX (k)+ Gz(k)R(k)G
T
z (k) (31)

GX (k) andGz(k) are jacobian matrices of gl(X (k) or gp(X (k)
(according to the type of the observation) with respect to the
robot pose and the observation.

B. DATA ASSOCIATION
Data association aims to match the currently observed fea-
tures with existed landmarks in the global map. An accurate
data association is required to achieve high-quality SLAM.
Otherwise, poor SLAM performance with low accuracy
and consistency may be obtained, even divergence. This
paper presents an efficient data association method to realize
real-time SLAM.

For each currently observed landmark zi(i = 0, 1 . . .m)
in z(k), the data association process can be described as
follows:

1) Find all landmarks in the global map which are the
same type as zi.
2) Calculate Euclidean distance between each of them
and zi, and then select 5 nearest landmarks as pairing
candidates.
3) Calculate Mahalanobis distance D between each of
these five candidates and zi, according to (32).

D = (hj − zi)T S−1(hj − zi) (32)

where hj is calculated through (8) or (9) for jth landmark
in the global map, and S can be derived from (20).
4) Compare the minimum Mahalanobis distance Dmin
with a predetermined threshold τd . If Dmin > τd ,
the pairing for zi is failed, thus the observed landmarks
zi is defined as a newly observed landmark. Conversely,
if Dmin < τd , the corresponding landmark Zpair in the
global map is paired with zi. Note that the value of τd is
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FIGURE 4. The SLAM solution with dual-map based map management scheme.

determined empirically by conducting massive tests in
practical environments, and we suggest that this should
be implemented before applying this method in other
environments.
5) However, if Zpair has been previously paired
with other currently observed landmarks, then the

Mahalanobis distance of these two pairs should be com-
pared. The one with minimum Mahalanobis distance
will be matched with Zpair eventually, while the other
observed landmark will be discarded.

Once the matching process for all the currently observed
landmarks are completed, a joint compatibility for these
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pairings and robot position estimation is calculated referring
to [44], to make sure whether they are jointly compatible with
each other. The result is examined by χ2 test with confidence
level α. The main objective is to reduce the possibility of
accepting spurious pairings, since the prediction and mea-
surement errors are correlated.

C. DUAL-MAP BASED EKF-SLAM
As mentioned above in section 2.3.2, the proposed landmark
recognition method can only eliminate a portion of fallacious
reflector landmarks. This section presents a dual-map based
map management scheme to further exclude both fallacious
point features and line features. Fig. 4 gives the flowchart of
the proposed dual-map based EKF-SLAM, and the process is
illustrated in detail as follows.

In the initialization step, a temporary mapMt and a perma-
nent map Mp are initialized, supposing that both coordinate
frames are aligned with the starting pose of robot, the initial
covariance matrix P0 is also set.
Once the SLAM process starts, the odometer and laser

sensor data are received and processed consecutively. The
line segment features are extracted through split and merge
method and the LSQ algorithm, whereas reflector landmarks
are identified through the proposed point feature recognition
method in section 2.3.

Once all the sensor data are ready, EKF algorithm is imple-
mented. For both maps Mt and Mp, the prediction step is
implemented in the same manner. The robot state and the
covariance matrix for state estimation are predicted.

Then the data association process is implemented for both
maps, and the pairing results are used for correction step.
As for the permanent map Mp, unpaired observations will
be neglected, while paired observations are used for cor-
rection step. In temporary map, unpaired observations are
appended as new landmarks. Each new landmark in Mt is
initialized with a counter Cpair , to record the frequency that
it is observed and paired. Another counter Cout is also set
to record the number of times that the landmark is out of
the robot detection reange. On the other hand, the landmark
which has Cout > 30 and Cpair < τc is thought to be
redundant and is removed from Mt . These landmarks are
identified as fallacious landmarks since they have been out of
robot detection range already. Discarding these landmarks in
Mt considerably reduces computational complexity and the
possibility of mismatching in data association process. The
posterior state ofMt is estimated on the basis of paired land-
marks, where a virtual robot state is also updated to support
EKF algorithm for Mt . For all the landmarks that are paired
with current observations, their counters Cpair are increased
by 1. The counters Cpair of all paired landmarks in Mt are
checked. If Cpair of a landmark exceeds the threshold τc and
it has not been added toMp, then the landmark is identified as
a stable landmark which should be included inMp for system
state correction. Appending stable landmarks to Mp instead
of removing fallacious landmarks from Mp may effectively
avoid unreliable information generated by these fallacious

FIGURE 5. Platform used in the experiment.

landmarks. It is worth mentioning that an appropriate value
of τc should be selected, to ensure that newly observed true
landmarks can be included in the permanent mapwithin a rea-
sonable time period, while rejecting almost all the fallacious
landmarks. Motivated by this purpose, we conduct numerous
experiments to determine the value of τc.
To improve the reliability of Cpair , further inspection is

performed over the landmarks in the temporary map Mt .
Normally a landmark in Mt is supposed to be detected when
it is in the robot detection range, whereas the detection range
of the robot is pre-defined by radius r0 but not the maximum
perceptual range. However, if this landmark is not paired
with any observation, its counter Cpair should be decreased
by 1. In this way, unreliable landmarks are less likely to be
added to the permanent map. On the contrary, if any landmark
in the temporary map Mt is out of robot detection range,
the counter Cout is increased by 1.

IV. EXPERIMENTAL RESULTS
The effectiveness of the proposed landmark recognition
method and dual-map based EKF-SLAM solution are vali-
dated through practical experiments in a manufacturing fac-
tory, which spans an area of approximately 82.5×52m2 with
complex components such as autonomous devices, storage
racks and an office etc. The platform used in the experiments
is shown as Fig. 5-a, which is a simple-assembled vehicle
equipped with a laser scanner (Fig. 5-b).

The experiments are carried out in an industrial PC with
a 2.8 GHz Intel Core i7 processor, and the algorithm is
executed by using C#. The values of some basic parameters
are given in Table 1.

First, the reflector parameter extraction method is tested.
In the experiment, a reflector is observed by the laser scan-
ner at different distance. For each distance value, the mea-
surement results are obtained by measuring the reflector
at 10 different orientations of the vehicle. The results
in Table 2 show the approximation error of reflector parame-
ter extraction. Generally, the measurement error is not very
high and increases slightly with the reflected number of
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FIGURE 6. Landmark recognition results.

TABLE 1. Value of system parameters in the experiments.

TABLE 2. Reflector parameter extraction results.

laser beams, and this may be attributable to the geometrical
property of reflectors. On the other hand, the standard error
increases with the measuring distance.

Then we implement the reflector recognition method and
the results are shown in Fig. 6. The raw point cloud of the
laser sensor is described by black dots. The black circles
represent the true position of reflector landmarks, whereas
the green circles show the reflector landmarks detected by
laser scanner. The true positions of these reflectors are
measured manually through reliable mechanical method.
We use some accurate tools such as handheld laser rangefind-
ers, laser levels, and square rulers etc., and we obtain the final

FIGURE 7. Reflector landmarks in the warehouse.

FIGURE 8. Feature map with ‘‘fallacious landmarks’’ built by standard
EKF-SLAM.

measurement results as an average of 10 repeats. Fig. 6-a
shows the detection results where only substance reflectivity
are utilized, while Fig. 6-b illustrates the performance of the
proposed reflector recognition method. We can see that there
are numerous fallacious landmarks in Fig. 6, caused by some
substance with high reflectivity. Many of them originate from
metal racks or other metal materials with smooth surface as
shown in the figure. Notice that there are a row of fallacious
landmarks around the line feature, as highlighted by a dotted
ellipse. These fallacious landmarks are generated from a glass
wall of an office in the factory, which promiscuously reflects
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FIGURE 9. Feature map built by proposed SLAM algorithm.

FIGURE 10. Possible fallacious line segment landmarks.

laser beams with high intensity. In Fig. 6-b, it can be seen
that most fallacious landmarks are eliminated except for those
caused by faraway clutters. This is mainly because that Nmin
derived from (11) for faraway reflectors are equal to 1, which
coincides with the fact that clutters always reflect single laser
beam. However, the faraway fallacious landmark marked by
a dotted circle at the most right side in Fig. 6-a, which
disappears in Fig. 6-b, is not filtered out by the landmark
recognition method, but because that it is not detected at
this observation. This is due to the fact that there are more
uncertainties of faraway clutters due to angular resolution of
laser beams.

The following experiments are implemented in the storage
warehouse of a factory, where reflectors are deployed at some
key positions in the warehouse as shown in Fig. 7. Both the
proposed SLAM algorithm and the standard EKF-SLAM are
implemented, and their performance are compared in detail.
The robot starts from a position which is defined as the origin
of the global frame. It travels counterclockwise around a
loop path and performs the SLAM process until it returns to
somewhere close to the start position.

FIGURE 11. The frequency of landmarks being observed and paired.

The true locations of landmarks are measured manually
through reliable mechanical method. Fig. 8 shows the tem-
porary map, which is the result of standard EKF-SLAM,
whereas the permanent map is illustrated in Fig. 9. The true
positions of reflector landmarks and line segment landmarks
are represented by black circles and line segments respec-
tively. The landmarks in temporary map are described by
green circles and line segments, whereas the red circles and
line segments represent landmarks in permanent map. From
Fig. 8 we see that the temporary map comprises a large
number of fallacious landmarks, including those removed
from Mt which have Cout > 30 and Cpair < τc since they
have already brought adverse impact on the map building.
As for the fallacious line segment landmarks, some of them
are caused by two or more planes which are close to each
other as shown in Fig. 10-a. They are merged into a single line
when being observed from a special point of view. Another
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FIGURE 12. The estimated distance error of three reflector landmarks in both maps.

source of fallacious line segment landmarks comes from the
objects that are not on the robot’s horizontal observing plane
(see Fig. 10-b). They can be detected occasionally as a result
of fluctuating observing plane of the robot when it runs on
uneven ground. All the inaccurate information that originates
from these fallacious landmarks may affect mapping perfor-
mance adversely. Fortunately, it can be seen in Fig. 9 that
all the fallacious landmarks caused by clutters in the current
environment are eliminated by the proposedmethods.Most of
fallacious point features are filtered out by the reflector recog-
nition method, and the dual-map based scheme eliminates the
rest fallacious point features and line segment features thor-
oughly. Furthermore, most of real landmarks in the temporary
map deviate from their true locations considerably, while the
landmarks position deviation in the generated permanent map
is relatively negligible. This is largely attributable to the fact
that uncertainties and inaccurate information generated by
fallacious landmarks are eliminated.

Notice that a line segment landmark on the top of Fig. 9 is
not included in the permanent map. This is the result of the
dynamic environment. The reason is that the related wall in
real environment is blocked and split into several pieces by
other temporarily placed objects as shown in Fig. 9-b. These
small pieces of line segments are not recognizable due to
the threshold set for the line extraction method. There are
various other dynamic objects like forklifts (Fig. 9-c), and
even workers which may cause obstruction. That’s the most
important reason that we introduce stable reflectors as auxil-
iary landmarks to constitute the environment map. Besides,
the combination of multiple landmarks makes it easier to
find a balance of the trade-off introduced by [40], where an
appropriate number of landmarks can always be determined.

In Fig. 11, the frequency that reflector landmarks 1-6, falla-
cious landmarks 7-10, and line segment landmarks 11 and 12
in Fig. 8 being observed and paired successfully are illus-
trated. Normally, real landmarks are detected frequently and
permanently, generally much more than 100 times. On the
contrary, fallacious landmarks can be observed occasionally.
Therefore theCpair of these landmarks are always maintained
at a considerably low level. Another reason is that theCpair of
fallacious landmarks are rigorously controlled by the expect

FIGURE 13. Estimated trajectories of robots by two different SLAM
algorithms.

observation step. Therefore, the fallacious landmarks barely
have opportunities to be added into permanent map.

To further analyze how the mapping accuracy is improved
by the proposed SLAM algorithm, the position deviation
of landmarks a, b, and c in Fig. 9-a from true locations in
these two maps are illustrated in Fig. 12. It is obvious that
landmark position deviation in the temporary map fluctuates
at a high level, while the landmark position estimation in
permanent map all converge to their true locations. This
demonstrates that eliminating fallacious landmarks in clut-
tered industrial environment may improve mapping accuracy
to a large extent. Our proposed methods are worth study-
ing and have significant implications for practical SLAM in
industrial environments.

The robot localization accuracy in the SLAM process is
another key metrices for evaluating SLAM performance.
As mentioned above, our proposed SLAM algorithm updates
robot pose in both temporary map and permanent map inde-
pendently. Fig. 13 illustrates the accuracy of robot trajecto-
ries generated by the proposed SLAM algorithm (red line)
and the standard EKF-SLAM (green line). The ground truth
(black line) is obtained from a localization solution pro-
vided by SICK, which is validated to be reliable but expen-
sive, and has been extensively applied in industry. The
start position is approximately labeled by a red triangle in
the image. The result shows that the robot trajectory from
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FIGURE 14. Estimated position and orientation variance of robot by the proposed SLAM algorithm.

the proposed SLAM approaches the ground truth closely,
while the trajectory from the standard EKF-SLAM deviates
from the ground truth gradually. This coincides with the
fact that more and more unstable fallacious landmarks are
included in the temporary map and the adverse impact gen-
erated by these fallacious landmarks accumulates during the
SLAM process.

On the other hand, the proposed SLAM solution also
improvesmapping consistency. From themagnification in the
dotted ellipse in Fig. 13, the robot trajectory in the temporary
map is not smooth and contains abrupt displacement, which
shows the inconsistency of the temporary map. Note that
after the last corner, both trajectories converge to the refer-
ence trajectory due to the detection of previously observed
landmarks. These landmarks are located around the start
position of the robot and they are added to the permanent map
with little accumulated errors caused by drifts of odometry.
Therefore, after traveling a long loop path, re-observation of
these landmarks imposes additional measurement constraints
on correction step of EKF algorithm, i.e. (19)-(23), which
effectively correct errors accumulated during the SLAM pro-
cess. We can also see that the trajectory generated from the
proposed SLAM algorithm coincides with the ground truth
completely, showing much higher accuracy than the standard
EKF-SLAM algorithm.

Fig. 14 shows how the estimated position and orienta-
tion variance of the robot in the proposed SLAM algorithm
vary over time. With more and more new space explored,
the uncertainty increases but fluctuates at a reasonable level.
After 6000 iterations, the position variance decreases dra-
matically, which is consistent with the convergence of the
robot trajectory in Fig. 13 due to the detection of previously
observed landmarks.

The absolute accuracy of the estimated robot position is
evaluated only at the end of the SLAM process, by measuring
the error of robot position manually. The results are obtained
as an average of 10 independent runs, as shown in Table 3.
From the results we can clearly draw the conclusion that the

TABLE 3. Absolute localization error of robot in two different SLAM
algorithms.

FIGURE 15. Cycle execution time varies during the SLAM process.

robot localization of the proposed SLAM solution is more
accurate than that of the standard EKF-SLAM.

Furthermore, the efficiency of the proposed SLAM algo-
rithm is also evaluated in terms of the cycle execution time,
since that our SLAM solution mainly aims at practical appli-
cation in industrial environments. The results in Fig. 15 indi-
cates that the cycle time increases with time, as a result of map
size expansion. Overall, the cycle time is maintained at an
acceptable level as less than 100ms, which is efficient enough
for real time SLAM.

V. CONCLUSIONS
In this paper, a clutter-resistant SLAM solution is devel-
oped for AGV in complicated and dynamic industrial envi-
ronments. The combination of reflector landmarks and line
segment landmarks improves the robustness of the SLAM
solution. Reflector landmarks make it feasible to employ
SLAM solution in many dynamic and complicated industrial
scenes, whereas introducing line features extracted from the
environments reduces the use of reflector landmarks, thus
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lowering operational costs. The proposed reflector recog-
nition method helps distinguishing true reflector landmarks
from other clutters, and the dual-map basedmapmanagement
scheme further eliminates all types of fallacious landmarks
thoroughly. The effectiveness of these proposed methods is
validated through practical experiments. The mapping accu-
racy, consistency and efficiency are improved by eliminat-
ing fallacious landmarks in cluttered environments, which
enables accurate and reliable autonomous operation of indus-
trial AGV. These methods can also be employed in other
practical scenes such as medical robots, and are suitable
for various kinds of landmarks. Our future work will focus
on accurate localization of AGV with pre-existing maps in
industrial environments.
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