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ABSTRACT In this paper, we present three datasets that have been built from network traffic traces using
ASNM (Advanced Security Network Metrics) features, designed in our previous work. The first dataset
was built using a state-of-the-art dataset CDX 2009 that was collected during a cyber defense exercise,
while the remaining two datasets were collected by us in 2015 and 2018 using publicly available network
services containing buffer overflow and other high severity vulnerabilities. These two datasets contain several
adversarial obfuscation techniques that were applied onto malicious as well as legitimate traffic samples
during ‘‘the execution’’ of their TCP network connections. Adversarial obfuscation techniques were used
for evading machine learning-based network intrusion detection classifiers. We show that the performance
of such classifiers can be improved when partially augmenting their training data by samples obtained
from obfuscation techniques. In detail, we utilized tunneling obfuscation in HTTP(S) protocol and non-
payload-based obfuscations modifying various properties of network traffic by, e.g., TCP segmentation,
re-transmissions, corrupting and reordering of packets, etc. To the best of our knowledge, this is the first
collection of network traffic data that contains adversarial techniques and is intended for non-payload-based
network intrusion detection and adversarial classification. Provided datasets enable testing of the evasion
resistance of arbitrary machine learning-based classifiers.

INDEX TERMS Dataset, network intrusion detection, adversarial classification, evasions, ASNM features,
buffer overflow, non-payload-based obfuscations, tunneling obfuscations.

I. INTRODUCTION
Network intrusions are one of the most dangerous threats
in the domain of information security [1], [2]. Traditionally,
there exist two orthogonal approaches to building intrusion
detectors according to the input training data: (1) misuse-
based (a.k.a., knowledge-based) detection, which models
characteristics of malicious intrusions and then match them,
and (2) anomaly-based detection, which models normal
behaviors and detects deviations from them [3]. Neverthe-
less, an increasingly popular approach in recent research
(e.g., [4]–[9]) is to build an intrusion detector that models
both malicious and legitimate behaviors at the same time,
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and we refer to it as (supervised) classification-based
approach.1

Each of these approaches has its respective pros and cons
(see Table 1). Due to increasing sophistication in the tech-
niques used by attackers, misuse-based intrusion detection
suffers from undetected attacks such as zero-day attacks or
polymorphism, enabling an exploit-code to avoid positive
signature matching of the packet payload data.

Therefore, researchers and developers are motivated to
design new methods to detect various versions of the mod-
ified network attacks including the zero-day ones. These
goals motivate the popularity of Anomaly Detection Systems
(ADS) and also the classification-based approaches in the

1Note that classifiers might be utilized even in the setting of a one-class
classification. However, a trend is to leverage themaximum information from
both legitimate and malicious samples (a.k.a., binary classification).
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Table 1. Approaches to intrusion detection.

context of intrusion detection. Anomaly-based approaches
are based on building profiles of normal users, and they try
to detect anomalies deviating from these profiles [3], which
might lead to the detection of unknown intrusions, but on the
other hand it might also generate many false positives. In con-
trast, the classification-based approaches take advantage of
both misuse-based and anomaly-based models in order to
leverage their respective advantages. The classification-based
detection methods first build a model based on the labeled
samples from both classes – intrusions and the legitimate
instances. Second, they compare a new input to the model and
select the more similar class as the predicted label. Classifica-
tion and anomaly-based approaches are capable of detecting
some unknown intrusions, but at the same time, they may be
susceptible to evasion by obfuscation techniques.

In this paper, we present Advanced Security Network Met-
rics (ASNM) datasets, a collection of malicious and benign
network traffic data. ASNM datasets include records consist-
ing of several features that express miscellaneous properties
and characteristics of TCP communications (i.e., aggregated
bidirectional flows). These features are called Advanced
Security Network Metrics (ASNM) and were designed in our
previous work [10] with the intention to distinguish between
legitimate and malicious TCP connections (i.e., intrusions
and C&C channels ofmalware). ASNM features are extracted
from tcpdump [11] traces and do not perform deep packet
inspection during their computation, which makes them
suitable for passive monitoring of (potentially encrypted)
network traffic.2

A simplified overview of constructing ASNM datasets is
depicted in Figure 1. We performed ASNM feature extraction
over three different subsets of network traffic collections,
resulting in three sub-datasets that we introduce:

• ASNM-CDX-2009 Dataset: was created from tcpdump
traces of CDX 2009 dataset [12]. The dataset misses
a few newer ASNM features and does not contain any
obfuscations of the network traffic (see Section IV-A).

2Note that ASNM features can be directly extracted from the network
traffic, and they do not perform a decryption since it would be a subject to
privacy issues.

• ASNM-TUN Dataset: was created with the intention
to evade and improve machine learning classifiers, and
besides legitimate network traffic samples, it contains
tunneling obfuscation technique [13] applied onto mali-
cious network traffic, in which several vulnerable net-
work services were exploited (see Section IV-B).

• ASNM-NPBODataset: Similar to the previous dataset,
the current dataset was created with the intention to
evade and improve machine learning classifiers. The
dataset contains non-payload-based obfuscation tech-
niques (modifying the properties of network flows)
applied onto malicious traffic and onto several samples
of legitimate traffic (see Section IV-C).

We made all ASNM datasets available for download
at http://www.fit.vutbr.cz/~ihomoliak/asnm/.

A. CONTRIBUTIONS
We made several contributions in this work, which are sum-
marized as follows:

• We formally define the process of ASNM feature extrac-
tion from network traces, and we briefly describe cate-
gories of ASNM features.

• We introduce ASNM datasets one-by-one, while in each
dataset we describe underlying network infrastructure
and vulnerable network services that were exploited
during the capture of network traces.

• In the case of ASNM-TUN and ASNM-NPBO datasets,
we also describe the methodology of executing the
obfuscations, which, first serve as a means to evade (and
improve) a detection by existing methods.

• To verify the effect of obfuscations, we test two
signature-based NIDSs on obfuscated attacks from

Figure 1. An overview of constructing ASNM datasets.
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ASNM-TUN and ASNM-NPBO datasets, and we
observe that they are successfully evaded in some cases.

• We benchmark the datasets in the experiments aimed
at the adversarial classification with a few supervised
binary classifiers, where we demonstrate the negative
effect of obfuscations on the classification performance.

• Finally, we show that augmenting the training data of
classifiers by a subset of obfuscated samples improves
their performance.

B. ORGANIZATION
The rest of the paper is organized as follows: In Section II,
we define the classification problem in intrusion detection
and describe preliminaries and terms used throughout the
paper. In Section III, we formally define ASNM features
and describe them. We introduce particular ASNM datasets
in Section IV, and then we perform statistical analysis of
the datasets in Section V. Consequently, we perform the
benchmarking of the datasets in Section VI. In Section VII
we discuss limitations of the proposed datasets as well as
directions for future work. Then, in Section VIII, we sum-
marize existing datasets applicable in the network intrusion
detection, compare them to the ASNM datasets, and finally
in Section IX we conclude the paper.

II. PROBLEM DEFINITION AND PRELIMINARIES
First, we define the scope of our work by introducing the
network connection as an elementary data object that is used
for building our datasets. Second, we describe the feature
extraction process over a network connection object, which
forms a sample/data record in our datasets. Then, we describe
the intrusion detection classification task, representing the
problem that is addressed by an arbitrary binary classifier
given a dataset containing 2-class labels. This problem repre-
sents the main challenge of ASNM datasets, but the applica-
tion of ASNMdatasets can be straightforwardly extended to a
multi-class classification problem in sub-datasets containing
multi-class labels. The full description of preliminaries is
available in the dissertation thesis [14] and [10].

A. TCP CONNECTION
Consider a session of a protocol at the application layer of
the TCP/IP stack that serves for data transfer between the
client/server based application. The interpretation of applica-
tion data exchanges between client and server can be formu-
lated, considering the TCP/IP stack up to the transport layer,
by connection c that is constrained to the connection-oriented
protocol TCP at L4, Internet protocol IP at L3, and Ethernet
protocol at L2. The TCP connection c is represented by the
tuple

c = (ts, te, pc, ps, ipc, ips,Pc,Ps),

which consists of the start and end timestamps ts and te,
ports of the client and the server pc and ps, IP addresses
of the client and the server ipc and ips, sets of packets
sent by the client Pc, and by the server Ps, respectively

(see details in Table 24 of Appendix). Sets Pc and Ps contain
a number of packets, where each of them can be interpreted
by the packet tuple

p = (t, size, ethsrc, ethdst , ipoff , ipttl, ipp, ipsum,

ipsrc, ipdst , ipdscp, tcpsport , tcpdport , tcpsum,

tcpseq, tcpack , tcpoff , tcpflags, tcpwin, tcpurp, data).

The symbols of the tuple are described in Table 25 of
Appendix. We assume that the payload of Ps and Pc
is encrypted, and thus data of these packet sets are not
accessible.

Each TCP connection has its beginning that is represented
by a three-way handshake, in which, three packets that con-
tain the same IP addresses (ips, ipd ), ports (ps, pd ), and
sequence/acknowledgment numbers (tcpseq, tcpack ) conform-
ing to the specification of RFC 7933 must be found. Similarly,
each TCP connection has its end, which is defined by a
three-way endshake or by an inactivity timeout.4

B. FEATURE EXTRACTION
At this time, we can express the characteristics of a TCP con-
nection by network connection features. The features extrac-
tion process is defined as a function that maps a connection c
into space of features F :

f (c) 7→ F,

F = (F1, F2, . . . ,Fn), (1)

where n represents the number of defined features. Each
function fi that extracts feature i is defined as a mapping of a
connection c into feature space Fi:

fi(c) 7→ Fi, i ∈ {1, . . . , n}, (2)

and each element5 of codomain Fi is defined as

e = (e0, . . . , en), n ∈ N0,

ei ∈ N | ei ∈ R | ei ∈ 0+, i ∈ {0, . . . , n},

0 = {a− z,A− Z , 0− 9}, (3)

where 0+ denotes positive iteration of the set 0. Note that
for demonstration purposes, we abstract in our formalization
from the fact that some features of a network connection c
can be extracted not only from c itself but in addition from
metadata of c that are not part of c. For example, such
metadata may represent ‘‘neighboring’’ network connections
of c, which we later refer to as a context of c (see Section III).

In general, network connection features can be instan-
tiated, for example, by discriminators of A. Moore [15],
Kyoto 2006+ features [16], basic and traffic features6 of
KDD Cup’99 dataset [17], NetFlow features [18], or ASNM
features [10], CICFlowMeter features [19], multi-layered
network traffic features from BGU [20], or connection-less
features [21].

3URL http://www.ietf.org/rfc/rfc793.txt, page 30.
4E.g., in Unix-based systems, such a timeout is equal to five days.
5Representing a particular dimension of a feature.
6Not content features, which work over payload of the network data.
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C. INTRUSION DETECTION CLASSIFICATION TASK
A data sample of the dataset Dtr refers to the vector of the
network connection features, defined in Section II-B. Then,
referring to [22] and [23], let X = V × Y be the space of
labeled samples, where V represents the space of unlabeled
samples and Y represents the space of possible labels. Let
Dtr = {x1, x2, . . . , xn} be a training dataset consisting of
n labeled samples, where

xi = (vi ∈ V , yi ∈ Y ). (4)

Consider classifier C which maps unlabeled sample v ∈ V to
a label y ∈ Y :

y = C(v), (5)

and learning algorithm A which maps the given dataset D to
a classifier C :

C = A(Dtr ). (6)

The notation ypredict = A(Dtr , v) denotes the label assigned to
an unlabeled sample v by the classifier C , build by learning
algorithm A on the dataset Dtr . Then, all extracted features
f () of an unknown connection c can be used as an input of
the trained classifier C that predicts the target label:

ypredict = A
(
Dtr , f (c)

)
, (7)

where

ypredict ∈ {Intrusion,Legitimate}. (8)

D. ADVERSARIAL OBFUSCATIONS & EVASION
OF THE CLASSIFIER
Assume a connection cm representing a malicious commu-
nication executed without any obfuscation. Then, cm can be
expressed by network connection features

f (cm) 7→ Fm = (Fm1 , F
m
2 , . . . ,F

m
n ) (9)

that are delivered to the previously trained classifier C .
Assume that C can correctly predict the target label as a
malicious one, because its knowledge base is derived from
training dataset Dtr containing features of malicious connec-
tions having similar (or the same) behavioral characteristics
as cm.

Now, consider connection c′m that represents the malicious
communication cm executed by the employment of an obfus-
cation technique that is aimed at modification of network
behavioral properties of the connection cm. An obfuscation
technique can modify Pc and Ps packet sets of the original
connection cm as well as IP addresses (ips, ipd ) and ports
(ps, pd ) of the original connection cm.

Hence, network connection features extracted for c′m are
represented by

f (c′m) 7→ Fm
′

= (Fm
′

1 , F
m′
2 , . . . ,F

m′
n ) (10)

and have different values in comparison to features Fm of the
connection cm. Therefore, we conjecture that the likelihood

of a correct prediction of c′m connection’s features Fm
′

by the
previously assumed classifier C is lower than in the case of
connection cm, whichmight cause an evasion of the detection.
Also, we conjecture that the classifier C ′ trained by learning
algorithm A on training dataset D′tr , containing obfuscated
malicious instances, will be able to correctly predict higher
number of unknown obfuscated malicious connections than
classifier C . We will demonstrate the correctness of these
assumptions in Section VI on two of our datasets.

III. ASNM FEATURES AND CONTEXT ANALYSIS
ASNM features [10] are network connection features that
describe various properties of TCP connections and were
designed with the intention to distinguish between legiti-
mate traffic and remote buffer overflow attacks.7 We studied
behavioral characteristics of remote buffer overflow attacks
in our previous work [24], and our findings inspired the
design of ASNM features. We can interpret ASNM features
like an extended protocol NetFlow [18] but describing more
than statistical properties of network connections. In addition
to NetFlow features, ASNM features represent dynamical,
localization, and, most importantly, the behavioral properties
of network connections. Moreover, some of the features uti-
lize the context of an analyzed connection c, which represents
‘‘neighboring’’ connection objects (see Section III-A).

In the following, we assume an input dataset of network
traffic traces, which is used for identification of network TCP
connection objects C = {c1, . . . , cM }, whereM is a count of
TCP connections in the dataset.

A. CONTEXT DEFINITION
We assume a dataset of TCP connection objects (as described
in Section II) Considering analyzed TCP connection ck ,
we define a sliding window sw of length τ as a set of TCP
connectionsWk that are delimited by ± τ

2 :

sw(ck , τ ) = Wk

Wk ⊆ C,

Wk = {cj},

(11)

where each TCP connection cj must satisfy the following:

cj[ts] > ck [te]−
τ

2
∧ cj[ts] ≤ ck [tf ]+

τ

2
,

cj[te] > ck [ts]−
τ

2
∧ cj[te] ≤ ck [te]+

τ

2
,

(12)

whichmeans that slidingwindow contains the union of: (1) all
TCP connections cj that contain their hand-shake within the
boundaries of sw, and (2) all TCP connections cj that contain
their end-shake within the boundaries of sw.

The next fact about each particular TCP connection ck
is an unambiguous association of it to particular sliding
window Wk . We can interpret the start time ts of the TCP
connection ck as a center of the sliding window Wk . Then,
we can denote a shift of the sliding window 1(Wj) which

7See Appendix D of [14] for the full list of ASNM features.
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Figure 2. Sliding window and the context of the connection ck [10].

is defined by start time differences of two consecutive TCP
connections in C :

1(Wj) = cj+1[ts]− cj[ts],

j ∈ {1, . . ., |C| − 1}.
(13)

Next, we define the context Kk of the TCP connection ck ,
which is a set of all connections in a particular sliding window
Wk excluding analyzed TCP connection ck :

Kk = {c1, . . . , cn} = {Wk \ ck}. (14)

Defined terms are shown in Figure 2. In the figure, the x
axis displays time, and the y axis represents TCP connections,
which are shown in the order of their occurrences. Packets
are represented by small squares, and TCP connections are
represented by a rectangular boundary of particular packets.
A bold line and bold font are used for depicting an analyzed
TCP connection ck , which has an associated sliding window
Wk and context Kk . TCP connections, which are part of the
sliding window Wk , are drawn by a full line boundary, and
TCP connections, which are not part of this sliding window,
are drawn by a dashed line boundary. We note that only a
few features from the ASNM datasets utilize context; these
features belong to the dynamic and behavioral categories (see
Section III-C).

B. ASNM FEATURE EXTRACTION
In addition to a general definition of network connection fea-
ture extraction (see Section II-B), we incorporate the context
of a TCP connection into the extraction process of ASNM
features. The ASNM feature extraction is thus defined as
a function that maps a connection ck with its context Kk =
sw(ck , τ ) into feature space F :

f (ck ,Kk ) 7→ F,

F = (F1,F2, . . . ,Fn),
(15)

where n represents the number of defined features, while the
rest of the definition is inherited from Section II-B.

C. CATEGORIZATION OF ASNM FEATURES
The list of originally proposed ASNM feature set contains
167 features (see Master’s thesis [25]), which are formally
described in [10]. However, the ASNM feature set was later
extended [14], resulting in 194 features. These 194 features
are inmany cases a result of reasonable parametrization of the
base feature functions fi(), We depict a categorization of our
feature set in Table 2 together with their counts. We decided
to determine the naming of particular categories of features
according to their principles, not according to their data repre-
sentation. In the following, we briefly describe each category.

1) STATISTICAL FEATURES
In this category of ASNM features, the statistical properties
of TCP connections are identified. All packets of the TCP
connection are considered in order to determine count, mode,
median, mean, standard deviation, ratios of some header
fields of packets, or the packets themselves. This category
of features partially uses a time representation of packets
occurrences, in contrast to the dynamic category (see below).
Therefore, it includes particularly dynamic properties of the
analyzed TCP connection, but without any context. Most of
the features in this category also distinguish inbound and
outbound packets of the analyzed TCP connection.

2) DYNAMIC FEATURES
Dynamic features were defined with the aim to examine
dynamic properties of the analyzed TCP connection and
transfer channel such as speed or an error rate. These proper-
ties can be real or simulated. Eighteen of the features consider
the context of an analyzed TCP connection. The difference
between some of the statistical and dynamic features from
a dynamic view can be demonstrated on two instances of
the same TCP connection, which performs the same packet
transfers, but in different context conditions and with differ-
ent packet retransmission and attempts to start or finish the
TCP connection. Many of the defined features distinguish
between the inbound and outbound direction of the packets
and consider the statistical properties of the packets and their
sizes, as mentioned in statistical features.

3) LOCALIZATION FEATURES
The main characteristic of the localization features category
is that it contains static properties of the TCP connection.

Table 2. Categorization of ASNM features.
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Table 3. A list of vulnerable servers in CDX 2009 dataset.

These properties represent the localization of participating
machines and their ports used for communication. In some
features, the localization is expressed indirectly by a flag,
which distinguishes whether participating machines lay in
a local network or not. Features included in this category
do not consider the context of the analyzed TCP connec-
tion, but they distinguish the direction of the analyzed TCP
connection.

4) DISTRIBUTED FEATURES
The characteristic property of the distributed features cate-
gory is the fact that they distribute packets or their lengths
to a fixed number of intervals per unit of time, specified by
a logarithmic scale (1s, 4s, 8s, 32s, 64s). The next principal
property of this category is vector representation. All these
features are supposed to work within the context of an ana-
lyzed TCP connection.

5) BEHAVIORAL FEATURES
Behavioral features represent properties associated with the
behavior of an analyzed TCP connection. Examples include
legal or illegal connection closing, the polynomial approx-
imation of packet lengths in a time domain or an index
of occurrence domain, count of new TCP connections after
starting an analyzed TCP connection, coefficients of Fourier
series with the distinguished direction of an analyzed TCP
connection, etc.

IV. ASNM DATASETS
In this section, we detail three different datasets that have
been built using ASNM features. The first of them was built
using an existing dataset of network traffic traces, while the
remaining two were collected by us, and they contain several
adversarial obfuscation techniques that were applied onto
malicious as well as legitimate samples during ‘‘the execu-
tion’’ of particular network connections. All intrusions con-
tained in our dataset represent targeted attacks on a particular
service running on a host, and they do not contain any Denial
of Service (DoS) or Distributed Denial of Service (DDoS)
attacks.

A. ASNM-CDX-2009 DATASET
ASNM-CDX-2009 dataset was build from CDX-2009
dataset [26], which was introduced by Sangster et al. [12]
and it contains data in tcpdump format as well as SNORT [27]
intrusion prevention logs, as relevant sources for our purpose.

Table 4. ASNM-CDX-2009 dataset distribution.

The CDX 2009 dataset was created during the network
warfare competition, in which one of the goals was to gen-
erate a labeled dataset. By labeled dataset, the authors mean
tcpdump traces of all simulated communications and SNORT
log with information about occurrences of intrusions, deemed
as the ground truth. Network infrastructure contained four
servers with four vulnerable services (one per each server),
while the authors provided two collections of network traces:
1) network traces captured outside the West Point network
border and 2) network traces captured by National Security
Agency (NSA). The services that run on the hosted servers
together with IP addresses of the servers are listed in Table 3.

Two types of IP addresses are shown in this table:
• Internal IP addresses – corresponding to the SNORT
log,

• External IP addresses – corresponding to a TCP net-
work traces captured outside the West Point network
border.

Note that specific versions of services described in [12] were
not announced. We found out that SNORT log can be asso-
ciated only with data capture outside of West point network
border and only with significant timestamps differences –
approximately 930 days. We have not found any association
between SNORT log and data capture performed byNSA.We
focused only on buffer overflow attacks found in SNORT log,
and we performed a match with the packets contained in the
West point network border capture.

Despite all the efforts, we matched only 44 buffer over-
flow attacks out of 65 entries in SNORT log. To correctly
match SNORT entries, it was necessary to remap external
IP addresses to internal ones, because SNORT detection was
performed in external network and network traces contain
entries with internal IP addresses. We found out that in CDX
2009 dataset, buffer overflow attacks were performed only on
two services – Postfix Email and Apache Web Server.

The buffer overflow attacks that were matched with data
capture have their content only in two files with network
traces:
• 2009-04-21-07-47-35.dmp
• 2009-04-21-07-47-35.dmp2

Due to the high number of all packets (approx. 4 mil.) in all
files of network traces, we decided to consider only these two
files for the purpose of extraction of both malicious and legit-
imate samples (which together contain 1, 538, 182 packets).
We also noticed that network data density was increased dur-
ing the time when the attacks were performed. Consequently,
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Figure 3. A setup of virtual network used in ASNM-TUN dataset.

we made another reduction of all packets considered so far,
which filtered enough temporal neighborhood of all attacks
occurrences, and at the same time, included a sufficient num-
ber of legitimate TCP connections. In the result, we used
204 953 packets for the extraction of ASNM features.

A distribution of malicious and legitimate samples within
the obtained dataset is presented in Table 4. Beside two
services that contained buffer overflow vulnerabilities, our
dataset also contains samples representing other network traf-
fic, which we consider as legitimate since no match of its
metadata with SNORT log was determined.

1) LABELING
ASNM-CDX-2009 dataset contains two types of labels that
are enumerated by increasing order of their granularity in the
following:
• label_2: is a two-class label, which indicates whether
an actual sample represents a network buffer overflow
attack or legitimate traffic.

• label_poly: is composed of two parts that are delimited
by a separator: (a) a two-class label where legitimate
and malicious communications are represented by sym-
bols 0 and 1, respectively, and (b) an acronym of network
service. This label represents the type of communication
on a particular network service.

This dataset was for the first time used and evaluated in [10].

B. ASNM-TUN DATASET
ASNM-TUN8 dataset was build in laboratory conditions9

using a custom virtual network architecture (see Figure 3),
where we simulated malicious TCP connections on a few
selected vulnerable network services [13]. The selected vul-
nerabilities are presented in Table 5, which also contains
CommonVulnerabilities and Exposures (CVE) IDs andCom-
mon Vulnerability Scoring System (CVSS) values. A selec-
tion of the vulnerable services was aimed at a high severity
of their successful exploitation, namely a presence of buffer

8The name is derived from TUNelling obfuscations.
9Note that a part of the legitimate traffic samples was extracted from

anonymized metadata collected from a real network.

Table 5. A list of vulnerable services in ASNM-TUN dataset.

overflow vulnerabilities. The exploitation of such vulnerabil-
ities usually led to a remote shellcode execution through an
established backdoor connection, while as a consequence of
successful exploitation, the attacker was able to get the root
access. The details about each vulnerability and its exploita-
tion are briefly described in the following listing:
• Apache web server with mod_ssl plugin 2.8.6:
This attack exploits a buffer overflow vulnerability
in mod_ssl plugin of the Apache web server. The
plugin does not correctly initialize memory in the
i2d_SSL_SESSION function, which allows a remote
attacker to exploit a buffer overflow vulnerability in
order to execute arbitrary code via a large client certifi-
cate that is signed by a trusted Certification Authority,
which produces a large serialized session [28]. This
allows remote code execution and modification of any
file on a compromised system [29]. The vulnerable ver-
sions of the plugin are in range 2.7.1-2.8.6.

• BadBlue web server 2.72b: The second attack
exploits a stack-based buffer overflow vulnerability
in PassThru functionality of ext.dll in BadBlue
2.72b and earlier [30]. In the attack performing phase,
the specially crafted packet with a long header is sent,
which leads to an overflow of processing buffer [31]

• Microsoft DCOM RPC: The third attack exploits a
vulnerability in Microsoft Windows DCOM Remote
Procedure Call (DCOMRPC) service ofMicrosoftWin-
dows NT 4.0, 2000 (up to Service Pack 4), Server 2003,
and XP [32]. This vulnerability allows a remote attacker
to execute an arbitrary code after a buffer overflow in
the DCOM interface. The vulnerability was originally
found by the Last Stage of Delirium research group
and has been widely exploited since then [33]. The
vulnerability is well documented and was used, e.g.,
by the Blaster worm.

• Samba service 2.2.7: The last attack exploits a buffer
overflow vulnerability in call_ trans2open func-
tion in trans2.c of Samba 2.2.x before 2.2.8a, 2.0.10,
earlier versions than 2.0.x and Samba-TNG before
0.3.2 [34]. This vulnerability allows a remote attacker
to execute arbitrary code. An exploit code sends mal-
formed packets to a remote server in batches [35].
Packets differ in one shell-code address only because
the return address depends on versions of Samba and
host operating systems.

1) ADVERSARIAL MODIFICATIONS
We employed tunneling of malicious network traffic inside
of HTTP and HTTPS protocols, serving as obfuscation
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techniques when exploiting vulnerable services. The
tunneling obfuscation modifies Pc and Ps packet sets
(see Section II-A) of the original malicious connection cm by
wrapping each original packet into a new one. Assuming the
background from Section II-D, the tunneling (i.e., wrapping)
may cause fragmentation of IP packets, and thus it can also
modify the number of packets in both packet sets Pc and
Ps. Also, the obfuscation modifies IP addresses (ipc, ips)
and ports (pc, ps) of the original connection. Symbols of the
packet tuple whose values are sensitive to the obfuscation
include all defined fields, as tunneling obfuscation creates
new TCP/IP stack with unique values of L2, L3, L4 headers
as well as new content of application layer data. All these
modifications, especially modifications of Pc and Ps of the
connection cm, cause alteration of the original network con-
nection features’ values (see Section II-D).

For the purpose of simulating real network conditions,
we executed each malicious and legitimate network commu-
nication four times with four different network traffic modifi-
cations. Network traffic modifications differ in the alteration
degree of the network traffic, and we divide them into four
categories:

(a) No Modification: The first category represents refer-
ence output without any modification. All experiments
ran on the same host machine to minimize deviations
among different tests.

(b) Traffic Shaping: The second category is dedicated to
the simulation of traffic shaping. Therefore, all pack-
ets were forwarded with higher time delays. For this
purpose, the special gateway machine with a limited
processor’s performance was used. This machine was
also fully loaded to emulate slower packets processing
than in the first scenario.

(c) Traffic Policing: The third category is supposed to sim-
ulate traffic policing when some of the packets were
dropped during the processing on the network gateway
node. In this case, a custom packet dropper was used
on the gateway node, and 25% of packets were dropped,
resulting in output that contained re-transmitted packets.

(d) Corrupted Traffic: The fourth category represents
transmission on an unreliable network channel; thus,
25% of packets were corrupted during processing on the
network gateway node.

2) LEGITIMATE NETWORK TRAFFIC
Legitimate samples of the dataset were collected from two
sources. The first source represents a legitimate traffic simu-
lation in our virtual network architecture and also employed
network traffic modifications for the purpose of simulating
real network conditions. As the second source, common
usage of selected services was captured in the campus net-
work in accordance with policies in force. In the obtained
data, no content of packets was captured, and all collected
metadatawas anonymized. Further, we filter out datamatched
on high severity alerts by signature-based Network Intrusion

Table 6. ASNM-TUN dataset distribution.

Detection Systems (NIDSs) Suricata [36] and SNORT [27]
through Virus Total API. This step assured that legitimate
traffic does not contain any malicious data. Note that SNORT
was equipped with Sourcefire VRT ruleset, and SURICATA
utilized Emerging Threats ETPro ruleset. The final compo-
sition of the dataset after extraction of ASNM features is
depicted in Table 6.

3) LABELING
ASNM-TUN dataset contains four types of labels that are
enumerated by increasing order of their granularity in the
following:

• label_2: is a two-class label, which indicates whether
an actual sample represents a network buffer overflow
attack or a legitimate communication.

• label_3: is a three-class label, which distinguishes
among legitimate traffic (symbol 3), direct attacks (sym-
bols 1), and obfuscated network attacks (symbol 2).

• label_poly: is a label that is composed of 2 parts:
(a) a three-class label, and (b) acronym of a network
service. This label represents a type of communication
on a particular network service.

• label_poly_s: is composed of 3 parts: (a) a three-class
label, (b) an acronym of network service, and (c) a net-
work modification technique employed. This label has
almost the same interpretation as the previous one, but
in addition, it introduces a network traffic modifica-
tion technique (identified by a letter from the previous
listing).

4) TESTING WITH SIGNATURE-BASED NIDS
To investigate the effect of the tunneling obfuscation on
signature-based NIDSs, we performed detection by SNORT
and SURICATA through VirusTotal API [37]. SNORT was
equipped with Sourcefire VRT ruleset, and SURICATA uti-
lized Emerging Threats ETPro ruleset. The results of direct
attacks’ detection by both NIDSs are shown in Table 7. Note
that high priority rules detected 93 direct attacks on Apache
service in both NIDSs. In addition, 4 undetected direct attack
instances (i.e., TCP connections) occurred almost at the same
time as some of the detected attack instances, which means
that these 4 TCP connections are part of the same attacks that
were already detected (we verified this by checking the value
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Table 7. Detection of direct attacks in ASNM-TUN dataset by SNORT and
SURICATA.

of the label (i.e., label_poly) that matched the attack on the
same service than the other one already detected). In addition,
we emphasize that an attack might consist of multiple TCP
connections, and not all of them might raise an alert. Also,
we can see that five instances of direct attacks were not
detected by SNORT nor SURICATA. These five instances
utilized network trafficmodifications (c) and (d), which likely
influenced the detection rate of both NIDSs; hence, they give
an intuition for the adversarial obfuscation techniques utilized
in the last ASNM dataset (see Section IV-C). The resulting
detection rates of direct attacks look the same in both NIDSs,
but there were differences in fired alerts during the exploita-
tion of Apache service. Unlike SNORT, SURICATA had not
detected any occurrence of buffer overflow, nor shellcode,
nor remote command execution but instead fired high priority
alerts related to potential corporate privacy violation:

• ET POLICY
Possible SSLv2 Negotiation in Progress
Client Master Key SSL2_RC4_128_WITH_MD5,

which we decided to consider as correct detection. If we were
to not consider them as correctly detected, then SURICATA
would not detect any direct attack on the Apache service.

Next, we have performed exploitation of each vulnerable
service using the tunneling obfuscation, while scanning the
network by aforementioned NIDSs. The obtained results are
depicted in Table 8, which distinguishes between tunneling
obfuscation performed through HTTP and HTTPS protocols.
We can see that an average detection rate per service is signif-
icantly lower for obfuscated attacks than in the case of direct
attacks, and thus tunneling obfuscation was partially capable
of evading detection by utilized NIDSs. Regarding tunneling

Figure 4. A setup of virtual network used in ASNM-NPBO dataset.

through the HTTP protocol, both SNORT and SURICATA
achieved the same low detection rate for all classes of attacks.

The situation is slightly different in the case of tunnel-
ing through the HTTPS protocol. The SNORT achieved an
average detection rate (ADR) per class equal to 68.75% and
SURICATA only 23.25%. We found out the same fact about
high priority rules fired by SURICATA on the exploitation
of Apache service as in the case of direct attacks detection –
neither buffer overflow, nor shellcode, nor remote command
execution rules were matched, and thus we decided to accept
the previously mentioned potential corporate privacy viola-
tion alert as correct detection again. If we were to not accept
it, then SURICATA would not detect any tunneled attack
on Apache service. Also note that SURICATA fired one
non-high-priority alert classified as potentially bad traffic in
several instances of attacks tunneled through HTTPS, which
exploited BadBlue, DCOM and Samba services:
• ET POLICY

FREAK Weak Export Suite
From Client (CVE-2015-0204).

But we have not considered it as correct detection due to
the low priority of the alert as well as the scope of cor-
responding CVE-2015-0204 is only related to the client
code of OpenSSL. The plus notation in Table 8, similar to
Table 7, denotes undetected attacks that occurred almost at
the same time as some other correctly detected attacks, and
thus are considered as their parts. Concluding the results of
NIDSs detection, we can state that the proposed tunneling
obfuscation technique was successful in evading the NIDSs
used since a high number of obfuscated attacks were not
detected in comparison to the case where obfuscations were
not employed. On the other hand, we emphasize that SNORT
has detected themost of direct attacks onApache service even
though it was encrypted.10 This indicates that VirusTotal may
utilize a very paranoid rule set, which causes false positives.
Hence, the results of the analysis through VirusTotal API are
arguable.

10Note that SNORT does not decrypt the traffic but just utilize some
patterns presented in the network and transport layers to fire an alert.
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Table 8. Detection of obfuscated attacks in ASNM-TUN dataset by SNORT and SURICATA.

C. ASNM-NPBO DATASET
ASNM-NPBO11 dataset was built in laboratory conditions
using a virtual network architecture (see Figure 4) consisting
of three vulnerable machines and the attacker’s machine.

All virtual machines were configured with private static
IP addresses in order to enable easy automation of the
whole exploitation process. Our testing network infrastruc-
ture consisted of the attacker’s machine equipped with
Kali Linux and vulnerable machines that were running
Metasploitable 1, 2 [38], and Windows XP with SP 3.
We aimed at the selection of vulnerable services with the high
severity of their successful exploitation leading to remote
shellcode execution through an established backdoor com-
munication. All selected vulnerable services are depicted
in Table 9, which also contains CVE IDs and CVSS severity
score values. The details about each vulnerability and its
exploitation are briefly described in the following:
• Apache Tomcat 5.5: First, a dictionary attack was
executed in order to obtain access credentials into the
applicationmanager’s instance [39]. Further, the server’s
application manager was exploited for the transmission
and execution of malicious code [40].

Table 9. A list of vulnerable services in ASNM-NPBO dataset.

11The name is derived from Non-Payload-Based Obfuscations.

• Microsoft SQL Server 2005: A dictionary attack
was employed to obtain access credentials of MSSQL
user [41] and then the procedure xp_cmdshell
enabling the execution of an arbitrary code was
exploited [42].

• Samba 3.0.20-Debian: A vulnerability in Samba ser-
vice enabled the attacker of arbitrary command exe-
cution, which exploited MS-RPC functionality when
username_map_script [43] was allowed in the
configuration. There was no need for authentication in
this attack.

• Server Service of Windows XP: The server service
enabled the attacker of arbitrary code execution through
crafted RPC request resulting in stack overflow during
path canonicalization [44].

• PostgreSQL 8.3.8: A dictionary attack was executed in
order to obtain access credentials into the PostgreSQL
instance [45]. Standard PostgreSQL Linux installation
had write access to /tmp directory, and it could call
user-defined functions (UDF). UDFs utilized shared
libraries located on an arbitrary path (e.g., /tmp). An
attacker exploited this fact and copied its own UDF code
to /tmp directory and then executed it [46].

• DistCC 2.18.3: A vulnerability enabled the attacker
remote execution of an arbitrary command through com-
pilation jobs that were executed on the server without
any permission check [47].

1) ADVERSARIAL MODIFICATIONS
We proposed several non-payload-based obfuscation tech-
niques [48] when exploiting vulnerable network services as
well as during the execution of legitimate communications
on the services. The proposed non-payload-based obfuscation
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Table 10. Non-payload-based obfuscation techniques with parameters
and IDs.

techniques are described in Table 10. Assuming the back-
ground from Section II-D, the proposed non-payload-based
obfuscation techniques can modify Pc and Ps packet sets
of the original connection cm by insertion, removal, and
transformation of the packets. Symbols of the packet tuple
(see Table 25) whose values are sensitive to the obfuscations
include: t, size, ipoff , ipsum, tcpsum, tcpseq, tcpack , tcpoff ,
tcpflags, tcpwin, tcpurp and data.12 The modifications of Pc
and Ps of the connection cm can cause alteration of values of
the original network connection features Fm to new ones (see
Section II-D).

Then we built an obfuscation tool [23] that morphs net-
work characteristics of a TCP connection at network and
transport layers of the TCP/IP stack by applying one or a
combination of several non-payload-based obfuscation tech-
niques. Execution of direct communications (non-obfuscated
ones) is also supported by the tool as well as capturing
network traffic related to communication. The tool is capable
of automatic/semi-automatic run and restoring of all modi-
fied system settings and consequences of attacks/legitimate

12Note the data field is sensitive to the obfuscations only in the manner
of damaging or splitting the original packet’s data.

Figure 5. Behavioral state diagram of the obfuscation tool [23].

communications on a target machine. After the successful
execution of each desired obfuscation on the selected ser-
vice, the output of the tool contains several network packet
traces associated with pertaining obfuscations. The behav-
ioral state diagram of the obfuscation tool is depicted in
Figure 5.

We applied our obfuscation tool for automatic exploitation
of all enumerated vulnerable services while using the pro-
posed obfuscations. When exploitation leading to a remote
shell was successful, simulated attackers performed simple
activities involving various shell commands (such as listing
directories, opening, and reading files). An average number
of issued commands was around 10, and text files of up
to 50kB were opened/read. Note that we labeled each TCP
connection representing dictionary attacks as legitimate ones
due to two reasons: 1) from the behavioral point of view, they
independently appeared just as unsuccessful authentication
attempts, which may occur in legitimate traffic as well,
2) more importantly, we employed ASNM features whose
subset involves the context of an analyzed TCP connection
for their computation – i.e., ASNM features capture relations
to other TCP connections initiated from/to a corresponding
service.

Table 11. ANSM-NPBO dataset distribution.
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Table 12. Detection of direct attacks in the ASNM-NPBO dataset by
SNORT and SURICATA.

2) LEGITIMATE NETWORK TRAFFIC
The legitimate samples of this dataset were collected from
two sources:

• A common usage of all previously mentioned services
was obtained in an anonymized form, excluding the
payload, from a real campus network in accordance with
policies in force. Analyzing packet headers, we observed
that a lot of expected legitimate traffic contained mali-
cious activity, as many students did not care about up-
to-date software. Therefore, we filtered out network
connections yielding high and medium severity alerts by
signature-based NIDS – Suricata and SNORT – through
Virus Total API [37].

• The second source represented legitimate traffic sim-
ulation in our virtual network architecture and also
employed all of our non-payload-based obfuscations for
the purpose of partially addressing overstimulation in
adversarial attacks against IDS [49], and thus making
the classification task more challenging. However, only
109 TCP connections were obtained from this stage –
this was caused by the fact that services such as Server
and DistCC were difficult to emulate.13 Simulation of
legitimate traffic was aimed at various SELECT and
INSERT statements when interacting with the database
services (i.e., PostgreSQL, MSSQL); several GET and

13Note that additionally to those 109 TCP connections that were explicitly
simulated, other 2252 TCP connections from obfuscated dictionary attacks
were also considered as legitimate, and thus also helped in achieving a
resistance against the overstimulation attacks.

Table 13. Detection of obfuscated attacks in ASNM-NPBO dataset by
SNORT and SURICATA.

POST queries to our custom pages as well as down-
loading of high volume data when interacting with our
HTTP server (i.e., Apache Tomcat); and several queries
for downloading and uploading small files into Samba
share.

The class distribution of the final dataset after extraction of
ASNM features is summarized in Table 11

3) LABELING
ASNM-NPBO dataset contains four types of labels that are
enumerated by increasing order of their granularity in the
following:
• label_2: is a two-class label, which indicates whether
an actual sample represents a network buffer overflow
attack or a legitimate communication.

• label_3: is a three-class label, which distinguishes
among legitimate traffic (symbol 3), direct attacks (sym-
bols 1), and obfuscated network attacks (symbol 2).

• label_poly: is a label that is composed of 2 parts:
(a) a three-class label, and (b) acronym of a network
service. This label represents a type of communication
on a particular network service.

• label_poly_o is the last label, which is composed of
3 parts: (a) three-class label, (b) employed obfuscation
technique, and (c) acronym of network service. The label
has almost the same interpretation as label_poly but
moreover introduces obfuscation technique employed
(identified by ID from Table 10) into all obfuscated
attack samples.

112438 VOLUME 8, 2020



I. Homoliak et al.: ASNM Datasets: A Collection of Network Attacks for Testing of Adversarial Classifiers and Intrusion Detectors

4) TESTING WITH SIGNATURE-BASED NIDS
To investigate the effect of the proposed non-payload-based
obfuscations on signature-based NIDSs, we performed detec-
tion by SNORT and SURICATA in a similar manner as we did
in the case of the tunneling obfuscations (see Section IV-B),
while the same ruleset was employed.

First, we let NIDSs inspect direct attacks that exploit the
current network vulnerabilities. The results of the inspec-
tion summarize the detection properties of SNORT and
SURICATA, and are depicted in Table 12. We can see in
the tables that SNORT overcame SURICATA and correctly
detected 100.00% of direct attacks. However, only 33 direct
attacks on Apache service were detected by high priority
rules of SNORT, and 24 attacks were undetected. Despite
it, we considered these attacks as correctly detected, as they
occurred almost at the same time as other correctly predicted
direct attacks, and thus might be a part of their execution. In
the case of SURICATA, the only one such undetected direct
attack occurred. Nevertheless, unlike SNORT, SURICATA
did not fire any alert representing buffer overflow, shellcode,
or remote command execution, but instead fired combination
of high priority alerts related to potential corporate privacy
violation:

• ET POLICY
Incoming Basic Auth Base64 HTTP
Password detected unencrypted

• ET POLICY
Outgoing Basic Auth Base64 HTTP
Password detected unencrypted

• ET POLICY
HTTP Request on Unusual Port Possibly Hostile

• ET POLICY
Internet Explorer~6~in use
Significant Security Risk,

which we decided to consider as correctly detected. If we
were not to consider them as correctly detected, then
SURICATA would not detect any attack on the Apache
service.

Next, we analyzed the detection capabilities of both NIDSs
on obfuscated attacks and the results are depicted in Table 13.
Comparing the detection rate of SNORT and SURICATA
on obfuscated attacks, we can conclude that SNORT over-
came SURICATA again and the ratio of their correct detec-
tion was almost the same as in the case of direct attacks
(see Table 12). The only difference occurred during the
exploitation of a vulnerability in Server service, where two
instances of obfuscated attacks were not detected by any
NIDS. These two instances utilized obfuscations with IDs
(f) and (g), both from a category of unreliable network traffic
channel simulation techniques (see Table 10). There were
also several undetected obfuscated attacks on Apache ser-
vice in both NIDSs, but we were able to track their occur-
rences due to the label in the dataset, associating them as a
part of other correctly detected attacks; hence, the detection
rate for Apache service achieved 100.00% for both NIDSs.
Regarding Apache service, SURICATA once again did not
fire any alert detecting malicious content, however, it fired

the previously mentioned combination of high priority alerts
stating corporate privacy violation, which we, once again,
considered as a correct detection. Also, note that SURICATA
fired one non-high-priority alert classified as potentially bad
traffic in all instances of direct and obfuscated attacks exploit-
ing PostgreSQL service:
• ET POLICY
Suspicious inbound to PostgreSQL port 5432.

However, we did not consider it as a correct detection due
to the low priority of the alert. As discussed in Section IV-B,
VirusTotal likely uses a paranoid rule set, and thus it fired
alerts that might contain false positives. Comparing fired
alerts before and after obfuscation, we can see that utilized
NIDSs detected most of the attacks obfuscated by non-
payload-based obfuscations, although the evasion of these
NIDSs was not as successful as in the case of tunneling
obfuscations. On the other hand, there were a few cases of the
successful evasion of these NIDSs: 2 instances of the Server
service for SNORT (see Table 13a) and 2 instances of the
same service for SURICATA (see Table Table 13b).

V. STATISTICAL ANALYSIS
In this section, we discuss the results of the statistical anal-
ysis that we performed on all introduced datasets. In detail,
our datasets are analyzed using major statistical methods:
(1) skewness for measuring data asymmetry [50], (2) kur-
tosis for measuring the height and sharpness of central
peak in the probability distribution of a feature [50], and
(3) Kolmogorov-Smirnov (K-S) test [51] is used to compare
the feature distribution to the normal distribution.

Before applying these statistical methods, all values are
standardized using Z-score transformation to ensure that all
features are in a standard format and meet a confidence
interval. In the literature, it is common to see the split of
the dataset into testing and training subsets when doing sta-
tistical analysis (e.g., [17], [52]–[54]). However, since we
do not explicitly specify the training and testing sets in the
ASNM datasets, the split of the datasets in our statistical
analysis is based on the attribute label_poly, which distin-
guishes between legitimate and malicious traffic, while in
the case of datasets with obfuscated traffic it furthermore
takes obfuscation into account as a splitting criterion. Hence,
we split ASNM-CDX-2009 dataset for the purpose of statis-
tical analysis into two subsets: legitimate traffic, malicious
traffic, while we split ASNM-NBPOv2 and ASNM-TUN
datasets into three subsets: legitimate traffic, malicious traf-
fic, malicious obfuscated traffic. We performed the statistical
analysis by the SPSS tool [55], where the tool provided output
only for features with at least one non-zero value.

A. ASNM-CDX-2009 DATASET
Figure 6 shows statistics for ASNM-CDX-2009 dataset. The
results demonstrate that skewness and kurtosis of the features
extracted from legitimate traffic is more significant than in
the case of malicious traffic. This phenomenon especially
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occurs in features based on the polynomial approximations in
time domain (features 430-520) since normal traffic haswider
spread of session in time while malicious traffic represents
just short-lived sessions leading to particular exploitation
of the service. Note that the positive and negative values
in this range of features are caused by the alteration of
the incoming/outgoing packets in the computation of these
features. Kurtosis also indicates that the outliers are more
common in the normal traffic than malicious one, which
occurs due to the same reason as mentioned above. We can
observe from the K-S test that similarity with the normal
distribution ranges from 0.1 to 0.5, which means that both
classes have low similarity with the normal distribution; addi-
tionally, we observe that the legitimate traffic is slightly more
similar to the normal distribution than malicious traffic.

B. ASNM-TUN DATASET
Figure 7 shows statistics for ASNM-TUN dataset, where in
addition to the malicious and legitimate traffic, we depict
obfuscated malicious traffic. In this case, the skewness and
kurtosis of malicious and legitimate traffic is mostly in the
similar range. This can be explained by the dataset composi-
tion: the dataset contains a relatively small amount of legit-
imate traffic in contrast to malicious traffic and in contrast
to remaining two datasets. Hence, from the statistical point-
of-view, the diversity of normal traffic is lower than in the
remaining two datasets. Further, we observe that the obfus-
cated malicious traffic generally has lower skewness and kur-
tosis than the non-obfuscated malicious traffic. We attribute
this observation to the fact that tunneling obfuscation intro-
duces a constant size data that wrap the malicious traffic (into
HTTP(S) tunnels), and thus cause a smaller variability of
some features. This is manifested in the smaller number of
outliers (i.e., kurtosis) and the shifted mean toward the tail
of the feature distributions (i.e., skewness). From the K-S
test, we see that all three classes of traffic have a low sim-
ilarity with the normal distribution, where the most similar
is legitimate traffic. Between two malicious traffic classes,
the higher similarity with the normal distribution occurs in
the obfuscated case due to a constant wrapping overhead
that is a part of this obfuscation. Note that the goal of the
obfuscation is to be more similar to the legitimate traffic,
which is naturally the most similar to the normal distribution.
Hence, the goal was at some extent met.

C. ASNM-NPBO DATASET
Figure 8 shows statistics for ASNM-NPBO dataset, depict-
ing three traffic classes. Regarding skewness and kurtosis,
the observations are similar to the ASNM-CDX-2009 dataset.
When comparing malicious and obfuscated malicious traffic
together, we see a different phenomenon in contrast to the
ASNM-TUN dataset. In the current dataset, obfuscated mali-
cious traffic often evinces higher skewness and kurtosis. This
phenomenon is likely caused by the high diversity of obfus-
cations used in this dataset. In contrast, the ASNM-TUN
dataset always utilizes a single type of obfuscation, causing

Figure 6. Statistics of the ASNM-CDX-2009 dataset.

a lower diversity of obfuscated malicious traffic. From the
K-S test, we see that all three classes of traffic have a low
similarity with the normal distribution, where the most sim-
ilar appears to be obfuscated malicious traffic. Note that the
goal of obfuscated malicious traffic is to be more similar to
the legitimate traffic and less similar to the malicious traffic,
which was to some extent met in the case of this dataset.
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Figure 7. Statistics of the ASNM-TUN dataset.

VI. BENCHMARKING THE DATASETS
We conducted several machine learning experiments with
ASNM datasets using RapidMiner [56], and we summa-
rize them in this section. We emphasize that the following
machine learning experiments are not exhaustive since it is
not the intention of this work. On the contrary, we provide

Figure 8. Statistics of the ASNM-NPBO dataset.

the results only as a baseline, while our main intention is
as follows: (1) we demonstrate that ASNM features have
enough discrimination rate required for the classification of
the malicious and legitimate traffic, (2) we show that machine
learning models are prone to evasion of their detection by
proposed obfuscation techniques, and finally (3) we show
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that evaded classifiers can be improved by training data
augmentation.

A. FEATURE SELECTION
The goal of feature selection is to reduce the dimensionality
of data by removing irrelevant features [57], and thus to
speed up or improve the classification. In general, the feature
selection has two variants [58]: (1) the filter model, and (2) the
wrapper model. The filter model removes features based on
their intrinsic characteristics and does not require a classi-
fier. The wrapper model requires a classifier, and thus it is
more computationally expensive than the filter model; more-
over, the selected features are biased toward the classifier
used.

We consider the filter model as part of the preprocessing,
where we remove all zero-value features and reduce fea-
tures that correlate by more than 95%. The wrapper model
might employ optimal or suboptimal approaches. An optimal
approach is to do an exhaustive search, which guarantees to
find the optimal solution, but its disadvantage is its computa-
tional cost, thus it is rarely used in the practice. There are a
few methods that can obtain the optimal feature set without
exhaustive search (e.g., by genetic algorithms); however, they
are still computationally expensive. Therefore, suboptimal
search methods are more common in practice. The well
known suboptimal sequential methods for feature selection
are: (1) forward feature selection (FFS), which starts with a
single feature and in each generation adds the new feature that
improves the target metric in the highest extent; (2) backward
elimination, which starts with all features included and step-
by-step eliminates a single feature that causes the lowest
deterioration of the target metric. Both of the approaches
have their pros/cons, and their suitable use cases. Since our
intention is to provide only initial results demonstrating the
discrimination capability of ASNM features as well as the
effect of obfuscations, we opt for FFS, which is the fastest
and cheapest approach.

The next parameter of the feature selection is the tar-
get metric, such as accuracy, F1-measure, average recall,
average precision, chi-square, information gain, correlation
coefficient, etc. In our case, we opt for F1-measure since
it copes with the imbalances of class distribution in our
datasets.

B. ASNM-CDX-2009 DATASET
1) FORWARD FEATURE SELECTION
First, we used 5-fold cross-validation and forward feature
selection (FFS) on top of the Naive Bayes classifier with
kernel functions for the estimation of density distribution,
which represents a non-parametric estimation method.14

In FFS, we accepted one iteration without improvement as
wewanted to avoid the selection process from getting stuck in
local extremes. The maximal number of selected features was

14Note that in the Naive Bayess classifier from RapidMiner [56], we used
greedy kernel density estimation method with minimum bandwidth 0.1 and
maximum number of kernels equal to 10.

Table 14. A comparison of several classifiers on ASNM-CDX-2009
dataset. The results were obtained with 100 times repeated 5-fold
cross-validation.

limited to 20, and we used the binary label of the dataset (i.e.,
label_2) for this experiment. The resulting set of selected
features by FFS is presented in Table 27 of Appendix.

2) COMPARISON OF SEVERAL CLASSIFIERS
Next, we compared three non-parametric classifiers from
RapidMiner by 5-fold cross-validation while using a subset
of ASNM features obtained by FFS in the above experiment.
We repeated the cross-validation 100 times to obtain statisti-
cally significant results, expressed by the mean and standard
deviation. The results for individual classifiers are presented
in Table 14. First, we utilized the Naive Bayes classifier with
kernel density estimation, minimum bandwidth equal to 0.1,
and maximum number of kernels equal to 10. Next, we evalu-
ated the performance of the SVMclassifier (based on libsvm),
which utilized a radial basis function as the non-linear kernel,
the cost parameter equal to 10.0, and γ parameter equal to 1.0.
In the case of the decision tree classifier, we utilized the Gini
index as a selection criterion for the splitting of attributes.
The decision tree had pruning enabled and we constrained
the maximal depth of the tree to 8 levels since deep trees do
not generalize data well, hence suffer from over-fitting.

C. ASNM-TUN DATASET
1) FORWARD FEATURE SELECTION
Similar to the case of the previous dataset, we started again
with the FFS method using the same Naive Bayes classi-
fier and 5-fold cross-validation, while we allowed accep-
tance of one FFS iteration without improvement to avoid
the selection process becoming stuck in local extremes.
All cross-validation experiments have been adjusted to
employ stratified sampling during assembling of folds, which
ensured equally balanced class distribution of each fold.
We performed two-class prediction, and thus we used the
label denoted as label_2.

The experiment consisted of two executions of FFS. In the
first execution, we took legitimate traffic and direct attack
entries as an input, which represented the case where a classi-
fier was trained without knowledge about obfuscated attacks.
In the second execution, we took the whole dataset as the
input – consisting of legitimate traffic, direct attacks, obfus-
cated attacks – therefore, representing the case in which the
classifier was aware of obfuscated attacks. The selected fea-
tures of both executions are depicted in Table 26 of Appendix.
The penultimate column of the table (i.e., FFS DOL) denotes
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Table 15. A comparison of several classifiers on the subset of ASNM-TUN
dataset containing only direct attacks and legitimate traffic. The results
were obtained with 100 times repeated 5-fold cross-validation.

the selected features where the whole dataset was utilized for
the FFS, and the last column (i.e., FFS DL) denotes the case
where only direct attacks and legitimate traffic were taken
into account.

Since some features were inconvenient for comparison
of synthetic attacks with legitimate traffic captured in a
real network, these features were removed from the dataset
in the pre-processing phase of our experiment. The exam-
ples include TTL-based features, IP addresses, ports, MAC
addresses, the occurrence of source/destination host in the
monitored local network, some context-based features, etc.

We note that several mutual features were selected in
both cases, which means they provided a value regardless of
whether obfuscation was performed or not. Almost all of the
following experiments will use the feature set obtained from
the second execution (i.e., FFS DOL features), as we consider
them as more appropriate for general behavior representation
of both kinds of attacks.

2) NORMAL OPERATION
To evaluate the performance of classifiers under normal cir-
cumstances (not considering obfuscated attacks), we repeated
5-fold cross-validation 100 times with FFS DL features using
all direct attack samples and legitimate traffic samples (see
Table 15). All three classifiers achieved a high performance
under the known conditions. For all classifiers, we used the
same settings as for other datasets (see Section VI-B and
Section VI-D).

3) EVASIONS
To evaluate the performance of classifiers under challenging
conditions that assume obfuscations in place, we executed
an experiment that performed detection of malicious obfus-
cated attacks by the classifier trained on all direct attacks
and legitimate traffic samples (see Table 16). It represented
the situation when the classifier had no previous knowledge
about obfuscated attacks, and therefore we used FFS DL
feature set. In the result, most of the obfuscated attacks were
misclassified as legitimate traffic, and thus TPR was exacer-
bated by more than 30% in the case of all classifiers used.

4) TRAINING DATA AUGMENTATION
Our second binary classification experiment considered
explicit information about obfuscated attacks in the train-
ing phase of the classifier. Therefore, we used direct and
obfuscated attacks labeled as one class while repeating 5-fold

Table 16. Prediction of obfuscated attacks and all attacks in the ASNM-
TUN dataset by classifiers trained without knowledge about obfuscated
attacks (i.e., trained on all direct attacks and legitimate traffic samples).

cross-validation 100 times to obtain statistically significant
results. Since the classifier ‘‘was aware’’ about obfuscations,
we used FFS DOL feature set for the purpose of this experi-
ment (see Table 17), but for completeness, we executed this
experiment with FFS DL feature set as well (see Table 19).
In the case of FFS DOL features, the outcome of this exper-
iment indicates an improved TPR and a high F1-measure in
all classifiers. In the case of FFS DL features, we observe
that performance improvement was not as significant as in the
previous case, in particular, all classifiers still suffered from
high FPR. This indicates the importance of not only training
data augmentation by obfuscated attacks but also updating the
feature set to reflect obfuscations.

5) COMPARISON OF SEVERAL CLASSIFIERS
We observe that all classifiers suffer from high sensitivity
to evasions caused by tunneling obfuscations (see Table 16),
while Naive Bayes classifier was the most sensitive one.

After augmentation of a training data without updating the
feature set (see Table 19), we observe that the decision tree
classifier is the most robust, while SVM achieves the worst
performance. These observations held even when we made a
training data augmentation with updating the feature set (see
Table 17). When updating the feature set, we can also see that
F1 for all classifiers achieved a higher rate than in the case
of the baseline experiment with direct attacks and legitimate
traffic (see Table 15). Moreover, the only classifier that did
suffer from deteriorated FPR after training data augmentation
was Naive Bayes.

For more experiments with this dataset, including
tri-nominal and multi-nominal labels and individual feature
analysis, we refer the reader to [13], [59], and [14].

D. ASNM-NPBO DATASET
1) FORWARD FEATURE SELECTION
Similar to the case of the previous datasets, we again started
with the FFS method using the Naive Bayes classifier and
5-fold cross-validation, while we allowed acceptance of one
FFS iteration without improvement. We performed two-class
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Table 17. Performance measures from 100 times repeated 5-fold cross-
validation of the whole ASNM-TUN dataset using FFS DOL feature set,
representing the situation where classifiers were aware of some obfusca-
ted attacks, and therefore caused performance improvement in contrast
to the classifiers that were aware only about direct attacks (see Table 16).

prediction (i.e., using label_2) in two executions of FFS
using the Naive Bayes classifier with the same parameters
as in our previous experiments – the first execution did not
contain obfuscated attack samples (i.e., resulting into FFSDL
features) and the second execution included these samples
(i.e., resulting into FFS DOL features). The selected features
of both executions are depicted in Table 28 of Appendix. Sim-
ilar to the case of the ASNM-TUN dataset, we removed the
features that are inconvenient for the comparison of synthetic
attacks with legitimate traffic captured from the real world.

2) NORMAL OPERATION
To evaluate the performance of classifiers under normal cir-
cumstances (not considering obfuscated attacks), we repeated
5-fold cross-validation 100 times with FFS DL features using
all direct attack samples and legitimate traffic samples. The
performance measures of three classifiers validated by the
cross-validation are shown in Table 18. All three classifiers
achieved a high performance under the known conditions. For
all classifiers, we used the same settings as in the previous
experiments (see Section VI-B and Section VI-C).

3) EVASIONS
Next, we took the classifiers trained on all data samples of
direct attacks and legitimate traffic, and we applied them
for the prediction of the obfuscated attacks and all attacks,

Table 18. Results from 100 times repeated 5-fold cross-validation on
a subset of ASNM-NPBO dataset that contains only direct attacks and
legitimate traffic samples.

Table 19. Performance measures from 100 times repeated 5-fold cross-
validation of the whole ASNM-TUN dataset using FFS DL feature set, rep-
resenting the situation where classifiers were aware of some obfuscated
attacks, and therefore caused performance improvement in contrast to
the classifiers that were aware only about direct attacks (see Table 16).
However, since the feature set was not updated to reflect obfuscated
attacks, the performance upgrade is not significant.

respectively (see Table 20).15 We observe that TPRs were
deteriorated for all classifiers, which means that some obfus-
cated attacks were successful – they were predicted as legiti-
mate traffic, and thus caused evasion of the classifiers.

4) TRAINING DATA AUGMENTATION
To improve the resistance of the classifiers against evasions,
we widened their knowledge about different mixtures of
obfuscated attack instances, which was accomplished by
running 5-fold cross-validation of the whole dataset. The
cross-validation was repeated 100 times to obtain the statis-
tically significant results. In this experiment, we used FFS
DOL features, which consider knowledge about obfuscated
attacks, and thus updating not only the model of the classifier
but also the underlying feature set (in contrast to the previous
experiment). Additionally, we show the results with FFS DL

Table 20. Prediction of obfuscated attacks and all attacks in the ASNM-
NPBO dataset by classifiers trained without knowledge about obfuscated
attacks (i.e., trained on all direct attacks and legitimate traffic samples).

15Note that we do not depict FPRs in the tables since no changes to the
composition of legitimate traffic samples were made, hence FPRs remain the
same as in Table 18.
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Table 21. Performance measures from 100 times repeated 5-fold cross-
validation of the whole ASNM-NPBO dataset using FFS DOL feature
set, representing the situation where the classifiers were aware of some
obfuscated attacks, and therefore caused performance improvement in
contrast to the classifiers that were aware only about direct attacks (see
Table 20).

features that consider updating the model only. Particular
results of this experiment are shown in Table 21 for FFS
DOL features and Table 22 for FFS DL features. Comparing
against the results from the previous experiment (see FPRs
from Table 18 and TPRs from from Table 20b), most of
the classifiers were significantly improved in TPR, while
FPR deteriorated slightly. Hence, the classifiers trained with
knowledge about some obfuscated attacks were able to detect
the same and similar obfuscated attacks later.

5) COMPARISON OF SEVERAL CLASSIFIERS
From the previous experiments, we can say that the Naive
Bayes classifier was the least sensitive to evasions by non-
payload-based obfuscations (see Table 20), while SVM was
the most sensitive classifier.16 This might be caused by
over-fitting of the training data. Moreover, all classifiers used
the feature sets selected by FFS with the Naive Bayes clas-
sifier, which might be seen as a disadvantage for classifiers
other than Naive Bayes. Nevertheless, we reran FFS with
individual classifiers as well but obtained results much worse
than in the case of using the features selected by the Naive
Bayes classifier.

After augmentation of a training data without updating the
feature set (see Table 22 ), we observe that the decision tree
classifier is the most robust, while Naive Bayes achieves the
worst performance. However, when making a training data
augmentation with updating the feature set (see Table 21),
Naive Bayes performed better than other classifiers, which
might be caused again by over-fitting of training data.

For more experiments with this dataset, including
tri-nominal and multi-nominal labels, detection of unknown
obfuscations by a custom leave-one-out validation, and indi-
vidual feature analysis, we refer the reader to [23] and [14].

16The bigger the decrease in TPR, the more sensitive a classifier is to
obfuscations.

Table 22. Performance measures from 100 times repeated 5-fold cross-
validation of the whole ASNM-NPBO dataset using FFS DL feature
set, representing the situation where classifiers were aware of some
obfuscated attacks, and therefore caused performance improvement in
contrast to the classifiers that were aware only about direct attacks (see
Table 20).

VII. DISCUSSION
A. AGE OF VULNERABILITIES
Although there is a plethora of publicly available exploit-
codes for contemporary vulnerabilities, the situation with
corresponding available vulnerable software is more difficult
due to understandable prevention reasons imposed by soft-
ware vendors. Therefore, we were able to contain only older
available high-severity vulnerable services that are outdated.
However, we conjecture that from the point of view of non-
payload-based network intrusion detection (not inspecting
the payload of packets), the behavioral characteristics of
simulated high-severity attacks are similar regardless of the
age of vulnerabilities. In particular, we refer to the buffer
overflow attacks, which are executed in a few stages involving
a repeated transfer of one or more packets with the maximum
payload. In our future work (and our web page), we will
release the ASNM-NPBO-II dataset, where we will focus on
the newer vulnerabilities.

B. COMPARISON WITH THE REAL-WORLD TRAFFIC
ASNMdatasets contain a high ratio of malicious to legitimate
connections,17 while in practice this ratio is usually several
orders of magnitude lesser. Although an arbitrary value of
this ratio does not distort the performance of the classifier
when an appropriate performance measure is chosen (e.g.,
F1 − measure), it might impact the accuracy of modeling the
legitimate class – a high volume of legitimate traffic occurred
in practice can result in a high divergence of data, which
might not be captured by models built from our datasets in
a sufficient manner. Therefore in practice, classifiers would
require much more legitimate data than it is contained in our
datasets.

Next, we note that all attacks that we executed using
Metasploit framework in the laboratory setting might be
in practice influenced by actual network conditions, which

17This ratio is equal to 0.76%, 55.07%, and 5.59% in the case of ASNM-
CDX, ASNM-TUN, and ASNM-NPBO, respectively.
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might cause higher delays or retransmissions than in our
direct attack class. However, these network conditions are
explicitly emulated by network scenarios in the ASNM-TUN
dataset, while in the ASNM-NPBO dataset they are covered
by non-payload-based obfuscations that go even beyond what
is commonly observed in the real-world network traffic.

C. CROSS-DATASET EVALUATION
In this paper, we provided only a basic benchmarking of sev-
eral supervised classifiers on ASNM datasets. Nevertheless,
it is worth noting that different benchmarking techniques can
be used as well. One example is cross-dataset evaluation,
where the target classifier is trained on the input data of one
dataset, and then it is evaluated on the data taken from another
dataset. We leave these tasks as an open challenge for the
community.

D. CHALLENGE FOR THE COMMUNITY
We highlight that benchmarking of the ASNM datasets (see
Section VI) serves only for the demonstration purposes and
its role is to show discriminative aspects of ASNM features
in the domain of network intrusion detection as well as to
show the impact of the proposed obfuscations. In this work,
we used a very basic setup for the machine learning pipeline,
and we believe that the results obtained can be improved in
future work and by the community. For example, we uti-
lized a basic suboptimal feature selection method (i.e., FFS)
due to its speed. However, the literature contains plenty of
other relatively cheap feature selection methods that enable to
over-come a drawback of FFS, e.g., [60]–[64], which might
lead to better results than we obtained. FFS might also be
improved by a different target metric; for example, Thaseen
and Kumar [65], Thaseen et al. [66] achieved the best results
with chi-square metric in the multi-class classification of
NSL-KDD dataset.

Finally, the classifiers used in this work were selected due
to their speed,18 and we believe that many other classifiers,
especially ensembles, might improve on the results that we
presented here. For the objective comparison with our base-
line, we recommend the community to use 5-fold cross vali-
dation and report on statistically significant results obtained
by repeated execution of cross-validation (i.e., in our case
repeated 100 times).

VIII. RELATED WORK
We split datasets that can be used for evaluation of NIDSs
into two categories: (1) datasets containing raw network traf-
fic traces, and (2) datasets containing high-level features.
We summarize the properties of these datasets in Table 23,
and we compare them with ASNM datasets.

18Time complexities of training the decision tree and the Naive Bayes
are O(nd2) and O(nd), respectively; where n represents the number of
samples and d represents the number of features. In the case of SVM,
the time complexity of training depends on both the number support vectors
s and the number of training data samples n, and it can be constrained by
O(s3 + n2) [67].

A. DATASETS OF NETWORK TRAFFIC TRACES
Datasets from this category have one property in common:
they contain network traffic traces with optional data serving
for labeling purposes. The first four representatives of this
category are large collections of datasets and are referred
to as projects – MWS [68], PREDICT [69], CAIDA [70],
NETRESEC [71]. The next four examples represent just
one specific collection and are referred to as datasets –
DARPA [72], CCRC [73], CDX [12], CONTIAGO [74].

1) PROJECT MWS
The project MWS represents a collection of various types of
datasets that are primarily intended for use in anti-malware
research [68], but some of them are also applicable in net-
work intrusion detection. A summary of the MWS datasets
is available in Japanese [75]–[79], and it covers three cat-
egories of datasets, which is based on phases of attacks:
(1) probing, (2) infection, and (3) malware activities after
infection. From the perspective of network intrusion detec-
tion, we consider PRACTICE, D3M, CCC, and NICTER as
related datasets of MWS. However, for network intrusion
detection it is also important to have a ground truth, which can
be inferred from the MWS datasets called FFRI, IIJ MITF,
D3M, and CCC. These datasets were collected using various
honeypots that were exposed to the Internet and some of
to darknet.

2) PROJECT PREDICT
The project PREDICT [69] provides 430 datasets in 14 cate-
gories contributed by several data providers. From all 14 cat-
egories, just three of them are relevant to the network
intrusion detection and could be used for evaluation pur-
poses: (1) blackhole address space, (2) IP packet headers
containing DDoS, port scans, worms, and (3) synthetically
generated data. Also, note that the IDS and firewall category
contains a large collection of logs that do not contain any
PCAP files, therefore it could not be used for IDS evaluation.
categories.

3) PROJECT CAIDA
Center for Applied Internet Data Analysis (CAIDA) [70]
collects several different network data types at geographi-
cally diverse locations. From the network intrusion detection
perspective, CAIDA includes datasets containing e.g. DDoS
attacks [80], [81], botnet traffic [82], dumps of various worms
(Conficker [83], Code-Red [84], Witty [85]). However, these
datasets lack labeling, and therefore their utilization for NIDS
would require additional labeling effort.

4) PROJECT NETRESEC
NETRESEC [71] maintains a comprehensive list of PCAP
files that can be used for the evaluation of network intrusion
detection approaches. The datasets are divided into several
categories involving cyber defense exercises/competitions,
forensics challenges, data captures from honeypots, sand-
boxes, and attacks at industrial control systems (ICS).
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Table 23. A comparison of related work and ASNM datasets.

5) DARPA 1998 AND 1999 DATASETS
The Cyber Systems and Technology Group [72] of MIT Lin-
coln Laboratory has collected the first standard corpora for
evaluation of network intrusion detection systems in 1998 and
1999. There were two datasets DARPA 1998 and 1999 col-
lected, and later there was the third dataset released, marked
as DARPA 2000, which addresses specific network scenarios.
DARPA dataset contains network traffic generated by soft-
ware that is not publicly available [86].

6) CCRC 2006 DATASET
Massicotte et al. [73] developed a framework for auto-
matic evaluation of intrusion detection systems, and they
collected a dataset consisting of several network attack simu-
lations. Moreover, the framework contains a mutation layer

that performs various L2 and L3 protocol based obfusca-
tions using tools Fragroute [87] and Whisker [88], which
is similar to obfuscations in the ASNM-NPBO dataset. The
CRCC (Canada Communication Research Center) dataset is
specific to signature-based network intrusion detection sys-
tems and contains only well-known attacks, without back-
ground traffic. The authors also report an initial evalua-
tion of the framework on two NIDSs, namely SORT [89]
and Bro [90].

7) CDX 2009 DATASET
The CDX 2009 dataset was introduced by Sangster et al. [12]
and it contains data in tcpdump format as well as SNORT [27]
intrusion prevention logs. We used this dataset in our
research, and it is described in Section IV-A.
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8) TWENTE 2009 DATASET
The Twente 2009 dataset [91] consists of 14.2M network
flows (i.e., 155M packets) collected during a period of 9 days
in 2008, where 7.6M of intrusion alerts were generated. The
flows in this dataset were assembled by a modified version
of softflowd utility, and 98% of them have been labeled by
the authors. The authors collected the dataset by a honeypot
installed on a virtual host with running Citrix XenServer 5.
The deployed honeypot ran with three opened services:
OpenSSH, Apache web server, and FTP server proftp.

9) ISCX 2012 DATASET
Shiravi et al. [92] presented guidelines for the generation
of benchmark dataset consisting of creating a malicious and
benign profile that were later executed during dataset genera-
tion. The authors generated their own dataset of network traf-
fic (including the payload) for various network services such
asHTTP, SMTP, SSH, IMAP, POP3, FTP. Several multi-stage
attacks were also simulated during the collection and they
cover all three categories from the MWS project.

10) CONTAGIO 2015 DATASET
The Contagio dataset [74] contains a collection of almost
1000 PCAP files from malware analysis, and thus it con-
tains implicit expert knowledge about the occurrence of
attacks/malware.

B. DATASETS CONSISTING OF HIGH-LEVEL FEATURES
This section contains representatives that were built from
network traffic traces, hence it can be interpreted as a
post-processed version of the former category. Examples are:
KDD Cup ’99 [17], NSL KDD ’99 [93], Moore’s 2005 [15],
Kyoto 2006+ [16], and OptiFilter 2014 [94].

1) KDD CUP ’99
The KDD Cup ’99 [17] dataset was created from network
traces of the DARPA 1998 dataset. The authors explicitly
split the dataset into training and testing subsets, where The
training subset contains 24 attack types and the testing sub-
set contains an additional 14 attack types. Each connection
sample in the dataset contains 41 features, and simulated
attacks fall into four main categories [17], [93]: (1) DoS
attacks, (2) external attacks exploiting network vulnerabilities
(a.k.a., remote to local attacks / R2L), (3) insider threat
attacks [95] in which a user with an ordinary account esca-
lates her privileges to get superuser access (a.k.a., the user
to root attack / U2R), and (4) reconnaissance attacks such as
port scans.

The features of the KDD ’99 dataset are divided into
three categories [17]: (1) basic features, which are extracted
from TCP and UDP communications, (2) content features,
which inspect application-level data, and (3) traffic features,
which calculate statistics related to protocol behavior, ser-
vice, etc., and they are computed using a short time window
(i.e., 2s).

Stolfo et al. [96] criticize time-based features since there
exist several slow probing attacks that scan a host using a
longer time window than 2s. Since content features parse
the payload of packets regardless of whether it is encrypted
or not, they can be extracted only at a host, as opposed to
basic and traffic features that can be extracted from network
traffic.

2) NSL KDD ’99
Deficiencies of the KDD Cup ’99 dataset were discussed
in [93]. The main deficiency of the original dataset relates to
redundancy – 78% entries of the training set and 75% entries
in the testing set are replicated. The original dataset was mod-
ified, reduced, and released as the NSLKDD ’99 dataset [52].
The training dataset contains about 130k entries and the
testing one about 23k. All samples are sorted into the original
24 classes as well as into two classes representing a benign
or a malicious entry.

3) MOORE’S 2005
The Moore’s 2005 datasets [15] are primarily intended to aid
in the assessment of network traffic classification. A number
of datasets are described; each dataset consists of a number of
entries representing TCP connection flows that are described
by a feature set referred to as discriminators [15]. Input data
for feature extraction were obtained by the Network Monitor
tool [97]. In contrast to previously described KDD datasets,
Moore’s datasets were built from network traffic traces, and
there were no data utilized from host machines during the
extraction of the features.

4) KYOTO 2006+
Song et al. [16] presented the Kyoto 2006+ dataset, which
was built from the 3 years of real-world network traffic
collected by various types of honeypots. To label the dataset,
the authors used a few security tools: SNS7160 IDS system,
ClamAV software, Ashula, and SNORT. The dataset contains
over 50M of normal sessions and over 43M of attack sessions.
The Kyoto 2006+ dataset [98] consists of 14 statistical fea-
tures taken from the KDD Cup ’99 dataset and 10 additional
features containing an indication of alerts from the security
tools used, IP addresses, ports, and duration of sessions. The
authors have not used any content-based features and focused
only on network traffic data.

5) OptiFilter 2014/SecMonet
Salem et al. proposed OptiFilter [94], a framework that con-
structs connection vectors from network flows. OptiFilter
handles ARP, ICMP, IP/TCP, and IP/UDP protocols. More-
over, it utilizes a finite state machine on TCP and UDP
connections for monitoring of their state.

The extracted features of OptiFilter are influenced by
KDD Cup ’99 and Kyoto 2006+ datasets and cover statis-
tical aspects of analyzed flows as well as host-based data
extracted by SNMP. In the result, the authors generated
a dataset called SecMonet, in which 17 common services
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Table 24. Symbols of the TCP connection tuple.

were captured (e.g., FTP, SSH, telnet, SMTP, SMB, NFS,
etc.). However, it is not clear whether the dataset contains a
self-collected malicious traffic or it is only substituted from
KDD Cup ’99.

6) CICIDS 2017 DATASET
The CICIDS 2017 dataset [99] consists of network attacks
such as DoS, DDoS, XSS, SQL injection, Heartbleed, infil-
tration through the scam, and port scanning. The authors
generated benign data based on the extracted profile from an
analysis of 25 users, which is in line with the approach pro-
posed in [92]. The infrastructure used for the data collection
consisted of 15 vulnerable Linux-based & Windows-based
machines and 4 attacker machines. Further, the authors
extracted 80 features using CICFlowMeter tool [19] and pro-
vided them along with the network traffic traces.

Table 25. Symbols of the packet tuple.

IX. CONCLUSION
In this paper, we presented three datasets consisting of
extracted high-level network features (ASNM features).
These datasets are intended for non-payload-based network
intrusion detection and adversarial classification, enabling to
test evasion resistance of machine learning-based classifiers.
In detail, ASNM-CDX-2009 dataset might serve for basic
benchmarking of machine learning-based classifiers, while
ASNM-TUN and ASNM-NPBO datasets might serve for
more advanced benchmarking of these classifiers, such as
testing the classifiers on evasion resistance. In future work,
we plan to extend ASNM datasets with data collected from
the most recent network vulnerabilities.

APPENDIX A
TUPLES OF TCP CONNECTION AND PACKET
We detail the TCP connection tuple in Table 24. In the table,
the superscript atR∗ represents a set of positive real numbers,

Table 26. ASNM features selected by FFS with the Naive Bayes classifier
using ASNM-TUN dataset.
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Table 27. ASNM features selected by FFS with the Naive Bayes classifier
using ASNM-CDX-2009 dataset.

including zero. Next, we present a detailed description of
items from the packet tuple in Table 25. The description
contains an assignment to a particular layer of the ISO/OSI

Table 28. ASNM features selected by FFS using the Naive Bayes classifier.

stacked model together with supported instances of the proto-
cols – placeholder ∗ represents an arbitrary protocol instance.
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Also note that in the case of the data field, superscript
in X∗ represents an iteration of the set X .

APPENDIX B
FFS SELECTED FEATURES
As part of benchmarking ASNM datasets, in this section,
we enumerate subsets of the ASNM features selected by
the FFS method with Naive Bayes classifier running over
5-fold cross-validation. We present ASNM features selected
using: (1) the ASNM-CDX-2009 dataset in Table 27, (2) the
ASNM-TUN dataset in Table 26, and (3) the ASNM-NPBO
dataset in Table 28. Note that the FFS DL set denotes
features selected when only legitimate samples and direct
attacks were included in the FFS experiment. The FFS DOL
set denotes selected features when, in addition to the pre-
vious case, obfuscated attacks were included in the FFS
experiment.
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