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ABSTRACT Wireless sensor networks (WSNs) play a key role in automation and consumer electronics
applications. This paper deals with joint design of the source precoder, relaying matrices, and destination
equalizer in a multiple-relay amplify-and-forward (AF) cooperative multiple-input multiple-output (MIMO)
WSN, when partial channel-state information (CSI) is available in the network. In particular, the considered
approach assumes knowledge of instantaneous CSI of the first-hop channels and statistical CSI of the
second-hop channels. In such a scenario, compared to the case when instantaneous CSI of both the first- and
second-hop channels is exploited, existing network designs exhibit a significant performance degradation.
Relying on a relaxed minimum-mean-square-error (MMSE) criterion, we show that strategies based on
potential activation of all antennas belonging to all relays lead to mathematically intractable optimization
problems. Therefore, we develop a new joint relay-and-antenna selection procedure, which determines
the best subset of the available antennas possibly belonging to different relays. Monte Carlo simulations
show that, compared to conventional relay selection strategies, the proposed design offers a significant
performance gain, outperforming also other recently proposed relay/antenna selection schemes.

INDEX TERMS Amplify-and-forward relays, multiple-input multiple-output (MIMO), partial channel state
information, wireless sensor networks.

I. INTRODUCTION AND SYSTEM MODEL
With the advent of massive Internet of Things and massive
machine-type communications, especially in the domain of
5G consumer electronics, there is a need to further enhance
physical-layer performance of wireless sensor networks
(WSNs). In this respect, amplify-and-forward (AF) relaying
is an effective way to improve transmission reliability over
fading channels, by taking advantage of the broadcast nature
of wireless communications [1], [2], especially when the net-
work nodes are equipped with multiple-input multiple-output
(MIMO) transceivers [3]–[5].

We consider a one-way cooperative MIMO WSN aimed
at transmitting a symbol block b ∈ CNB from a source to
a destination, with the assistance of NC half-duplex relays.1

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang Yang .
1The fields of complex and numbers are denoted with C and R, respec-

tively; matrices [vectors] are denoted with upper [lower] case boldface letters
(e.g., A or a); the field of m × n complex [real] matrices is denoted as
Cm×n [Rm×n], with Cm [Rm] used as a shorthand for Cm×1 [Rm×1];
the superscripts ∗, T , H , −1, and † denote the conjugate, the transpose,
the conjugate transpose, the inverse, and the Moore-Penrose generalized
inverse of a matrix, respectively; {A}ij indicates the (i+1, j+1)th element of
A ∈ Cm×n, with i ∈ {0, 1, . . . ,m− 1} and j ∈ {0, 1, . . . , n− 1}; 0m ∈ Rm,
O ∈ Rm×n, and Im ∈ Rm×m denote the null vector, the null matrix, and the
identity matrix, respectively; tr(A) denotes the trace of A ∈ Cn×n; rank(A)
is the rank of A ∈ Cm×n; finally, the operator E[ · ] denotes ensemble
averaging.

We assume that there is no direct link between the source and
the destination, due to high path loss values or obstructions,
and we denote with NS, NR, and ND, respectively, the num-
bers of antennas at the source, relays, and destination. The
received signal at the destination can be expressed as

r = C b+ v (1)

where C , GFH F0 ∈ CND×NB is the dual-hop channel
matrix and v , GFw+n is the equivalent noise vector at the
destination. The composite matrices

H , [HT
1 ,H

T
2 , . . . ,H

T
NC

]T ∈ C(NCNR)×NS (2)

G , [G1,G2, . . . ,GNc ] ∈ CND×(NCNR) (3)

collect the first- (backward) and second-hop (forward)
MIMO channel coefficients of all the relays, respectively,
whereas the diagonal blocks Fi ∈ CNR×NR of

F , diag(F1,F2, . . . ,FNC ) (4)

denote the relayingmatrices, andF0 ∈ CNS×NB represents the
source precoding matrix. Finally, w ∈ CNCNR and n ∈ CND

gather the noise samples at all the relays and at the destina-
tion, respectively. The vector r is subject to linear equalization
at the destination through the equalizingmatrixD ∈ CNB×ND ,
hence yielding an estimate b̂ , D r of the source
block b, whose entries are then subject to minimum-distance
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(in the Euclidean sense) detection. Increase in spectral
efficiency can be obtained by considering two-way relay-
ing [6], which is based on establishing bidirectional connec-
tions between two or more terminals using one or several
half-duplex relays.

To achieve the expected gains, channel state informa-
tion (CSI) is required at the network nodes, i.e, source,
AF relays, and destination. Full CSI (F-CSI) is invoked
in many papers dealing with optimization of one-way
(see, e.g., [7]–[15]) and two-way (see, e.g., [16], [17])
cooperative MIMO networks. Specifically, with reference
to the system model (1), F-CSI is tantamount to requir-
ing: (i) instantaneous knowledge of the first-hop channel
matrix H ; (ii) instantaneous knowledge of the second-hop
channel matrix G; (iii) instantaneous knowledge of the
dual-hop channel matrix C. While the dual-hop channel
matrix C can be directly estimated at the destination by
training, separate acquisition of the first- and second-hop
matrices H and G is more complicated to achieve, both
in terms of communication resources and signal overhead,
especially in multiple-relay WSNs. Moreover, since channel
estimation errors occur in practical situations, robust opti-
mization designs are needed [18], [19], which further com-
plicate system deployment. In resource-constrained WSNs,
the use of partial CSI (P-CSI) can extend network lifetime
and reduce the complexity burden.

Relay selection is a common strategy to reduce signal-
ing overhead and system design complexity in single-input
single-output (SISO) cooperative WSNs [20]–[23]. Design
of SISO relay selection procedures providing diversity gains
– even when F-CSI is not available – has been addressed
in [24]–[26], [26], [27]. Such methods rely on P-CSI,
since selection of the best relay is based only on instanta-
neous knowledge of the source-to-relay channels. However,
the diversity order of the methods developed in these papers
does not scale in the number of relays NC. For SISO nodes,
a P-CSI relay selection scheme has been proposed in [28],
yielding full diversity order NC. However, besides the instan-
taneous knowledge of the source-to-relay channels, such a
method requires that the selected relay sends instantaneous
CSI of the corresponding source-to-relay channel to the des-
tination for optimal decoding. Moreover, the optimization
problem in [28] does not admit a closed-form solution and
is solved by using a line search algorithm.

It has been shown in [29] that P-CSI relay selection
approaches forMIMOnodes, based only on the instantaneous
knowledge of H , do not fully exploit the diversity arising
from the presence of multiple relays. Besides instantaneous
knowledge of H , statistical CSI of the second-hop matrix G
is used in [14], [30] to perform relay/antenna selection for
a MIMO AF cooperative network. However, the solutions
developed in [14], [30] still exhibit a significant performance
degradation compared to designs based on F-CSI.

In this paper, we present new optimization methods for
multiple-relay cooperative MIMO WSNs with P-CSI, i.e.,
knowledge of the instantaneous value of H and the statis-

tical properties of G. Our design does not rely on F-CSI
as in [7]–[13], [15]–[17], and needs the same amount of
P-CSI exploited in [24]–[26], [26], [27], [30]. In this scenario,
we consider a relaxed joint minimum-mean-square-error
(MMSE) optimization of the source precoder F0, the AF
relaying matrices in F, and the destination equalizer D, with
a power constraint at the source [31] and a sum-power
constraint at the relays [10]. Specifically, capitalizing on
our preliminary results [14], the novel contributions can be
summarized as follows:

1) We prove that the MMSE-based design attempting to
activate all possible antennas of all relays leads to a
mathematically intractable optimization problem.

2) We provide the proofs of the results reported
in [14], by enlightening that single relay selection
[14], [24]–[26], [26], [27] is suboptimal in the consid-
ered P-CSI scenario.

3) We develop a new joint antenna-and-relay selection
algorithm, which is shown to significantly outperform
the relay/antenna selection approaches [14], [26], [30]
in terms of average symbol error probability (ASEP).

The paper is organized as follows. Section II introduces
the basic assumptions and discusses their practical implica-
tions. The proposed designs are developed in Section III.
Section IV reports simulation results in terms of ASEP,
whereas Section V draws some conclusions.

II. BASIC ASSUMPTIONS AND PRELIMINARIES
The symbol block b in (1) is modeled as a circularly sym-
metric complex random vector, with E[b bH] = INB . The
entries ofH and G are assumed to be unit-variance circularly
symmetric complex Gaussian (CSCG) random variables. The
noise vectors w and n are modeled as mutually independent
CSCG random vectors, statistically independent of (b,H,G),
with E[wwH] = INCNR and E[n nH] = IND , respectively.
Hereinafter, we assume that C in (1) and the following

conditional covariance matrix of v, given G,

Kvv , E[v vH |G] = GFFHGH
+ IND (5)

have been previously acquired at the destination during a
training session. Under such assumptions, it is known (see,
e.g., [31]) that, for fixed matricesF0 andF, the matrixDmin-
imizing the trace of the conditional mean square error (MSE)
matrix E(F0,F,D) , E[(b̂ − b) (b̂ − b)H |H,G], given H
and G, is the Wiener filter

Dmmse = CH(C CH
+ Kvv)−1 . (6)

Optimization of F0 and F is carried out under the assump-
tion that only P-CSI is available at the source and the
relays. Specifically, the source and the relays perfectly know
the first-hop channel matrix H , but the ith relay has only
knowledge of the second-order statistics (SOS) of its own
second-hop channel matrix Gi. These assumptions are jus-
tified since, in some systems, the relays may be able to
exchange information among themselves before transmis-
sion [32]. In this case, knowledge of H at the relays is

109678 VOLUME 8, 2020



D. Darsena et al.: Design of Cooperative MIMO WSNs With Partial CSI

realistic [7]–[14], [20]–[22], [24]–[29]. Moreover, since the
SOS of Gi vary much more slowly than the instantaneous
values of Gi, the feedback overhead from the destination to
the relays is significantly reduced, compared to [28].

III. THE PROPOSED P-CSI-BASED DESIGN
To obtain F0 and F, we minimize the statistical average (with
respect to G) of the trace of the following matrix:

E(F0,F) , E(F0,F,Dmmse) = (INB + C
H K−1vv C)

−1 (7)

under suitable power constraints. To this aim, we assume that:
a1) F0 is full-column rank, i.e., rank(F0) = NB ≤ NS;
a2) GFH is full-column rank, i.e., rank(GFH) = NS ≤ ND.
It is noteworthy that assumption a2) necessarily requires
that the matrices FH and H are full-column rank, i.e.,
rank(FH) = rank(H) = NS ≤ NC NR. Such assump-
tions ensure that C is full-column rank as well. Specifically,
we consider the following optimization problem:

min
F0,F

EG
{
tr
[(
INB + C

H K−1vv C
)−1] ∣∣H}

subject to (s.to) tr(F0 FH
0 ) ≤PS

and EG
[
tr(GFK zz FHGH) |H

]
≤PD (8)

where K zz , E[z zH |H] = H F0 FH
0H

H
+ INCNR is

the conditional (given H) covariance matrix of the vector
z ∈ CNCNR collecting the signals received by all the relays,
with PS > 0 and PD > 0 denoting the power threshold at
the source and at the destination, respectively. The constraint
on the received power at the destination automatically limits
the power expenditure at the relays. Since problem (8) is
nonconvex, we consider its relaxed version:

min
F0,F

EG
{
tr
[(
INB + F

H
0H

HFHGHGFH F0

)−1] ∣∣H}
s.to tr(F0 FH

0 ) ≤PS and

EG
[
tr(GFFHGH) |H

]
≤PD (9)

where we have used the expression of C and the inequal-
ities tr[(INB + CH K−1vv C)

−1] ≥ tr[(INB + CH C)−1]
and tr(GFK zz FHGH) ≤ tr(GFFHGH) tr(K zz) [33], [34].
Closed-form evaluation of the cost function in (9) is cumber-
some; however, under a1) and a2), it can be observed that2

tr
[(
INB + F

H
0H

HFHGHGFH F0

)−1]
< tr

[(
FH
0H

HFHGHGFH F0

)−1]
(10)

where the difference between the left- and right-hand
sides tends to zero as the minimum eigenvalue of
FH
0 H

HFHGHGFH F0 is significantly larger than one.
This happens in the high signal-to-noise ratio (SNR)
region, i.e., when PS and PD are sufficiently large.

2The proof follows easily from the facts [33] that the trace of A is equal to
the sum of its eigenvalues and, if λ is an eigenvalue of a nonsingular matrixA,
then λ−1 is an eigenvalue of A−1.

Relying on (10), we pursue a further relaxation of (8) by
replacing EG{tr[(INB +F

H
0H

HFHGHGFH F0)−1]
∣∣∣H} in (9)

with its upper bound EG{tr[(FH
0H

HFHGHGFH F0)−1]
∣∣∣H},

which can be evaluated in closed-form as stated by the
following Lemma.
Lemma 1: Let us assume that: a3) ND > NB. Then, under

a1), a2), and a3), it results that

EG
{
tr
[(
FH
0H

HFHGHGFH F0

)−1] ∣∣H}= tr(R−1)
ND − NB

(11)

where R , FH
0H

HFHFH F0 ∈ CNB×NB .
Proof: See Appendix A. �

At this point, evaluation of the expectation in the second
constraint of (9) is in order. In this respect, one has

EG
[
tr(FHGHGF) |H

]
= tr

[
EG

(
GHG

)
FFH

]
= tr

(
FHF

)
(12)

where we have also used the cyclic property [33] of the trace
operator. Therefore, under a1), a2), and a3), the optimization
problem (9) can be simplified as follows

min
F0,F

tr
[(
FH
0H

HFHFH F0

)−1]
s.to tr(F0 FH

0 ) ≤PS and tr
(
FH F

)
≤PD . (13)

At this point, a comment regarding the constraints in (8)
and (13) is in order. The constraint tr(F0 FH

0 ) ≤ PS
in (8) and (13) limits the average transmitted power of
the source and it is standard in the design of linear
MIMO transceivers [31]. Regarding the second constraint
in (8), we observe that, given H and G, P(H,G) ,
tr(GFK zz FHGH) represents the average received power at
the destination. It is noteworthy that P(H,G) is typically
limited in those scenarios where a target performance has to
be achieved and per-node fairness is not of concern [3], [7].
The constraint tr

(
FH F

)
≤ PD in (13), which has been

obtained by averaging a relaxed version of P(H,G) with
respect to the probability distribution of G, fixes a limit on
the total average power transmitted by the relays, so-called
sum-power constraint [10].3

To solve (13), we use the following Lemma.
Lemma 2: For a positive definite matrix A ∈ Cn×n, the

following inequality holds:

tr(A−1) ≥
m∑
`=1

1
{A}``

(14)

where {A}`` is the `th diagonal entry of A and the inequality
is achieved if A is diagonal.

Proof: See [37, p. 65]. �
As a consequence of Lemma 2, the minimum value of the

cost function in (13) is achieved if FH
0 AF0 is diagonal, with

3Design with per-relay power constraints can be solved by properly
reformulating the problem into an equivalent optimization with a sum-power
constraint [35], [36].
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A , HHFHFH ∈ CNS×NS . In what follows, we consider
three different approaches to achieve the desired diagonal-
ization of FH

0 AF0: the first one is based on the SVD of the
composite matrixH = [HT

1 ,H
T
2 , . . . ,H

T
NC

]T and it results in
a (possible) selection of all the relays; the second one relies on
the SVDs of the individual matrices H1,H2, . . . ,HNC , thus
leading to a single-relay selection; the last one exploits the
SVDs of row-based partitions of H and it can be interpreted
as a joint antenna-and-relay selection scheme.

A. DESIGN BASED ON THE SVD OF THE COMPOSITE
FIRST-HOP CHANNEL MATRIX
One can attempt to recruit all the relays in the second hop
of the cooperative scheme by diagonalizing FH

0 AF0 through
the SVD H = Uh [ONS×(NCNR−NS),3h]T VH

h of H , where
the matrices Uh ∈ C(NCNR)×(NCNR) and Vh ∈ CNS×NS are
unitary, and3h , diag[λh(1), λh(2), . . . , λh(NS)] gathers the
corresponding nonzero singular values arranged in increasing
order. By substituting the SVD ofH in A, it follows by direct
inspection that FH

0 AF0 is diagonal if (see, e.g., [38])

F0 = Vh,right�
1/2 (15)

Fi = Qi1
1/2
i U†

h,right,i (16)

where Vh,right ∈ CNS×NB contains the NB rightmost columns
from Vh, the matrices � , diag[ω(1), ω(2), . . . , ω(NB)]
and 1i , diag[δi(1), δi(2), . . . , δi(NS)] are determined in
a second step, for i ∈ {1, 2, . . . ,NC}, the arbitrary matrix
Qi ∈ CNR×NS obeys QH

i Qi = INS , provided that NS ≤

NR, Uh,right , [UT
h,right,1,U

T
h,right,2, . . . ,U

T
h,right,NC

]T ∈
C(NCNR)×NS contains theNS rightmost columns fromUh, with
the matrix Uh,right,i ∈ CNR×NS being full-column rank.

Using (15) and (16), problem (13) ends up to

min
ω,{δi}

NC
i=1

f0
(
ω, {δi}

NC
i=1

)

s.to
NB∑
`=1

ω(`) ≤PS, ω(`) > 0,

and
NC∑
i=1

NS∑
`=1

δi(`)
(
UH

h,right,i Uh,right,i

)−1
``

≤PD, δi(`) > 0 (17)

where we have defined ω, [ω(1), ω(2), . . . , ω(NB)]T ∈RNB ,
δi , [δi(1), δi(2), . . . , δi(NS)] ∈ RNS , for i ∈ {1, 2, . . . ,NC},

f0
(
ω, {δi}

NC
i=1

)
,

NB∑
`=1

1

ω(`) λ2h(1N + `)
NC∑
i=1

δi(1N + `)

(18)

with 1N , NS − NB ≥ 0. All the inequality constraints
in (17) are linear. However, it is shown in Appendix B that,
when NC > 1, the cost function (18) is the sum of NB
functions that are neither strictly convex nor strictly concave

on Rn+1
+ . Hence, trying to solve (17) with the available opti-

mization tools leads to poor performance in multiple-relay
WSNs.

B. DESIGN BASED ON THE SVD OF THE INDIVIDUAL
FIRST-HOP CHANNEL MATRICES
A simple design can be developed by setting Fi = ONR×NR ,
for each i ∈ {1, 2, . . . ,NC}−i?. Basically, such a choice leads
to a single-relay selection scheme [14], which imposes that
only one relay (i.e., that for i = i?) is recruited to transmit
and all the remaining ones keep silent in the second hop.

Herein, we assume that H i is full-column rank, i.e.,
rank(H i) = NS ≤ NR, for each i ∈ {1, 2, . . . ,NC}. Let

Uh,i [ONS×(NR−NS),3h,i]T VH
h,i (19)

be the SVD of H i, where

3h,i , diag[λh,i(1), λh,i(2), . . . , λh,i(NS)] (20)

contains the singular values of H i, arranged in increas-
ing order, and the unitary matrices Uh,i ∈ CNR×NR

and Vh,i ∈ CNS×NS collect the corresponding left and
right singular vectors, respectively. In this case, one has
A = HH

i?F
H
i?Fi? H i? and, by substituting the SVDofH i? in this

matrix equation, one has that the diagonalization of FH
0 AF0

is ensured by

F0 = Vh,i?,right�
1/2 (21)

Fi? = Qi?1
1/2 UH

h,i?,right (22)

where Uh,i?,right ∈ CNR×NS and Vh,i?,right ∈ CNS×NB contain
the NS and NB rightmost columns from Uh,i? and Vh,i? ,
respectively, Qi? ∈ CNR×NS is an arbitrary matrix obeying
QH
i?Qi? = INS , � has been defined in Subsection III-A, and

1 , diag[δ(1), δ(2), . . . , δ(NS)]. To fully specify the solu-
tion of (13) in the case of single-relay selection, optimization
of �, 1, and i? is accomplished in two steps.

First, for a given i? ∈ {1, 2, . . . ,NC}, by substituting (21)
and (22) in (13), one obtains the scalar optimization problem
with linear inequality constraints:

min
ω,δ

f1
(
i?,ω, δ

)
s.to

NB∑
`=1

ω(`) ≤PS, ω(`) > 0,

and
NS∑
`=1

δ(`) ≤PD, δ(`) > 0 (23)

with

f1
(
i?,ω, δ

)
,

NS∑
`=NS−NB+1

1

λ2h,i? (`)ω(`) δ(`)
(24)

where ω has been previously defined in Subsection III-A and
δ , [δ(1), δ(2), . . . , δ(NS)]T ∈ RNS . Since f1 (i?,ω, δ) is
a convex function (see Appendix B), the optimization prob-
lem (23) is convex and, thus, its solution ωopt(i?) and δopt(i?)
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can be found by using efficient numerical techniques [39].
For instance, if one resorts to interior point methods, conver-
gence arbitrarily close to the optimal solution is achieved in
a number of iterations that is proportional to the logarithm of
the problem dimension [40], with a complexity per iteration
dictated by the costM of computing a Newton direction [41].
Second, the optimal value iopt of i? is obtained as

iopt , arg min
i?∈{1,2,...,NC}

f1
(
i?,ωopt(i?), δopt(i?)

)
(25)

which allows one to single out the best relay among the
NC available ones. The solution of (25) can be obtained by
solving (23) for each i? ∈ {1, 2, . . . ,NC}, with an overall
complexity O

[
NCM log(NB + NS)

]
.

In the SISO configuration, i.e., when NB = NS =

NR = ND = 1, and when there is no precoding at
the source, i.e., F0 ≡ f0 =

√
PS, one gets Fi? =

diag(0, . . . , 0, fi? , 0, . . . , 0) and (25) boils down to iopt ,
argmaxi?∈{1,2,...,NC}{|hi|

2
}, with hi denoting the channel coef-

ficients between the source and the ith relay. According
to [42], such a scheme has a full diversity order equal to NC.
However, as we will see in Section IV, such a design suf-
fers from a diversity loss in a MIMO setting, i.e., when
NS,NR,ND > 1.

C. DESIGN BASED ON THE SVD OF ROW-BASED
PARTITIONS OF THE COMPOSITE FIRST-HOP
CHANNEL MATRIX
In the considered cooperative MIMO WSN, there are NC
relays equipped with NR antennas, which amounts to a total
number of NC NR distributed antennas. Here, we propose to
choose the best NB = NS antennas out of the NC NR ones.4

Such antennas can either be physically located on a single
relay, or be spatially distributed over different relays, thus
accomplishing a joint antenna-and-relay selection scheme.

Let S , {(n, i),∀n ∈ {1, 2, . . . ,NR},∀i ∈ {1, 2, . . . ,NC}}

collect all the NC NR antenna elements in the network, with
the generic (ordered) pair (n, i) uniquely identifying the nth
antenna located on the ith relay. The number of distinct
subsets of S that have exactly NB elements is given by
the binomial coefficient Q ,

(NCNR
NB

)
.5 By excluding the

trivial choice ∅ and the degenerate case S (discussed in
Subsection III-A), we denote with

S (q) ,
{
(n(q)1 , i

(q)
1 ), (n(q)2 , i

(q)
2 ), . . . , (n(q)NB

, i(q)NB
)
}

(26)

the selected subset ofS , with q ∈ {1, 2, . . . ,Q−2}, obeying
S (q1) 6= S (q2) for q1 6= q2. Additionally, we use the notation
N (q)
i ∈ {0, 1, . . . ,NB} to indicate the number of pairs of S (q)

having the same second entry: in other words, N (q)
i represents

the number of antennas activated on the ith relay according to
the qth selection. It results that

∑NC
i=1 N

(q)
i = NB.

The selected antennas generate a first-hop channel matrix

H (q) , [(H (q)
1 )T, (H (q)

2 )T, . . . , (H (q)
NC

)T]T ∈ CNB×NB (27)

4Our design can be simply extended to the case NS ≥ NB.
5The empty set ∅ and the set S are considered as subsets of S as well.

and a relaying matrix

F(q) , diag(F(q)
1 ,F

(q)
2 , . . . ,F

(q)
NC

) ∈ CNB×NB (28)

with H (q)
i ∈ CN (q)

i ×NB and F(q)
i ∈ CN (q)

i ×N
(q)
i . By convention,

if N (q)
i = 0, then H (q)

i and F(q)
i are empty matrices.

With reference to the qth selection, we formulate a new
optimization problem, for q ∈ {1, 2, . . . ,Q − 2}, which
is formally obtained from (13) by replacing H and F with
H (q) and F(q), respectively, whose cost function achieves its
minimum value ifFH

0 A
(q) F0 is diagonal (see Lemma 2), with

A(q) , (H (q))H (F(q))H F(q)H (q). For i ∈ {1, 2, . . . ,NC}, let
H (q)
i = U (q)

h,i [ON (q)
i ×(NB−N

(q)
i )
,3

(q)
h,i] (V

(q)
h,i)

H be the SVD of

the (nonempty) matrix H (q)
i , which is assumed to be full-row

rank, i.e., rank(H (q)
i ) = N (q)

i , where U (q)
h,i ∈ CN (q)

i ×N
(q)
i and

V (q)
h,i ∈ CNB×NB are unitary, and the diagonal matrix 3(q)

h,i ,

diag[λ(q)h,i(1), λ
(q)
h,i(2), . . . , λ

(q)
h,i(N

(q)
i )] collects the correspond-

ing nonzero singular values arranged in increasing order. In
this case, the diagonalization of FH

0 A
(q) F0 can be obtained

by resorting to the following structures

F0 = [(V (q)
h,right)

H]−1�1/2 (29)

F(q)
i = Qi1

1/2
i (U (q)

h,i)
H (30)

where

V (q)
h,right , [V (q)

h,right,1,V
(q)
h,right,2, . . . ,V

(q)
h,right,NC

] ∈ CNB×NB

(31)

with V (q)
h,right,i ∈ CNB×N

(q)
i gathering the N (q)

i rightmost

columns from V (q)
h,i , Qi ∈ CN (q)

i ×N
(q)
i is an arbitrary unitary

matrix, � and 1i have been defined in Subsection III-A.
To optimize �, 1i, and q, we resort to a two-step proce-

dure as in the previous subsection. By substituting (29)–(30)
in (13) (with H (q) and F(q) in lieu of H and F, respectively),
for a given q ∈ {1, 2, . . . ,Q − 2}, one gets the convex
optimization problem (seeAppendix B)with linear inequality
constraints:

min
ω,{δi}

NC
i=1

f2
(
q,ω, {δi}

NC
i=1

)

s.to
NB∑
`=1

ω(`)
[
(V (q)

h,right)
H V (q)

h,right

]−1
``
≤PS, ω(`) > 0,

and
NC∑
i=1

NS∑
`=1

δi(`) ≤PD, δi(`) > 0 (32)

with

f2
(
q,ω, {δi}

NC
i=1

)
,

NC∑
i=1

NB∑
`=1

1[
λ
(q)
h,i(`)

]2
ωi(`) δi(`)

(33)

where ωi(`) , ω
(∑i−1

m=1 N
(q)
m + `

)
, whereas ω and δi have

been defined in Subsection III-A. Similarly to problem (23),
the solution ωopt(q) and {δi,opt(q)}

NC
i=1 of (32) can be found by
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using, e.g., interior point methods [39]. Finally, the best value
qopt of q is found by solving

qopt , arg min
q∈{1,2,...,Q−2}

f2
(
q,ωopt(q), {δi,opt(q)}

NC
i=1

)
(34)

which determines the best NB-dimensional subset of the
available NC NR antennas. The solution of (34) can be
obtained by solving (32) for each q ∈ {1, 2, . . . ,Q − 2},
with an overall complexity O

[
(Q− 2)M log(NB + NB NC)

]
,

which is larger than that required to select the best relay (see
Subsection III-B), especially for large number of relays.

When NB = NS = NR = 1, the optimization prob-
lems (23)-(25) and (32)-(34) yield the same solution and,
thus, the design (32)-(34) exhibits full diversity order NC,
too. However, we will show in the next section that, when
NB,NS,NR > 1 (MIMO WSN), the proposed joint antenna-
and-relay selection scheme ensures a significant performance
improvement with respect to single-relay selection, in terms
of both diversity order and coding gain.

IV. NUMERICAL RESULTS
In this section, to assess the performance of the consid-
ered P-CSI designs, we present the results of Monte Carlo
computer simulations, aimed at evaluating the ASEP of the
corresponding cooperative systems, transmitting quadrature
phase-shift-keying (QPSK) symbols. We set N , NB =

NS = NR = ND in all the forthcoming examples, with
N ∈ {1, 2, 3}. We also assume that PS = P̃D = Ptot.
Consequently, the SNR is defined as SNR , Ptot, which
measures the per-antenna link quality of both the first- and
second-hop transmissions. Besides the single-relay selection
method described in Subsection III-B, referred to as ‘‘1-R
Selection’’, and the joint antenna-and-relay selection scheme
developed in Subsection III-C, referred to as ‘‘JAR Selec-
tion’’, we also report the performance of [26, CSI Assump-
tions I and II] in the case of single-antenna nodes (i.e.,N = 1)
and that of [30] for both single- and multiple-antennas nodes
(i.e., N ∈ {2, 3}). As a reference lower bound, we addition-
ally include in all the plots the ASEP curves of the F-CSI
design proposed in [15], whose design relies on the additional
knowledge of the ith second-hop channel matrix Gi at the ith
relay, for i ∈ {1, 2, . . . ,NC}. This F-CSI method exhibits a
theoretical diversity order equal to NC NR − NB + 1 [15].

The ASEP has been evaluated by carrying out 103 indepen-
dent Monte Carlo trials, with each run using independent sets
of channel realizations and noise, and an independent record
of 106 source symbols.

A. EXAMPLE 1: SINGLE-ANTENNA NODES
We report in Figs. 1 and 2 the ASEP performance of the con-
sidered schemes as a function of the SNR, for single-antenna
nodes (i.e., N = 1) and two different values of the number of
relays NC ∈ {2, 3}. We would like to remember that, in the
case of N = 1, the two approaches ‘‘1-R Selection’’ and
‘‘JAR Selection’’ are equivalent and, thus, only the perfor-
mance of the ‘‘1-R Selection’’ method are reported.

FIGURE 1. ASEP versus SNR (Example 1: N = 1 and NC = 2).

FIGURE 2. ASEP versus SNR (Example 1: N = 1 and NC = 3).

Results clearly show that no diversity is achieved by [26]
(CSI Assumption II corresponding to P-CSI) and [30], irre-
spective of the number of relays. On the other hand, the ‘‘1-R
Selection’’ scheme exhibits the same diversity order of
the F-CSI methods proposed in [26] (CSI Assumption I)
and [15], which linearly increases with NC. This fact
allows the ‘‘1-R Selection’’ design to significantly outper-
form both [26] (P-CSI) and [30], which rely on the same
amount of CSI. Remarkably, the ‘‘1-R Selection’’ scheme
performs comparably to [26] (F-CSI) in the case of NC =

2 relays. Compared to single-relay selection, the perfor-
mance improvement of the F-CSI – arising from the addi-
tional instantaneous knowledge of the second-hop matrix
G – becomes more and more apparent when the number of
relays NC increases.

B. EXAMPLE 2: MULTIPLE-ANTENNA NODES
Figs. 3, 4, 5, and 6 show the ASEP performance of the
considered designs as a function of the SNR, for two different
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FIGURE 3. ASEP versus SNR (Example 2: N = 2 and NC = 2).

FIGURE 4. ASEP versus SNR (Example 2: N = 2 and NC = 3).

FIGURE 5. ASEP versus SNR (Example 2: N = 3 and NC = 2).

multi-antenna configurations N ∈ {2, 3} and two different
values of the number of relays NC ∈ {2, 3}, respectively.

FIGURE 6. ASEP versus SNR (Example 2: N = 3 and NC = 3).

It is apparent from these plots that, in a multi-antenna
deployment, the ‘‘1-R Selection’’ approach and [30] perform
comparably, both exhibiting a diversity loss with respect to
the F-CSI design [15]. As claimed, especially in the high SNR
regime, the proposed ‘‘JAR Selection’’ design significantly
outperforms both the ‘‘1-R Selection’’ scheme and [30],
under the same amount of P-CSI. Such a performance gap
remarkably scales up as the number of antennas at the nodes
increases from N = 2 to N = 3. Interestingly, the diversity
order of the ‘‘JAR Selection’’ scheme increases with NC,
as in [15] which, however, requires F-CSI.

V. CONCLUSION
We studied the problem of designing multi-relay AF coop-
erative WSNs, based on the knowledge of the instantaneous
values of the first-hop MIMO channel matrix and statistical
characterization of the second-hop one (partial CSI scenario).
In this case, antenna/relay selection schemes arise necessar-
ily to formulate mathematically tractable design problems,
which can be solved by using standard convex optimization
tools. We have shown that, in a MIMO setting, the selec-
tion of the best relay is suboptimal and large performance
improvements can be obtained by selecting the best antennas
distributed over multiple relays. Numerical simulations have
shown that the proposed joint antenna-and-relay selection
approach significantly outperforms existing schemes, which
exploit the same amount of P-CSI.

APPENDIX A
PROOF OF LEMMA 1
Preliminarily, we remember that C = GFH F0 is
full-column rank if a1) and a2) hold. It can be shown
(see, e.g., [43]) that, conditioned on H , the kth diago-
nal entry {(CHC)−1}kk of the matrix (CHC)−1 follows an
inverse-Gamma distribution, with shape parameter α , ND−

NB + 1 and scale parameter βk , 1/{R−1}kk , where R is
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defined in the lemma statement. Thus, the probability density
function of the random variable {(CHC)−1}kk , givenH , reads
as

pk (x) =
1

0(α)βαk
x−α−1 e−

1
xβk (35)

where the gamma function 0(α) = (α − 1)! since ND − NB
is a non-negative integer number [44]. Therefore, one has

EG
[
tr
(
CH C

)−1 ∣∣H]
=

NB∑
k=1

EG
[{(

CH C
)−1}

kk

∣∣H]

=
1

0(α)

NB∑
k=1

1
βαk

(
lim
δ→0

∫
+∞

δ

x−αe−
1
xβk dx

)
. (36)

After some calculations, eq. (36) can be rewritten as

EG
[
tr
(
CH C

)−1 ∣∣H]
=

NB∑
k=1

β−1k

0(α)
lim
δ→0

γ (α − 1, (δ βk )−1)

=
0(α − 1)
0(α)

NB∑
k=1

β−1k =
1

α − 1

NB∑
k=1

{R−1}kk=
tr(R−1)
ND − NB

(37)

where we have exploited the definition of the incomplete
gamma function γ (s, x) ,

∫ x
0 t

s−1e−tdt [44] and its asymp-
totic property 0(s) = limx→+∞ γ (s, x).

APPENDIX B
HESSIAN OF THE COST FUNCTION (15)
Let us check convexity of a generic summand of the cost func-
tion (18). To this end, it is sufficient to study the multivariate
function

f (x, y1, y2, . . . , yn) ,
1

A x (y1 + y2 + · · · + yn)
(38)

with A > 0, x > 0, and yi > 0, for each i ∈ {1, 2, . . . , n}.
The domain of f is therefore given byRn+1

+ , which is a convex
set. The function f is twice differentiable over its domain. It
is noteworthy that, when n = 1, the function (38) ends up to
a generic summand of (23) or (32).

Let us calculate the Hessian matrix O2 f ∈ R(n+1)×(n+1),
whose entries are the second-order partial derivatives of f at
(x, y1, y2, . . . , yn) ∈ Rn+1

+ , i.e.,

{O2 f }ij =



∂2

∂x2
f , for i = j = 1 ;

∂2

∂x ∂yj
f , for i = 1 and j ∈ {2, 3, . . . , n}

for j = 1 and i ∈ {2, 3, . . . , n} ;
∂2

∂yi ∂yj
f , for i, j ∈ {2, 3, . . . , n} .

(39)

We recall that the function f is convex [concave] if and only
if the Hessian matrix O2 f is positive [negative] semidefinite
for all the points belonging to its domain.

Using standard calculus concepts, it can be verified that

∂2

∂x2
f =

2
A x3 (y1 + y2 + · · · + yn)

(40)

∂2

∂x ∂yj
f =

1
A x2 (y1 + y2 + · · · + yn)2

(41)

∂2

∂yi ∂yj
f =

2
A x (y1 + y2 + · · · + yn)3

. (42)

We note that all the entries of O2 f are nonnegative on Rn+1
+ .

In the particular case of n = 1, it is readily seen that the
determinant of O2 f ∈ R2×2 is given by

det(O2f ) =
3

A2 x4 y41
> 0 (43)

which shows that, when n = 1, f is a strictly convex function
on R2

+. Therefore, since the sum of convex functions is
convex [39], the cost functions (23) or (32) are convex.

On the other hand, when n > 1, by resorting to the
Laplacian determinant expansion by minors, it results that

det(O2f ) =
n+1∑
j=1

(−1)j+1 {O2f }1jM1j (44)

where M1 j ∈ Rn×n is a so-called minor of O2 f , obtained
by taking the determinant of O2 f with row 1 and column
j crossed out. It can be verified that M1 j is zero, for each
j ∈ {1, 2, . . . , n + 1}. Thus, the determinant of O2 f is zero
at each point belonging to the domain of f if n > 1. This is
sufficient to infer that O2 f is neither positive nor negative
definitive, which implies in its turn that, when n > 1, f is
neither strictly convex nor strictly concave on Rn+1

+ .
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