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ABSTRACT Endoscopic transducer with small size and high frequency has been widely studied and applied
in medical ultrasound imaging. However, attenuation affects high frequency ultrasound waves to a greater
degree than lower frequency waves, which results in limited endoscopic ultrasound detection depth and poor
signal-to-noise ratio in the image. High sensitivity transducer is an effective way to improve this problem.
In this paper, a high sensitivity endoscopic ultrasound transducer (HSEUST) with an integrated miniature
amplifier was proposed, where the amplifier can effectively enhance the received ultrasound signal and
reduce the impact of noise. According to the tests and experimental results, this sensor is about 4 times more
in sensitive, 20% more in resolution than conventional endoscopic transducer. With high sensitivity, this
transducer holds the potential for visualization of deeper tissue in the body with high resolution, which will

greatly expand the application capabilities and fields of endoscope ultrasound imaging.

INDEX TERMS Endoscopic transducer, high frequency, high sensitivity.

I. INTRODUCTION

High frequency endoscopic ultrasound transducer is widely
used in many medical applications like digestive and lung
disease assessment [1], transoesophageal ultrasound-guided
fine-needle aspiration (EUS-FNA) [2], transbronchial
ultrasound-guided needle aspiration (EBUS-TBNA) [3] and
so on. In comparison with conventional in vitro transducer,
endoscopic transducer usually has a higher frequency, smaller
size, and longer connection cables [4], [5]. For example,
the current clinical use of digestive ultrasound endoscopic
transducer is operating at 12 / 20 MHz, 1.5 mm in diameter
and 2.4 m in cable length.

For getting higher spatial resolution of ultrasound imaging
to improve the accuracy of diagnosis, the higher frequency
ultrasound was applied in EUS [6]. However, high-frequency
ultrasound has to face the disadvantages of larger attenuation
coefficient and shorter propagation path than low frequency
ultrasound, which exponentially decayed with the frequency.
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Furthermore, the long connection cable will greatly attenuate
the received ultrasonic echo signal too [7], which will further
limit the imaging depth and performance of EUS. However, if
high-frequency ultrasound can combine imaging depth with
high imaging resolution, this will be helpful for disease diag-
nosis and treatment like ultrasound-guided needle aspiration.
To achieve deeper imaging depth with high frequency,
several possible options have been proposed. For example,
increasing the transmitter power of the ultrasound transducer
to increase the signal intensity, but simply turning up trans-
mitting energy is not an option as a higher power ultrasound
may damage the tissue [8]. Coded excitation can improve
the signal-to-noise ratio (SNR) and penetration depth of
high-frequency ultrasound imaging like intravascular ultra-
sound imaging (IVUS) [9], [10]. However, this method is
limited by the capability of the transducer and system itself.
An alternative method would be to increase the sensitivity
of an ultrasound transducer. Given the ultrasound radia-
tion safety limit, the higher the detection sensitivity of the
employed transducer the deeper the penetration capability of
the ultrasound device. To achieve high sensitivity transducer,
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many methods have been tried. For example, in the material,
piezoelectric single crystals like PMN-PT, PIN-PMN-PT,
and 1-3 piezoelectric composite materials have been devel-
oped [11]-[14]. In terms of the matching layer, multi-layers
matching optimization is applied [15]. In the circuit, electrical
resistance matching can also improve the signal intensity
of the transducer [16]. In the frequency range, multifre-
quency or broadband ultrasound transducers were adopted to
increase the detection signals [17], [18]. These methods all
can improve the detector sensitivity to a certain extent, but the
effect is still limited, for example, the single crystal PMN-PT
composite with wide bandwidth can improve sensitivity by
about 20~75% [19]-[21], the multiple matching layers can
improve sensitivity by about 10%~50% [22], [23], the elec-
trical resistance matching can improve sensitivity by about
10%~120% [24].

In addition to the above methods, integrating ultrasound
transducer with front-end circuits is an efficient way to
enhance the signal [25]-[27]. Array / Matrix transducer
with custom application-specified integrated circuits (ASIC)
has been previously demonstrated in ultrasound imag-
ing [28]-[30]. For example, a 2D array transducer with inte-
grated ASIC in a 10 Fr catheter was developed for real-time
3D intracardiac echocardiography [31]. Especially in the
development of capacitive micromachined ultrasonic trans-
ducer (CMUT), because of its MEMS/CMOS-based process,
the front-end circuits or ASIC is more and more adopted
and integrated [32]-[36]. However, because the front-end
circuits or ASIC chips are generally developed exclusively
and mainly for multi-element ultrasound transducers, and
they were not easy and suitable to be used with single-element
transducer. Moreover, the production process of front-end and
ASIC is complex, their research and development require-
ments and costs are high. In addition, especially for single
element ultrasound transducer, it is hard to find a suitable
front-end circuit or ASIC to integrate. Therefore, it will be
valuable to find a method that can be combined with a con-
ventional transducer to improve their detection sensitivity and
imaging quality.

Therefore, based on recent progress on microelectronics
technology and semiconductor processes, a high sensitivity
endoscopic ultrasound transducer (HSEUST) with the inte-
grated miniature amplifier is proposed in this paper, where
the amplifier can provide an additional gain of the received
ultrasound signal in 20 dB or more. Compared to the conven-
tional post-gain amplifier method, this method can increase
the original signal before the cable decays, thus effectively
increasing the signal-to-noise ratio and imaging depth.

Il. DESIGN AND FABRICATION OF HSEUST

At present, the amplifiers are usually rear-mounted in
the ultrasonic endoscopy systems, the long transmission
wire/cable will greatly reduce the echo signal and the final
imaging quality. Since the maximum voltage limit of the
micro amplifier is only 5V, while the excitation voltage
of endoscopic transducer is 90 V for getting high enough
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FIGURE 1. The designed diagram of the traditional EUS transducer and
HSEUS transducer.

signal intensity. If the transmit and receive (TR) switch is
used, the circuit structure will be more complex and larger.
That’s because TR switch means high-voltage process, and
the micro amplifier is low-voltage work, if integrated TR into
the front amplification circuit, the chip will require the high
and low voltage process must be met at the same time, which
will greatly increase the development of the process require-
ments and difficulty. Besides, the transducer and catheter
size is strictly limited in endoscopic imaging. At present,
the diameter of the mechanical rotary ultrasonic endoscope
catheter is in the range of 1.4 to 2.6 mm, and the diameter of
the transducer is in the range of 0.5 to 1.5 mm, respectively.

Therefore, We divided the transducer into two parts, both
transmitter and receiver, in order to avoid device damage and
maintain sufficient transmit power and echo signal strength.
Specifically, in our design, a micro integrated front-end
amplifier is integrated with the ultrasound receiver, which
can efficiently process signals locally and maintain the signal
integrity. In order to maintain the size of EUS transducer and
the simplicity of the structure, the basic idea of our solution
is to use the dual trans element mode. Therefore, a HSEUST
was designed just as FIGURE. 1. showed.

The HSEUST consists of a transmitting transducer and
a receiving transducer, which was connected with a micro
amplifier board. These two transducers were in the same size
of 1.45 mm x 1.50 mm x 0.8 mm, and their center frequency
is 20 MHz. In order to prevent the high-voltage transmitting
pulse (~90 V) to breakdown the amplification circuit, the two
transducers are physically isolated, and the width of the kerf
between them is 0.1 mm. While the contrasting transducer
EUST, it uses the same material as HSEUST, except that its
size is 3.0 mm x 1.50 mm x 0.8 mm, and it was directly
bonded with the coaxial wire without the micro pre-amplifier.
The circuit schematic of the designed HSEUST was as shown
in Fig.2. It contains two parts transmitter and receiver with the
micro amplifier.

Especially, the micro amplifier is a wideband high gain
amplifier offering high dynamic range, which can work from
0.5 MHz to 100 MHz, and have a gain of more than 24 dB
at 20 MHz. Its schematic was shown in Fig.3. It uses an
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FIGURE 3. The schematic of micro amplifier.

improved Darlington configuration, which enables a large
gain, high stability, and small size without increasing the
connecting cable. It only needs a bias tee composed of a
1uH inductor L and a 10 nF capacitor C as DC bias to work.
The value of the inductor L needs to be sufficiently high to
prevent loss of echo signal due to the bias connection. A 10 nF
capacitor C was properly chosen for DC blocking and AC
coupling to RF out. The micro amplifier die has a 50 2 output
impedance to match with the connecting coaxial cable. The
amplifier was fabricated using InGaP HBT technology. The
amplifier die was in the size of 820 x 760 um with 4 bond
pads of 100 x 100 pm, which enables tight integration with
endoscopic transducers.

The measured output gain of the integrated amplifier cir-
cuits during 0~100 MHz as shown in Fig.4. The measured
—3 dB bandwidth ranges from 3.5 MHz to 56.4 MHz, making
the amplifier suitable for detecting the endoscopic imaging
signals. Notably, the amplifier shows a flat response of over
27 dB gain from 10 to 30 MHz, which can completely cover
the bandwidth of the fabricated EUST transducer with the
center frequency 20 MHz.

The measured output noise spectral density of the inte-
grated amplifier circuits during 0~50 MHz as shown in Fig.5.
The noise density at 20 MHz was 15.42 nV/,/Hz and the inte-
grated noise level from 1 to 50 MHz was 161 V. So the noise
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FIGURE 4. The measured gain of the micro amplifier during 0~100 MHz.
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FIGURE 5. The measured output noise spectral density of the micro
amplifier during 0~100MHz.

of the amplifier is very small and will not affect the transducer
echo waveform, which is usually at the mV magnitude.

During the fabrication process, firstly a 20 MHz PZT
transducer of 3 mm x 1.5 mm was made up of a
100 um PZT-5H as the active layer, a 650 um silver epoxy
(E-solder 3022, Von Roll Isola Inc.) as the backing layer and
a 35 pm mixture matching layer. Then, the transducer was
attached to the amplifier micro PCB board with silver epoxy
(H20E, EpoTek). For the convenience of welding behind, the
PZT layer gold electrode of the receiving transducer part
was exposed at the edge. And then, the top electrode of
the receiving transducer was interfaced to the input pad of
the amplifier die by wire bonding, just as Fig.6 shows. All
bonding gold wires in the diameter of 25 um were kept as
short as possible to reduce performance degradation caused
by series inductance.

After wire bonding and PCB surface ultraviolet glue
protection, the transducer was diced into a transmitting trans-
ducer and a receiving transducer by a dicing saw (DAD3350,
DISCO Corporation, Japan) with 0.1 mm soft diamond blade.
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FIGURE 7. The image of fabricated HSEUST.

A 2.4-m long 42 AWG coaxial cables for RF output and
DC power supply, was soldered to the corresponding pads
on the receiving amplifier circuit. And another 2.4-m long
coaxial wires was bonding to the upper and back surfaces
of transmitting transducer with conductive silver epoxy. The
whole HSEUST was fixed to the distal of a 2.5 mm diameter
metal catheter with cc glue. The final fabricated HSEUST
was as shown as Fig.7.

Ill. CHARACTERIZATION OF TRANSDUCER

To compare, a conventional 20 MHz endoscopic transducer
(EUST) without micro pre-amplifier was produced. The
contrasting transducer was made of the same material as
HSEUST, in addition to its active layer using bulk PZT-5H
ceramic, but it is 3 mm x 1.50 mm x 0.8 mm in size, which
is same as the overall size of HSEUST. No pre-amplifier was
connected to the EUST.

A DPR500 (pulse amplitude: 90 V, gain: 0 dB, filter:
5~300 MHz, RPF: 200 Hz, JSR Ultrasonics, USA) was
used as the pulse-receiver to measure the center frequency,
-6 dB bandwidth and pulse-echo amplitude of the fabri-
cated HSEUST. The pulse-echo response was measured by
recording the reflection from a quart polyethylene plastics
flat placed at 5 mm in front of the transducer. The measured
center frequency is 20.33 MHz for HSEUST and 20.97 MHz
for EUST, respectively. They are almost the same in center
frequency. As shown in Fig.9, the —6 dB bandwidth is 47.03%
for HSEUST and 42.19% for EUST, respectively. Therefore,
the design of HSEUST does not affect the bandwidth of
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FIGURE 8. The pulse-echo waveforms of fabricated HSEUST and
contrasting EUST.
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FIGURE 9. The pulse-echo frequency spectrums of fabricated HSEUST and
contrasting EUST.

transducer, but has some improvements. And in terms of the
pulse half-width, it is 77.6 ns for HSEUST while 99.2 ns for
EUST, just as Fig.8 and Fig.9 show. Because the ultrasound
imaging resolution is directly related to the pulse width, the
HSEUST can effectively improve the resolution by more
than 20%. Especially, for the echo intensity, the HSEUST
amplitude was measured as 3.44 V with 50 © coupling
impedance setting, while it is only 0.7 V for EUST. As a
result, the HSEUST increased the detection signal by about
five times.

To find out how much contribution came from the
HSEUST structure and how much from the amplifier, another
set of comparative experiments with the same structure of
HSEUST, just one with the amplifier, the other did not. The
test echo results are shown in Fig.10. From the figure it
can be found that without the amplifier, the peak-to-peak of
HSEUST is only 0.51 V, while the HSEUST with ampli-
fier has 3.44 V, which is almost 7 times the HSEUST
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FIGURE 10. The pulse-echo waveforms of HSEUST(with amplifier) and
contrasting HSEUST(without amplifier).
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FIGURE 11. The transducer transmitting testing system.

without amplifier. In addition, HSEUST without an amplifier
has a lower peak-to-peak than the traditional EUST of the
same volume, which is 0.7 V. Furthermore, the noise of
amplifier is very small and does not affect the waveform
and spectrum. Therefore, it can be considered that most of
these improvements were due to the integration of the micro
amplifier.

The insertion loss IL is the loss of signal power resulting
from the insertion of a device in a transmission line, which is
defined as the ratio (in dB) of the output power of the trans-
ducer to the input power delivered by the electrical source,
just as shown in Eq.(1). In our case, the insertion loss of
HSEUST and EUST was —26.19 dB and —39.97 dB, respec-
tively. This means that HSEUST can decrease the insertion
loss by 13.78 dB.

Paut) —20 ]g( Vout v/Rin
Piy Vinv/ Rour

The signal-to-noise ratio (SNR) compares the level of
the desired signal to the level of background noise. SNR
is defined as the ratio of signal power to the noise power,
often expressed in decibels. According to Eq.(2), the SNR
of HSEUST and EUST was 11.39 dB and 23.99 dB, respec-
tively. This means that HSEUST can increase SNR by
12.60 dB, which will be helpful to improve imaging quality.
V2

2

IL = 101g(

) ey

P.: -
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TABLE 1. Summary of performance characterization.

EUST HSEUST
Center Frequency 20.97 MHz 20.33 MHz
Bandwidth @-6 dB 42.19% 47.03%
Echo Peak 0.70 V 344V
Pulse width@-6 dB 99.2 ns 77.6 ns
Pulse width@-6 dB -39.97 ns -26.19 ns
Receiving sensitivity 7.8 mV/V 382mV/V
Transmitting sensitivity 17.89 KPa/V 17.03 Kpa/V

. = DC
""""" Power
» Rottor
HSEUST Target
Platform

FIGURE 12. The schematic of the imaging experimental system.

Further, the receiving sensitivity of HSEUST and EUST,
which is defined as the ratio of the peak amplitude of the
echo signal to the excitation pulse, was evaluated. They are
38.2 mV/V and 7.8 mV/V, respectively. So the HSEUST
receiving sensitivity is about 5 times than EUST.

To characterize the transmitting sensitivity of the
fabricated HSEUST, a testing system was set up just as
Fig.11 showed. In transmitting sensitivity testing, a PVDF
needle hydrophone with a diameter of 0.2 mm (Precision
Acoustics, UK) was used as the detector. The tested trans-
ducer was placed 5 mm away from the hydrophone. The
measured transducer was driven by a negative voltage pulse
of 5 ns pulse width, 200 Hz repeat frequency, and 90 V peak
amplitude generated by a DPR 500. The detected signals of
hydrophone were averaged 16 times and recorded by an oscil-
loscope (DPO5034, Tektronix) for offline analysis. The final
detected amplitude of HSEUST and EUST was 93.47 mV
and 98.19 mV, respectively. According to the sensitivity of
hydrophone at 20 MHz is 61 nV/Pa, the final transmitting
sensitivity of HSEUST and EUST was 17.03 Kpa/V and
17.89 KPa/V, respectively. Thus, although the working area
of HSEUST is about half smaller of EUST, the transmitting
sensitivity of the two is not much different.

The measured performance characterizations of HSEUST
and EUST was listed in Tab.1.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Images of an in-vitro phantom (stomachs of swine) were
acquired to validate the performance of the HSEUST devel-
oped in this work. Fig.12 illustrates the overall architecture
of the imaging experiment system. In the transmitting part,
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FIGURE 13. The images of swine stomach phantom detected by: (a) EUST;
(b) HSEUST.

a pulser (DPR500, pulse amplitude: 90 V, RPF: 200 Hz,
Energy per pulse: 2.5 uJ, JSR Ultrasonics, USA) was used
to stimulate the transmitting transducer. In the receiving part,
aDC power (5V, E3631A, Keysight Technologies, USA) sup-
ply the working power of the micro-amplifier-circle, the Van-
tage System (Vantage 64 LE HF Verasonics, America) was
used as the ultrasound system platform on which we can
program ultrasound information including signal receiving
and processing.

To form an A-line, the acoustic waves emitted from the
transmitter part of HSEUST were detected by the receiving
part of HSEUST, placed at the tip of the catheter. Then,
the echo electrical signals were firstly amplified by the micro
amplifier of HSEUST, then transmitted and attenuated by the
2.4-m long cable, and entered the Vantage System. The signal
was amplified using a low noise amplifier (LNA, Gain 12 dB,
High-pass frequency 50 kHz) and digitized via an 80 MSPS
data acquisition (DAQ) card in the Vantage system, and
finally stored into a personal computer (PC). Cross-sectional
image (B-scan) data were recorded by rotating the catheter
with respect to its central axis via a precious DC-micromotors
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(RE22, Maxon Motor AG, Switzerland), which can reach
1200 rounds per minute under PC control. A photoelectric
encoder (E6A2, OMRON Corporation, Japan) is used to
record the location of each A-line data and to reconstruct the
image. Specifically, the photoelectric encoder gives the pulse
generator a trigger signal to generate an excitation pulse for
the transducer, and control the motor in the process of rotating
a circle to produce 512 sets of echo data for the construction
of an image. The acquired signals were band-pass filtered
(bandwidth: 5-50 MHz), followed by Hilbert transform, and
then converted to the polar coordinates for display (signal
processing performed with MATLAB).

The obtained phantom images were shown in Fig.13.
A dynamic range of 60 dB was used for both images, and
the depth of the image display is 30 mm, which is more than
twice the imaging depth of the current commercial 20 MHz
ultrasound endoscope system. As shown in Fig.10, it is obvi-
ous that the image acquired by the HSEUST looks much clear
and sharper than that captured by the conventional EUST
transducer. The 5 layers of swine stomach wall can be clearly
visualized from the image detected by HSEUST, while only
2 layer boundary was showed in the image detected by EUST.
Specifically, the imaging resolution of the EUST transducer
was found to be 151 um, while for the HSEUST they were
122 pm, respectively. The penetration depth of the EUST
is about 15 mm, while although limited by the size of the
phantom, the penetration depth of fabricated HSEUST was
around 30 mm, which can be deeper and would be sufficient
for diagnosis.

V. CONCLUSION

A high sensitivity endoscopic ultrasound transducer with
an integrated miniature amplifier was studied in this paper,
where the amplifier can effectively enhance the received
ultrasound signal. A prototype of HSEUST with a center
frequency of 20 MHz was designed and fabricated. According
to the tests and experimental imaging results, HSEUST is
about 4 times more in sensitive, 20% more in resolution
than conventional endoscopic transducer. With high sensitiv-
ity, HSEUST holds the potential for visualization of deeper
tissue in the body with high resolution, which will greatly
expand the application capabilities and fields of endoscope
ultrasound imaging. And the signal to noise ratio and image
quality of the image has also been significantly improved
by HSEUST, which will be very useful for the weak signal
processing of high frequency ultrasound imaging.
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