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ABSTRACT In view of uncertainties caused by large-scale wind power integration, energy storage sys-
tem (ESS) is being considered to stabilize the fluctuation of wind power. In this paper, the influence of ESS
on power system operation with wind power is analyzed in detail, and an economic dispatch (ED) model
with wind power and ESS is proposed based on scenario set. First, the initial scenario set of wind power
output is generated by the Monte Carlo sampling. To overcome the shortcoming of heavy dependence on
the initial clustering centers, which usually leads to unstable clustering results, the k-means clustering is
improved by combining self-organizing feature map neural network and particle swarm optimization (PSO).
Then, the initial scenario set is reduced based on this improved k-means clustering method. Finally, an
ED model solved by PSO is used to minimize the comprehensive power generation cost based on the reduced
scenario set. Taking IEEE-39 bus system as an example, the scenario-set-based ED model is implemented
in this paper. The simulation results show that, when solving the ED problem with wind power and ESS,
the proposed method considering scenario reduction makes not only the clustering index better, but also the

results of ED more reasonable.

INDEX TERMS Economic dispatch, energy storage system, wind power, clustering, scenario set,
self-organizing feature map neural network, particle swarm optimization.

NOMENCLATURE aj/bj/c;  Coal consumption coefficient
. . . on ;off s . . .
The main symbols used are defined below. Others are defined "/ T; Minimum operating time/downtime of
as required in the text. generator j
A. INDICES Y}C"ld Cold-start time of generator j
) Kup/Kan  Cost coefficient of starting upward/downward
j Index of thermal power units from 1 to n spinning reserve
¢ Index of time p?rlOdS from 1 to T Kmi Cost coefficient of operation and maintenance
s Index of scenarios from1to S of battery i
i Index of batteries from 1 to n, Cyi Investment cost of the complete life cycle of
! Index of transmission lines from 1 to L battery i
Kis Cost coefficient of load shedding
B. PARAMETERS K Cost coefficient of wind power curtailment
At Time interval Py Installed capacity of the wind farm
T¢o One hour Pl /P%vI Minimum/maximum power flow of line /
Nei/Ndi Charging/discharging efficiency of battery i
The associate editor coordinating the review of this manuscript and R; Total number of cycles of battery i
approving it for publication was Pierluigi Siano Sovi/ S(I)vcli Minimum/maximum SOC of battery i
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o], Self-discharge rate of battery i during a single

period

En; Rated capacity of battery i
s Probability of scenario s

C. VARIABLES

Uj,t
Mit,s

Pi,t,s

Pjts

on off
X1 /X
Ew,t,s
pac

w,1,§

PP

W,t,8

f
PW,l‘
P

ch,t,s

Pup,t,s/Pdn,t,s

Psc,t,s/Psd,t,s

Pload,t
m M
P/ Py

N

Tw,t

APY/ AP
Pl,t,s
P/ Pei

m M
Pdi,t/Pdi,t

109106

State of generator j at period ¢

State of battery i at period ¢ in scenario s,
1 represents the state of charge,

—1 represents the state of discharge

Flag of whether the battery i completes a
single charge/discharge at period ¢ in
scenario s

Active power output of generator j at
period ¢ in scenario s

Continuous operating time/downtime of
generator j at period ¢

Wind power forecast error at period ¢

in scenario s

Actual output of wind power at period ¢
in scenario s

Planned output of wind power at period ¢
in scenario s

Wind power forecasting value at period ¢
Charging/discharging power of battery i
at period ¢ in scenario s, it is positive
when charging, negative when discharging
Expected power of load shedding at
period ¢ in scenario s

Expected power of wind power
curtailment at period ¢ in scenario s
Wind power output that the system can
absorb when the thermal power units
provide all upward/downward spinning
reserve at period ¢ in scenario s

Wind power output that the system can
absorb when the energy storage reaches
the charging/discharging power limit at
period ¢ in scenario s

Active load of system at period ¢
Minimum/maximum active power output
of generator j at period ¢

Spinning reserve for load fluctuation at
period ¢

Spinning reserve for wind power
fluctuation at period ¢

Maximum downward/upward ramp rate
of generator j at period ¢

Power flow of line [ at period ¢ in
scenario s

Minimum/maximum charging power of
battery i at period ¢

Minimum/maximum discharging power
of battery i at period ¢

I. INTRODUCTION

In recent years, with the depletion of traditional fossil energy
resources and the aggravation of environmental pollution,
renewable energy has developed rapidly with its advantages
of cleanness and freedom from pollution. Among them, wind
power has the largest development scale and the most mature
technology. In China, the wind power industry has developed
rapidly, the installed capacity of wind turbines continues to
increase, and the development costs are gradually decreasing.
However, with more and more wind power connected to the
power grid, the secure and stable operation of the power grid
has also been greatly impacted, and many wind farms are
experiencing power curtailment.

With more and more wind power connected to the power
grid, its impact on the secure and stable operation of the sys-
tem cannot be ignored. In areas with abundant wind resources
or areas with large-scale wind power integration, a certain
scale of energy storage system (ESS) can be allocated to
participate in economic dispatch (ED), which can stabilize
the fluctuation of wind power output and reduce the wind
power curtailment. In recent years, the development of energy
storage technology has matured, and the costs of energy stor-
age devices are gradually decreasing. Thus, the application
of ESS to improve the optimal operation of power system
with wind power will be a hot spot in the future. In [1],
a stochastic unit commitment (SUC) model with ESS was
presented to evaluate the short-term profitability of conven-
tional generators and ESS under different levels of renewable
penetrations. In [2], a thermal-storage joint dispatch model
was built to optimize the operation of thermal power units
after large-scale wind power integration, but the participation
of wind power in the dispatch was ignored. Reference [3] pre-
sented cost-based formulation to determine the optimal size
of the battery energy storage in the operation management
of a microgrid. The role of energy storage in reducing oper-
ating costs and enhancing system flexibility was explored
in [4]. Reference [5] presented a bulk energy storage dispatch
model. This paper pointed out that higher wind penetration
profits bulk storage ventures, especially for larger capacities.
Reference [6] developed a chance-constrained ED model for
a wind-thermal-ESS system. In [7], a battery energy storage
system (BESS) was used to solve the problem of wind power
curtailment caused by large-scale wind power integration.
However, [6] and [7] did not conduct a detailed analysis of
the influence of the capacity and location of the ESS on the
results of ED. Reference [8] presented a two-step framework
to evaluate the potential benefits of battery storage in power
systems with renewable generation. The proposed flexible
operating range method was able to take advantage of the
flexibility of energy storage to provide higher cost savings.

ED with wind power mainly depends on the accuracy
of wind power forecasting, whereas the accuracy of wind
power forecasting is far lower than that of load forecasting.
Therefore, describing the wind power output and the forecast
error of wind power forecasting is the focus of the ED with
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wind power. Considering the stochasticity and fluctuation of
wind power, it is of great significance to explore an effective
ED model with wind power. At present, there are many meth-
ods to solve this problem. The main methods are as follows:

A. INCREASE SPINNING RESERVE

References [9] and [10] dealt with the uncertainty of wind
power forecasting by reserving a certain capacity of spin-
ning reserve for wind power. This method is simple and
reliable, but the forecast error of wind power is large, so it
is difficult to determine the capacity of spinning reserve. The
absolute security of the system can be guaranteed only by
reserving the spinning reserve of the capacity of wind power.
However, the results are too conservative, and the economy of
ED becomes worse.

B. ROBUST OPTIMIZATION METHOD

In [11], two new robust unit commitment models
were proposed: expanded robust unit commitment and
risk-constrained robust unit commitment. According to the
uncertainty of wind power and price-based demand response,
a robust dispatch method was proposed in [12]. In [13],
a double-level robust interval unit commitment model was
established for joint operation of a wind-storage system.
In the ED with wind power, robust optimization considers
the extreme scenarios of wind power output. Although this
method can ensure the security of the system, it makes the
results of ED more conservative.

C. STOCHASTIC OPTIMIZATION METHOD BASED ON
CHANCE CONSTRAINED PROGRAMMING

Reference [14] developed an adjustable chance-constrained
approach to optimally allocate flexible ramping capacity
reserves. In [15], a model based on chance-constrained-goal
programming was proposed to optimize the risk-adjustable
unit commitment problem. Reference [16] proposed
a day-ahead scheduling model with wind power and
energy storage based on chance-constrained programming.
Based on the theory of chance-constrained programming,
a determination method of optimal zonal reserve demand
using the minimum confidence interval was proposed in [17].
For chance-constrained programming, some constraints are
allowed with random variables that are not tenable during
optimization, but the probability of the constraints to be
tenable should meet a certain confidence level. Although this
method can deal with the uncertainty of wind power, for a
large-scale power system, it is difficult to derive an analytical
chance-constrained model, and it is difficult to determine the
confidence level objectively.

D. STOCHASTIC OPTIMIZATION METHOD BASED ON
SCENARIO SET

The stochastic optimization method based on a scenario
set consists of two stages: scenario generation and scenario
reduction. The scenario generation of wind power is a process
of dividing the probability distribution model of wind power
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into a large number of time series. In the ED model with
wind power, a large number of scenarios will increase the
computational complexity and reduce the calculation effi-
ciency. Moreover, the initial scenario set usually contains
some extreme scenarios with low probability. Considering
these extreme scenarios during optimization will lead to
conservative results. Therefore, it is necessary to merge and
reduce the initial scenario set according to certain criteria
on the premise of ensuring the accuracy of the results. This
process is called scenario reduction.

Each scenario in the scenario set represents a set of possible
wind power output time series. Therefore, the scenario set
of wind power is essentially composed of a large number
of time series that can cover all possible wind power output.
These time series can be obtained according to the probability
distribution of wind power or the point forecast value of wind
power and the probability distribution of the forecast error.
The ED problem with wind power based on a scenario set
is usually modeled as a two-stage stochastic programming
problem. In the first stage, the state of the thermal power
units should be determined according to the point forecast
value of wind power and the related constraints of the model.
The second stage is to readjust the output of thermal power
units according to the possible wind power output in each
scenario. At the second stage, load shedding and wind power
curtailment may occur. The ultimate goal is to minimize the
weighted average value of the power generation cost in each
scenario [18].

Compared with the former methods, the method based on
scenario set has obvious advantages:

1) This method can consider the probability of various

scenarios of wind power output and their impact on ED.
From the statistical point of view, this method can also
deal more objectively with the economic and security
problems caused by the uncertainty of wind power
forecasting [19].

2) Compared with the robust optimization method, this
method generally consists of two stages: scenario gen-
eration and scenario reduction. To avoid the results
of ED being too conservative, some extreme scenar-
ios with low probability are merged and reduced by
scenario reduction technology, so the power generation
cost is reduced.

3) The probability distribution model of wind speed
or wind power output is usually expressed in the
form of calculus. In most cases, the operation plan-
ning of power grid cannot directly use it, such as in
a SUC problem. Therefore, it is necessary to discretize
the probability distribution model of wind power, and
this method is an effective way to do so.

At present, there are many research results for the
stochastic optimization method based on a scenario set.
Reference [18] proposed a scenario representation method
referred to as scenario mapping technology, which can
compact a large number of scenarios while preserving the
uncertainty and variability features of wind power as much
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as possible. Compared with traditional scenario reduction
methods (such as k-means clustering), the proposed method
makes a significant improvement in cost efficiency and cal-
culation efficiency when solving the SUC problem. However,
this method needs to determine two parameters at the same
time when solving. To obtain the most reasonable and opti-
mal results, this method will be more difficult and complex
when solving the model. In [20], Latin hypercube sampling
(LHS) and Cholesky decomposition was used to generate the
scenario set, and a new clustering method was proposed to
reduce the number of scenarios. However, the representative
scenarios are selected according to the system security and
operation cost of the system and lack the relationship between
the final selected scenarios and the initial scenario set.

Backward reduction (BR) and fast forward selection algo-
rithm (FFSA) are common scenario reduction methods. Both
of them continuously merge and reduce the initial scenario
set by calculating the distance between scenarios. In [1],
the scenario set was generated by Monte Carlo sampling
(MCS), and the BR method was used to solve the SUC
problem. In [21], an ED model considering the uncertainty
of the load and wind power was proposed. MCS and roulette
wheel mechanism were used to generate the scenario set, and
the BR method was used to reduce the scenario set. In [22],
a two-stage optimization model was proposed, in which the
reduced scenario set by BR method and the extreme output
scenarios are taken as the input, the extreme output sce-
narios were identified according to the results of the first
stage, but this method was time-consuming. In [23] and [24],
FFSA was preferred to reduce the initial scenario set.
In [25], the scenarios are generated using MCS and con-
structed Rayleigh probability distribution function. After-
ward, the desired number of scenarios were obtained
by FFSA. In [26], wind and photovoltaic generation uncer-
tainties were modeled using MCS, and FFSA was applied
to reduce the initial scenario set. Reference [27] used MCS
to generate a photovoltaic power generation scenario set and
used the BR method to reduce the initial scenario set.

Scenario tree reduction method is to reduce the scenarios
on the basis of the BR method. In [28], the temporal character-
istic of the day-ahead wind power forecast error was modeled
as scenario tree, but the method based on scenario tree had
high computational complexity and was prone to ““dimension
disaster’” as the number of scenarios increased.

K-means clustering and k-medoids clustering are both
common scenario clustering methods. k-means clustering
takes the mean value of the samples in each cluster as the
clustering center, k-medoids clustering takes a real sample in
each cluster as the clustering center. In [19], LHS was used to
generate the initial scenario set of the wind power output, and
an improved k-medoids clustering based on particle swarm
optimization (PSO) was used to reduce the scenario set,
which effectively improved the k-medoids clustering, which
had the shortcoming of unstable clustering results. In [29],
an improved bird swarm algorithm was used to optimize the
clustering centers of k-means clustering. Then, the optimized
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clustering centers were used in k-means clustering. In [30],
the clustering method k-means clustering based on numerical
weather prediction (K-means-NWP) was adopted to describe
the uncertainty of wind power output. Reference [31] pro-
posed an improved k-means clustering method to reduce the
annual scenario set in the planning of distributed genera-
tion. In [32], fuzzy c-mean-clustering comprehensive quality
(FCM-CCQ) clustering method was used to describe typical
output scenarios of wind and solar power. In [33], LHS was
used to generate a scenario set for photovoltaic power gen-
eration. The improved k-means clustering based on Huffman
tree was used to cluster the scenario set of photovoltaic power
generation, so as to avoid the influence of the improper initial
clustering centers that lead to the clustering was unable to
effectively converge.

According to the above analysis, classical scenario reduc-
tion methods have some significant shortcomings. The
BR method and FFSA are simple to calculate, but their
computational complexity is relatively high, and the effect
of merging extreme scenarios with low probability are not
ideal. Based on the scenario tree method, when the number
of scenarios increases, the method is prone to ‘“dimension
disaster’’. K-means clustering and k-medoids clustering are
common scenario clustering methods, which are simple, fast,
and widely used in the field of scenario reduction, but its
clustering effect depends on the initial clustering centers.
If the initial clustering centers are not determined properly,
then the clustering effect will be poor [19]. The ED problem
is solved based on the reduced scenario set. The effective-
ness of the scenario reduction method determines the ratio-
nality of the results of ED. Therefore, it is very important
to choose an appropriate and effective scenario reduction
method.

In view of the uncertainty risk of wind power, this paper
applies the ESS to stabilize the fluctuation of wind power
output and weaken the wind power curtailment and load
shedding in ED. In order to explore the influence of ESS on
the optimal operation of power system with wind power, this
paper establishes a wind-thermal-ESS joint dispatch model
based on a scenario set. An improved k-means clustering
method based on self-organizing feature map (SOM) neu-
ral network and PSO is proposed for scenario reduction.
SOM neural network can adaptively change the network
parameters and structure to realize unsupervised learning,
which has a wide range of applications in pattern recognition,
clustering, and other fields [34]. The SOM neural network is
used to cluster the initial scenario set, which improves the
dependence of k-means clustering on the initial clustering
centers. After obtaining the clustering centers, PSO is used
in the further optimization to improve the unstable clustering
effect by k-means clustering. The scenario set of wind power
output obtained by the proposed method is not only repre-
sentative, but also able to maintain the characteristics of the
initial scenario set as well as the appropriate scale. Therefore,
the results of ED of the wind-thermal-ESS system are more
reasonable.
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Competition
layer

Input layer

FIGURE 1. Structural diagram of SOM neural network.

Il. ECONOMIC DISPATCH MODEL

A. PARTICLE SWARM OPTIMIZATION

The PSO algorithm was originally developed by studying
the foraging behavior of birds. PSO is one of the swarm
intelligence optimization algorithms. When the PSO algo-
rithm is used to solve the optimization problem, each feasible
solution is regarded as a “particle” in the search space, and
all particles constitute the particle swarm. Each particle has a
position, velocity, fitness function value, and other attributes.
In the iterative process, particles update their position and
velocity through two extreme values: the individual extreme
value of the particles and the global extreme value of the
population [35].

The individual extreme value of a particle is the best
position that particle i experiences when it iterates from the
initial state to the k-th generation, that is, pbestik . At this
time, this particle is called the individual optimal particle. The
global extreme value of the population is the best position
that the entire population experiences when it iterates to the
k-th generation, that is, gbestk . At this time, this particle is
called the global optimal particle.

The iteration formulas of the PSO algorithm are as follows:

vi‘“ —a)v +cir (pbest —X; )—i—czrz (gbest — X; ) (1)
xl“_] = X; —i—vi."H 2)

where vf.‘ is the velocity vector of particle i at the k-th itera-
tion, w is the inertia coefficient, ¢; and ¢ are acceleration
coefficients, r; and r, are random numbers with uniform
distribution in [0,1], and xf is the position vector of particle i
at the k-th iteration.

B. SOM NEURAL NETWORK

The SOM neural network can change the parameters and
structure of the network adaptively. Its self-organizing ability
is realized by a special network structure. As shown in Fig. 1,
the network is divided into an input layer and competition
layer. In the competition layer, each neuron has a horizontal
connection, and each connection is given a weight. According
to the Kohonen learning rules, only one neuron is activated in
each competition. The activated neuron is called the winning
neuron. The weights of the neurons in the neighborhood of
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the winning neuron will be adjusted to reflect the competition
results, and the states of other neurons will be inhibited [34].
Applying the SOM neural network for clustering, when a
sample is input, the neurons representing the cluster in the
competition layer will produce the most intense response so
that the input will be automatically clustered.

C. GENERATION OF SCENARIO SET

The actual output of wind power can be regarded as the sum
of the forecast value and the forecast error of the wind power.
It is assumed that the forecast error of the wind power follows
the normal distribution with the mean value of zero and the
standard deviation of ¢y, [36], as follows:

PY, =Py, +ewis A3)
Cwi = PL, /5 + Pyt/50 4

In this paper, first, the scenario set of the wind power
forecast error is generated by MCS. Each scenario is added
to the point forecast value of the wind power, and then the
initial scenario set of the wind power is obtained. There are a
large number of scenarios in the initial scenario set, so it will
undoubtedly take a significant amount of time to perform a
detailed analysis and calculation of each scenario. Moreover,
the initial scenario set usually contains a certain number of
extreme scenarios with very low probability. If these extreme
scenarios are considered in the ED problem, the final results
will be conservative. Therefore, it is very important to obtain
a representative, preserving the features of the initial sce-
nario set, and a small-scale scenario set through an appro-
priate scenario reduction method. In this paper, an improved
k-means clustering based on SOM neural network and
PSO is used to merge and reduce the initial scenario set of
wind power. The specific steps are as follows, and the flow
chart is shown in Fig. 2.

Stepl: Generate the initial scenario set by MCS.

Step2: Cluster the scenario set with SOM neural network.

Step3: Take the reduced scenario set as the initial particle
of PSO.

Step4: Judgment: whether the times of clustering have
reached the population size of PSO?

Step5: If the times of clustering have reached the popula-
tion size of PSO, each initial particle is used as the pbest,
one of initial particles is selected randomly as the gbest.
Otherwise, return to Step 2.

Step6: Calculate the Dunn index of each particle as the
fitness function value in optimization.

Step7: Update the position vector and the velocity vector
of each particle.

Step8: Use the updated position vector as the initial clus-
tering centers, recluster the initial scenario set with k-means
clustering, and the new clustering centers are obtained.

Step9: Update the fitness function value of new particle.

Step10: Update the pbest of each particle and the gbest of
the population.
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Generate the initial scenario set by MCS ‘

v

Cluster the scenario set with SOM neural network ‘

v

Take the reduced scenario set as the initial particle of PSO ‘

mes of clustering < Population size

Each initial particle is used as pbest, one of initial particles
is selected randomly as ghbest

— ]

Calculate the Dunn index of each particle as fitness function
value

Update the position and velocity vector of each particle }4—

v

Use the updated position vector as the initial clustering
centers, recluster the initial scenario set with k-means
clustering

Update the fitness function value of new particle

Update the pbest of each particle and the gbest of the
population

Reach maximum iterations?

l Output the gbest, which is the final scenario set ‘

End

FIGURE 2. Flowchart of the proposed scenario reduction method.

Step11: Judgment: whether the maximum number of iter-
ations has been reached?

Step12: If the maximum number of iterations has been
reached, output the gbest, which is the final scenario set.
Otherwise, return to Step 7.

Note: After updating the position vector and velocity
vector of particles, new particles are not obtained directly.
Instead, the updated position vector is used as the initial
clustering center, and k-means clustering is used to reclus-
ter the scenarios in the initial scenario set to obtain new
clustering centers. At this time, new particles are obtained.
In the process of PSO, the position vector of the particle is
composed of the clustering centers of k-means clustering.
The velocity vector has the same dimension as the position
vector, which is an adjustment of the cluster centers. The
fitness function is the Dunn index calculated by the current
clustering centers.

In this paper, the Dunn index is selected as the clustering
evaluation index. The Dunn index is defined as the ratio
of the minimum distance between the scenarios of any two
clusters to the maximum distance between the scenarios in
any cluster. The larger the ratio, the greater the distance
between the clusters and the smaller the distance within a
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cluster, the better the clustering effect [37]. The calculation
formula is as follows:

o min_ . min {Jlx -5}
Vx; e,

max  max { ||xl- — xjH}
0<m=S§ Vx;,x;€Qp
where in this paper, the number of scenarios in the final wind
power scenario set is S, that is, the number of clusters is S.
2, 18 the m-th cluster, and x; is the scenario in £2,,,.

D. OBJECTIVE FUNCTION OF MODEL

Based on the reduced scenario set, an ED model with the
objective of minimizing the comprehensive power generation
cost is established. The comprehensive power generation cost
consists of the operating cost of thermal power and the uncer-
tainty risk cost of wind power. The objective function of the
model is

T n
fam=min Y 1D fiire G, 0) | +fuina 1) | (6)

=1 j=1

where fyum is the comprehensive power generation cost for
24 hours a day, ffire (7, t) is the operating cost of generator j
at period ¢, and fying () is the uncertainty risk cost of wind
power at period ?.

1) OPERATING COST OF THERMAL POWER

The operating cost of thermal power mainly includes the fuel
cost, startup cost, and shutdown cost. The fuel cost is usually
expressed as a second-order polynomial of the active output
of thermal power units. The startup cost can be approximately
divided into cold start and hot start according to the down-
time [38]. The shutdown cost is generally a fixed value that
is very small compared with the startup cost and is usually
ignored [35]. Therefore, the formulas are as follows:

fiire G 1) = wj iftuel G ) + wje (L —uji—1) Sje (D)

N
fruer Gy = 3 (@P2y 4 biPras+6)ns )
s=1
}(j()ff < TjCOld + TjOff, Shj,t

S' =
)5t off cold off .
X2" > T + 177, Scjg

&)
where fruel (7, ) is the fuel cost of generator j at period z,
S+ is the startup cost of generator j at period ¢, Sh; ;, and Sc;
are the hot start and cold start cost of generator j at period 7,
respectively.

2) UNCERTAINTY RISK COST OF WIND POWER

In this paper, reasonable wind power curtailment and load
shedding are allowed to reduce the conservativeness of the
results of ED. The uncertainty risk cost of wind power is
essentially caused by the inconsistency between the actual
output and the planned output of wind power. The planned
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FIGURE 3. The PDF of wind power output after discretization.
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FIGURE 4. The PDF of wind power output when calculating.

output of wind power is a decision variable. Because this
paper studies the day-ahead economic dispatch, the actual
output of wind power is replaced by the sum of the forecast
value and the forecast error of the wind power. Note that each
scenario generated by MCS is a set of 24-dimensional time
series, so the probability of wind power output at each time
period is the same in a scenario. Before scenario reduction,
to describe the fluctuation of wind power output, at a cer-
tain time period, the probability density function (PDF) of
the wind power output is divided into numerous intervals,
as shown in Fig. 3. After scenario reduction, the possible
output scenarios of wind power at this time period are finally
reduced to S. According to the actual situation, when calculat-
ing the uncertainty risk cost of wind power considering ESS,
the scenarios of wind power output at a certain time period
are divided into six situations, as shown in Fig. 4.

When the actual output of the wind power is less than
the planned output, if the deviation (difference between the
planned output and actual output of wind power) is less than
the upward spinning reserve capacity of the system, it is
necessary to start the upward spinning reserve. Otherwise,
if there is an ESS, the ESS shall be discharging within the
allowable discharging range. If the deviation still exceeds
the upward spinning reserve capacity of the system and the
discharging power of the ESS, it is necessary to cut off part
of the load to maintain the active power balance. Similarly,
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when the actual output of the wind power is greater than
the planned output, if the deviation (difference between the
actual output and planned output of wind power) is less than
the downward spinning reserve capacity of the system, it is
necessary to start the downward spinning reserve. Otherwise,
if there is an ESS, the ESS shall be charging within the
allowable charging range. If the deviation still exceeds the
downward spinning reserve capacity of the system and
the charging power of the ESS, then it needs to abandon part
of the wind power to maintain the active power balance.

The uncertainty risk cost of wind power includes the cost of
starting Spinning reserve freserve (1), the cost of ESS fitorage (1),
and the penalty cost fpenaity (£). The ESS configured in this
paper is a BESS. Compared with thermal power, wind power,
and other energy sources, currently, the investment cost of
energy storage devices is still relatively high, and their oper-
ation life is relatively short compared with the above energy
sources. In a long-term wind-thermal system, the introduction
of a BESS may require multiple replacements of the BESS.
Therefore, when studying the ED with wind power and BESS,
in addition to the operation and maintenance cost of the
BESS, the investment cost of BESS in each scheduling cycle
must also be considered. The calculation of the investment
cost of BESS is referred to [39]. Since the wind power output
has been discretized before, it is unnecessary to carry out
a complex integral operation. The calculation formulas for
uncertainty risk cost are as follows:

fwind () zfreserve () +f§torage () +fpenalty ) (10)
freserve () =fup () +fdn () (11)

S
ZKUP (ng,t,s - Pup,t,s) * Ny,
s=1

pac P
fup (1) = s w.t,s < Lup,t,s 12)

ZKUP (ng,t,s - ngc,t,s) s,

s=1

ac P
wis <P

W,t,8

Pup,t,s = P

S
ZKdn (Pdn,t,s - Pa,,";) * Ny,
s=1
pac
fo =1 ¢ WS
ZKdn (ng?,t,s - P&,z,s) * Ns,
s=1

P ac
Pw,[,s = Pw,t,s =< Pdn,t,s

fstorage () = fmain (t) + frix () (14)

> Pdn,t,s (13)

ac
Pdn,t,s < PW,;’S =< Psc,t,s

MHit,s = 17 (15)
MHit,s = _11 Psd,t,s =< P

wis < Pupis

N ny,
fmain ) = Z <Z K - ,ui,t,sti,t,s : At) *Ms (16)

s=1 \i=l1
S ny,
it Cf'
fix =3 (Z p’T> g (17)
s=1 \i=1 !
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fpenalty (t) =fls () +fwc () (18)

acC
W, N
fis ()= § Kis (Psais—Piy 1 5) s, O<Py, s <Psdus
s=1

(19)

Swe (t)—Zch V\?; 5 Psc,t,s) * s Psc,t,s <P3i;,s <Py
s=1

(20)

where fy, () and fy, (¢) are the cost of the starting upward
and downward spinning reserve, respectively; fmain (f) is the
operation and maintenance cost of the BESS at period t;
fiix (¢) is the investment cost at period ¢; fis () and fy (¢) are
the expected cost of load shedding and wind power curtail-
ment, respectively.

E. CONSTRAINTS OF MODEL
1) Active power balance

b
- Z Pit,s = Pload,t = Pis,t.s

n

Y
z :MJ'JP'J,S—’_(Pw,t,s_PWC,t,s)
j= i=1

(21
2) Power limitation
M
PjtfP,s_Pjt o)
0<P,, <
3) Reserve
n
> Ui PY + P > Proads + ris + 1w (23)
j=1

where ry, ; is the spinning reserve added owing to the wind
power forecast error at period #, which is related to the
maximum wind power forecast error in each time period.

4) Ramp rate

AP - Teo < Piis—Piuo1s SAPY - Tog  (24)

5) Minimum up/down time

XOI’] > TOl’l
2
on;f > Toft ( 5)
6) Branch power flow
PP <P <P (26)

The power flow model used in this paper is a DC power flow
model, and the treatment of the branch power flow constraint
is referred to [40].

7) State of charge (SOC)

SM. < Soci (t,5) < SN 27)
Soci (t,8) = (1 —07) Soci (t — 1,5) + AE; (¢,5) /Eni (28)

AE; (t, s) = {nci . Mi,t,sti,t,s - At, Mit,s = 1

(29)
Wit sPoiss - At/ndi,  Mips = —1
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FIGURE 5. Topology chart of IEEE-39 bus system.

where S (¢, s) is the state of charge (SOC) of battery i at
period ¢ in scenario s, and AE; (¢, s) is the increment of the
SOC of battery i at period ¢ in scenario s.

8) Power limitation of battery

{sztfﬂits'Pbits_Plc\;[p Mi,t,szl (30)

Pg,_ﬂzts PbllY_Pdltv Migrs = —1

F. SOLUTION OF MODEL

In this paper, the PSO algorithm is used to solve the
ED problem. The variables to be optimized are the active
output of thermal power units and the planned output of wind
farms. The optimization process is divided into two stages.
First, it is necessary to determine the state of thermal power
units. This scheme is determined according to the forecast
value of the wind power, and meanwhile it also needs to meet
the reserve constraint, ramp constraint, minimum up/down
time constraint, etc. Then, according to the wind power output
in each scenario, the active output of thermal power units
needs to be readjusted. At the same time, the constraints of
the model still need to be satisfied. In general, load shedding
and wind power curtailment will occur during this stage. The
fitness function of PSO is that the weighted average value of
the comprehensive power generation cost in each scenario.
The position vector of each particle is composed of the active
output of the thermal power units and the planned output of
wind farms, and the velocity vector is the adjustment of the
output.

lll. CASE STUDY

Taking IEEE-39 bus system as an example to test the pro-
posed model. A topology chart is shown in Fig. 5. Bus 31 is
the balance node, the wind farm is connected to bus 21,
and the BESS is connected to bus 13. The parameters of
the thermal power units are listed in Table 1, the parameters
of the wind farm are listed in Table 2, and the parameters
of the BESS are listed in Table 3. The load parameters are
from [41], and the branch parameters of the IEEE-39 bus
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TABLE 1. Parameters of thermal power units.

Parameter Gl1 G2 G3 G4 G5 G6 G7 G8 G9 G10
a ($/MW?h)  0.00048  0.00031 0.00211 0.002 0.00398 0.00712 0.00079 0.00413  0.00222 0.00173
b ($/MWh) 16.19 17.26 16.5 16.6 19.7 22.26 27.74 25.92 27.27 27.79
¢ ($/h) 1000 970 680 700 450 370 480 660 665 670
Prax (MW) 455 455 130 130 162 80 85 55 55 55
Prmin (MW) 150 150 20 20 25 20 25 10 10 10
Ton (h) 5 5 2 2 2 2 1 0 0 0
Torr(h) 5 5 2 2 2 2 1 0 0 0
Teowa (h) 4 4 2 2 2 2 2 0 0 0
State (h) 8 8 5 5 6 3 3 -1 -1 -1
Sh ($) 4500 5000 560 550 900 170 260 30 30 30
Sc ($) 9000 10000 1120 1100 1800 340 520 60 60 60
Ramp (MW) 80 80 30 30 40 25 25 20 20 20
TABLE 2. Wind power output of 24 hours a day (p.u.). TABLE 4. Dunn index comparison of several methods.
Penetration Value
Hour P. Hour P Hour P Hour P %) %) k-means  Huffman-k k-PSO SOM-PSO
1 0.54 7 0.84 13 0.38 19 0.79 max 0.285 0.267 0.289 0.295
2 0351 § 074 14 09 20 0.80 25% min 0.233 0.267 0.278 0.283
B .
5 060 11 043 17 090 23 077 max  0.285 0267 0290 0293
6 0.69 12 0.42 18 0.76 24 0.99 35% min 0.233 0.267 0.278 0.283
average 0.264 0.267 0.285 0.287
TABLE 3. Parameters of ESS. max 0.282 0.267 0.288 0.293
45% min 0.232 0.267 0.277 0.281
Parameter Value Parameter Value average 0.263 0.267 0.282 0.285
Rated power/kW 300 Ct /($/kWh) 50
Rated capacity/kWh 1200 Ku/( ¥ /kWh) 0.05
Charging efficiency/% 80 Initial SOC 0.5 clustering based on SOM neural network and PSO), the initial
Discharge efficiency/% 80 State of battery -1 scenario set is reduced. Each method is simulated 100 times,
Cycling life/times 1800 SOC upper limit 0.1 and the simulation results are listed in Table 4.
Self-discharge rate/(%/day) 0.1  SOClowerlimit 0.9 The clustering effect of the k-means method depends heav-

system are from [42]. The value of r; ; is 5% of the load power
at period 7. Kyp = 80, Kgn = 40, Kjs = 1000, Ky = 100,
unit: $ /MW - h. Using the MATLAB neural network tool-
box, the maximum number of training times is 50. The PSO
parameters for clustering are as follows: population size 10,
maximum number of iterations 50, and velocity interval
[—2,2]. The PSO parameters for ED problem are as follows:
population size 30, maximum number of iterations 500, and

velocity interval [—ur, ur], ur min (Ramp, PjN£ — P]’.nt>.
The inertia coefficient decreases linearly from 0.9 to 0.4, and

the acceleration constants are ¢c; = 2 and ¢y = 1.

A. CASEA

First, 1000 time series are generated by MCS to form
the initial scenario set of wind power output. According
to the k-means (traditional k-means clustering), Huffman-k
(improved k-means clustering based on a Huffman tree),
k-PSO (improved k-means clustering based on PSO), and the
SOM-PSO method proposed in this paper (improved k-means
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ily on the selection of the initial clustering centers, which are
randomly generated, so the clustering results are not stable.
It can be seen from the data in Table 4 that the clustering
effects are very different. The Huffman-k method determines
the initial clustering centers of k-means clustering by the
idea of Huffman tree [33], and the clustering results are
unique. This can effectively improve the shortcoming of the
k-means clustering that the clustering results are not stable.
However, it can be seen from the comparison of Dunn index,
the improvement of this method on the clustering index is
small.

The k-PSO method uses PSO to optimize the clustering
centers after k-means clustering is completed [19]. It can
be seen from the data in Table 4 that this method can
improve upon the shortcoming of the k-means method that
the clustering results are not stable. This can also signifi-
cantly improve the clustering effect. The proposed method
is similar to k-PSO method. The difference is that the initial
clustering centers are not generated randomly but by the SOM
neural network. It can be seen from the data in Table 4 that
the proposed SOM-PSO method can also improve upon the
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TABLE 5. Cost and simulation time comparison of several methods.

Penetration (%)  Cost (1074$) Initial scenario set

k-means Huffman-k  k-PSO  SOM-PSO  backward

frire 53.3777 50.4497 51.2743 50.7966 51.0170 51.4887
25% Suvind 8.3714 2.9773 2.4462 3.0309 3.8484 6.3019
Jum 61.7491 53.4270 53.7205 53.8275 54.8654 57.7906
frire 51.3414 47.2172 48.1143 46.9502 47.9972 48.9125
35% Suwind 14.3512 5.0700 4.5109 4.9553 7.6485 10.7856
Jum 65.6926 52.2872 52.6252 51.9055 55.6456 59.6981
frire 49.5450 43.7735 452042 43.9140 45.3403 46.7193
45% Suwind 21.0854 7.1884 7.1668 7.4746 11.7812 16.4819
Sfoum 70.6304 50.9618 523710 51.3886 57.1214 63.2012
Simulation time(s) 263 36

500

T T
—e—forecast

IS
o
s}

Wind power(MW)

1 3 5 7 9 11 13 15 174 19 21 23 24
Time(h)

FIGURE 6. Initial scenario set of wind power.

shortcoming of the k-means method that the clustering results
are not stable, and that the clustering index is slightly better
than that of k-PSO method.

For the ED problem, it is not comprehensive to evalu-
ate the effect of scenario reduction only by the clustering
index. Table 5 lists the results of ED. The scenario sets are
based on the initial scenario set, k-means, Huffman-k, k-PSO,
SOM-PSO, and BR methods. Fig. 6 - Fig. 11 show the
scenario sets corresponding to the above six methods (owing
to limited space, only the scenario sets of 25% wind power
penetration are shown). Fig. 12 shows the probability dis-
tribution corresponding to these methods. Note that for the
k-means, k-PSO, and SOM-PSO methods, the final scenario
set used for the simulation is the average value of the above
simulation.

Table 5 also shows that the calculation time (the latter is
the average value of the calculation time of ED based on
five scenario reduction methods) of ED is greatly reduced
after scenario reduction. No matter which scenario reduction
method is used, the results of ED are lower than that with-
out scenario reduction, but the corresponding reductions of
different methods are different.

The case of 25% wind power penetration is analyzed in
detail. From the data in Table 5, it can be seen that the
ED with a scenario set obtained by the k-means method is
relatively optimistic. From the observation in Fig. 7, it is
mainly owing to the poor description effect of the scenario
set on the wind power fluctuation from 1-13 h, resulting in
the lower uncertainty risk cost of wind power. Thus, the final
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FIGURE 7. Scenario set of wind power by the k-means method.
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FIGURE 8. Scenario set of wind power by the Huffman-k method.
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FIGURE 9. Scenario set of wind power by the k-PSO method.

comprehensive power generation cost is relatively optimistic.
Although the k-PSO method can effectively improve the
clustering index compared with the k-means method, it can be
seen from Fig. 9 that the description effect of the scenario set
on the wind power fluctuation for 1-13 h is not significantly
improved, the results of ED are still optimistic. It can be seen
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FIGURE 10. Scenario set of wind power by the BR method.
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FIGURE 11. Scenario set of wind power by the proposed SOM-PSO
method.
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FIGURE 12. Comparison of probabilities of different methods.

from Fig. 8 and Fig. 12 that the probability of s, obtained by
the Huffman-k method is too low. Except for s, the descrip-
tion effect of the scenario set on the wind power fluctuation
for 1-13 h has not improved significantly, resulting in the
optimistic results of ED.

The BR method is not a clustering method, so it is only
evaluated from the perspective of the results of ED. It can be
seen from Fig. 10 that the description of wind power output in
some scenarios (such as 7 h in sg, 15 hin s, and 18 h in s5)
is relatively extreme, which leads to the higher uncertainty
risk cost of wind power and conservative results of ED.
Compared with the results of ED without scenario reduction,
the reduction is small. It can be seen from Table 5 that the
smaller the wind power penetration, the smaller the reduction.

It can be seen from Fig. 11 that compared with the
k-means method, K-PSO method, and Huffman-k method,
the proposed SOM-PSO method improves the description
effect of wind power fluctuation for 1-13 h. Compared
with the BR method in that the description of wind power
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output in some scenarios is relatively extreme for some peri-
ods, the proposed SOM-PSO method also shows an obvious
improvement, so the results of ED are avoided as relatively
optimistic or relatively conservative.

If the results of ED are relatively optimistic or relatively
conservative, this will lead to some problems. The above
analysis showed that the results of ED based on the scenario
sets obtained by the k-means method, k-PSO method, and
Huffman-k method are relatively optimistic. From the data
in Table 5, it can be seen that if scenario reduction is not
carried out, then ED is carried out according to the initial
scenario set. With the increase of the wind power pene-
tration, the comprehensive power generation cost shows an
increasing trend. However, owing to the poor description of
wind power fluctuation for some time periods, the above
three methods lead to the optimistic results for ED, and
the trend of the comprehensive power generation cost is
decreasing.

Although the comprehensive power generation cost cor-
responding to the BR method is increasing, it was analyzed
previously, the scenario set obtained by this method describes
the wind power output a little extremely for some time peri-
ods, which easily leads to the conservative results. Compared
with the results without scenario reduction, the reduction in
the comprehensive power generation cost is small, and the
smaller the wind power penetration, the smaller the reduction.
By comparison, the proposed SOM-PSO method is not only
better in the clustering index but also more reasonable in the
results of ED. It can not only maintain the trend of the ED
based on the initial scenario set, but also the results of ED are
neither relatively optimistic nor relatively conservative.

B. CASEB
In this paper, the influence of the ESS on the ED with wind
power is studied. It was analyzed in Case A that when the
scenario set obtained by the k-means, k-PSO, and Huffman-k
method is used for ED, the description effect of the wind
power fluctuation is not ideal for some time periods. This
leads to the relatively optimistic results. Table 6 shows the
comparison of comprehensive power generation cost after the
ESS is introduced. It can be seen from the data in Table 6 that
the comprehensive power generation cost corresponding to
the three methods are still relatively lower, the results of ED
are still relatively optimistic. The BR method is relatively
extreme in describing the wind power fluctuation for some
time periods, which results in the results of ED are relatively
conservative. It can be seen from the data in Table 6 that
the comprehensive power generation cost of this method is
relatively higher. Therefore, after the ESS is introduced into
the power system with wind power, the ED based on the
proposed SOM-PSO method can still avoid the disadvantage
of other methods whose results of ED are relatively optimistic
or relatively conservative. The larger the wind power penetra-
tion, the more obvious the advantage.

Table 7 lists the results of ED after the ESS is intro-
duced, including the expected penalty cost (the cost of load
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TABLE 6. Comparison of comprehensive power generation cost of several methods after introducing the ESS.

Penetration Capacity of Initial
. k-means Huffman-k k-PSO SOM-PSO BR
(%) ESS(MW) scenario set
0 61.7491 53.4270 53.7205 53.8275 54.8654 57.7906
30 59.4154 52.2762 53.1870 52.1983 53.5464 56.1497
25% 60 58.6789 52.7648 53.4354 52.4028 53.9586 55.1195
90 58.2596 53.1938 53.5381 53.5238 54.4410 55.6889
120 58.5100 53.7330 53.8431 53.6191 54.6095 55.9235
0 65.6926 52.2872 52.6252 51.9055 55.6456 59.6981
30 62.4353 51.8592 51.8297 50.4060 52.9580 58.4772
35% 60 60.8589 51.9856 51.9663 51.3590 52.5757 56.7674
90 59.7246 52.0694 52.1133 51.4787 52.8662 55.2909
120 59.8712 52.1506 52.2452 51.9763 539116 55.8972
0 70.6304 50.9618 52.3710 51.3886 57.1214 63.2012
30 67.3310 48.3030 51.4583 50.4029 54.5964 60.1518
45% 60 63.8674 47.9857 50.3172 48.1554 53.3034 57.2819
90 62.1586 49.5770 51.4929 49.1531 53.2817 56.2847
120 61.6756 49.8120 51.7585 49.8743 53.8215 55.9405

TABLE 7. Cost comparison under different capacities of the ESS.

Capacity of Cost

25% 35% 45%
ESS(MW) (10748)
Frenalty 1.2234 43236 8.3914
0 Sfotorage 0 0 0

Soum 54.8654 55.6456 57.1214

frenatty 0.2303 1.3269 4.7260

30 Sfotorage 0.3622 0.9905 1.7110
Soum 53.5464 52.9580 54.5964

frenatty 0.1918 0.7820 2.0951

60 SFotorage 0.9230 1.1694 3.3681
Soum 53.9586 52.5757 53.3034

Frenalty 0.1242 0.6752 1.1152

90 Sfotorage 1.4166 1.8883 4.5682
Sum 54.4410 52.8662 53.2817

frenalty 0.0008 0.5019 0.9076

120 Sfotorage 1.4706 2.5921 4.7986
Soum 54.6095 53.9116 53.8215

shedding and wind power curtailment), the cost of ESS, and
the comprehensive power generation cost. Observe the data
in Table 7 vertically, under a certain wind power penetration,
the introduction of ESS can effectively reduce the expected
penalty cost of the system. Moreover, the larger the capacity
of ESS, the lower the expected penalty cost, the higher the
cost of ESS at the same time. With the increase of the capac-
ity of ESS, the comprehensive power generation cost first
decreases and then increases, there is an ““inflection point”
(marked in Table 7) in the comprehensive power generation
cost. At this time, the ESS can minimize the comprehensive
power generation cost of the system under the corresponding
capacity. The larger the wind power penetration, the later
the inflection point appears, and the larger the reduction
of the comprehensive power generation cost compared with

109116

that without ESS. Note that when the comprehensive power
generation cost of the system reaches the inflection point,
the expected penalty cost is not at a minimum. However,
the later the inflection point occurs, the lower the expected
penalty cost. Observe the data in Table 7 horizontally, under
different capacities of the ESS, with the increase of wind
power penetration, the comprehensive power generation cost
presents different trends. When there is no ESS, with the
increase of wind power penetration, the comprehensive power
generation cost shows an increasing trend; when the capac-
ity of ESS increases to a certain extent, the comprehensive
power generation cost shows a trend of first decreasing and
then increasing; the capacity of ESS continues to increase,
the comprehensive power generation cost shows a decreasing
trend.

As analyzed in Section 2, because the energy storage
devices are currently expensive and have a shorter life
than wind power, thermal power, and other energy sources,
the investment cost of the ESS allocated to each scheduling
cycle is considered in the ED model. Table 8 lists the impact
of different capacities of ESS on the optimal operation of
the system under different investment costs. It can be seen
from Table 8 that under the fixed wind power penetration
and investment cost, with the increase of the capacity of ESS,
the expected penalty cost gradually decreases, the cost of ESS
gradually increases, and the comprehensive power generation
cost first decreases and then increases, there is an inflec-
tion point (marked in Table 8) in the comprehensive power
generation cost. It can be seen from Table 8 that the lower
the investment cost, the later the inflection point appears.
Observe the data in Table 8 horizontally, under the fixed
wind power penetration and the capacity of ESS, with the
increase of the investment cost of ESS, the comprehensive
power generation cost also increases. Therefore, the lower the
investment cost of the ESS, the more beneficial to the results
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TABLE 8. Cost comparison under different investment costs of the ESS.

Cr=25($/kWh)

Cr=50($/kWh) Cr=75($/kWh)

Penetration (%)  Capacity of ESS(MW)  foenalty ~fstorage Sfoum Soenalty  ftorage Sfoum Soenalty  fstorage Sfoum
0 1.2234 0 54.8654 1.2234 0 54.8654 1.2234 0 54.8654
30 0.2560 0.1687 53.4411 0.2303 0.3622 53.5464 0.2513 0.4629 53.8218
25% 60 0.0669 03797 533113 0.1918 0.9230 539586 0.1286 0.9977 54.3222
90 0.0199 0.5314 53.8031 0.1242 1.4166 54.4410 0.0865 1.5145 54.6133
120 0 1.1105 54.1854 0.0008 1.4706  54.6095 0 1.7465 54.8718
0 4.3236 0 55.6456  4.3236 0 55.6456  4.3236 0 55.6456
30 1.3296  0.6341 525119 13269 0.9905 529580 1.3150 1.2049 53.3456
35% 60 0.2934 0.9907 52.0854 0.7820 1.1694 52.5757 0.6696 1.4899 52.8262
90 0.0966 1.2608 51.7441 0.6752 1.8883 52.8662 0.4625 2.6591 53.6779
120 0.0742 14172 52.0031 0.5019 2.5921 539116 0.2509 3.3694 54.3127
0 8.3914 0 57.1214  8.3914 0 57.1214 8.3914 0 57.1214
30 4.5379  1.2157 539513 4.7260 1.7110 54.5964 4.6797 2.2941 54.9084
45% 60 2.0940 2.0634 51.3679 2.0951 3.3681 53.3034 2.3512 3.4830 53.5934
90 0.7899 2.3343 50.7174 1.1152 4.5682 53.2817 1.2196 4.6221 53.8807
120 0.5725 24685 50.6526 09076 4.7986 53.8215 1.0890 5.0656 54.1837

of ED. Currently, it is still the trend to continue to research
and develop the energy storage technology and reduce the
investment cost of the ESS.

IV. CONCLUSION

In this paper, an ED model with wind power and ESS based
on a scenario set is established, and the influence of ESS on
the optimal operation of power system with wind power is
analyzed in detail. The conclusion is as follows:

1)

2)

K-means clustering is a classical and effective scenario
clustering method. In view of the shortcomings, such
as the clustering effect depends heavily on the initial
clustering centers and that the clustering results are not
stable, this paper proposed an improved k-means clus-
tering method based on SOM neural network and PSO
algorithm. Then, this method was applied to the sce-
nario reduction process to generate the final scenario
set for ED. Simulation results show that the optimiza-
tion of SOM neural network on the initial clustering
centers can improve the dependence of k-means clus-
tering on the initial clustering centers. The PSO algo-
rithm can further optimize the clustering centers which
can improve the unstable clustering effect by k-means
clustering. Compared with other scenario reduction
methods, the scenario set obtained by the proposed
method is not only better in clustering index, but also
the results of ED are more reasonable. The results
of ED can not only retain the characteristics of the
ED based on the initial scenario set, but also avoid that
the results of ED are relatively optimistic or relatively
conservative by using the scenario set obtained by other
scenario reduction methods.

The introduction of ESS will affect the optimal oper-
ation of power system with wind power. In this paper,
an ED problem with wind power and ESS was analyzed
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in detail. The simulation results show that after the
ESS is introduced, the ED based on the scenario set
obtained by the proposed method can still avoid the
disadvantage of other methods that the results of ED are
relatively optimistic or relatively conservative. In this
paper, the investment cost of ESS is considered in the
ED model. Under the fixed wind power penetration
and investment cost, with the increase of the capacity
of ESS, the comprehensive power generation cost first
decreases and then increases, there is an inflection
point. The larger the wind power penetration, or the
lower the investment cost of ESS, the later the inflec-
tion point appears, the better the effect of ESS on
stabilizing the wind power fluctuation.

The research in this paper can be improved in the following
aspects:

1) In the future, more attention will be paid to the opti-

mization of the ED model, and more factors and sit-
uations will be considered to make the model more
complete. In this paper, the environmental benefits
of renewable energy were not considered. A multi-
objective optimization problem that seeks the lowest
power generation cost and best environmental benefits
of renewable energy will be studied.

2) The model did not consider the impact of ESS on the

frequency, and did not distinguish between the auto-
matic generation control (AGC) units and non-AGC
units. This will be further improved in the future.

3) With the development of energy storage technol-

ogy, the hybrid energy storage system (HESS) com-
posed of various types of energy storage devices has
become very popular. In the future, the ED and the
capacity allocation of the HESS will continue to be
studied.
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