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ABSTRACT This study proposed a fully-automated method for the segmentation of the femur and femoral
neck in volumetric computed tomography (CT) images for the evaluation of osteoporotic fractures with
severe abnormalities. We evaluated the proposed method on pelvis CT image of 30 patients for both the left
and right sides. The proposed framework consists of three components: (1) localization of the acetabulum
from the femoral head by tracing the intensity and adjacent neighbors of bone pixels, (2) segmentation
and enhancement of the femur from its surrounding tissue using multi-level thresholding with filtering
techniques, and (3) extraction of femoral neck contours using a directed Hough transform with oriented
contour-filling techniques. The quality of the proposed femur segmentation performance was compared
with the segmentation results using an edge-based active contour model (ACM), active shape model (ASM)
and ground truth including average precision, recall, false-positive rate (FPR), false-negative rate (FNR),
and the Dice similarity coefficient (DSC). The proposed method showed error of less than 1% for femur
segmentation. A highly satisfactory similarity agreement was achieved between automated and manual
methods, with a DSC greater than 94.8—exceeding those of semi-automated segmentations of the femur.
Quantitative and qualitative experimental results indicated that the proposed fully-automated approach was
capable of accurately segmenting the femur and femoral neck, which suggests the possibility of reducing
insignificant contours of bone structures for further assessment of risk for osteoporotic fractures.

INDEX TERMS Acetabulum, bone segmentation, computed tomography, femoral neck, femur.

I. INTRODUCTION
Osteoporosis is characterized by deterioration of bone tis-
sue and associated with an increased risk of morbidity and
mortality [1]. Hip fractures have the most serious issues,
needed hospitalization and major surgery. Early analysis of
osteoporosis is important to prevent osteoporotic fracture.
Bone mineral density (BMD) assessment via dual-energy
x-ray absorptiometry is a commonly available tool tomeasure
the bone strength. Intracapsular fractures of the femoral neck
significantly affect both the cortical and trabecular bone [2].
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approving it for publication was Carmelo Militello .

Hence, precise femur and femoral neck region segmenta-
tion on volumetric computed tomographic images (CT) is
useful in recognizing BMD and geometric features for sur-
gical planning and postoperative assessment [3]. However,
the segmentation of a femur from a CT volume presents
several difficulties: i) partial volume effect, ii) varying bone
size and shape between individuals, and iii) dispersed and
weak edges of bone. To overcome these problems, manual
and semi-automated femur or femoral neck detection systems
have been developed [4]–[6]. However, the segmentation
accuracy of these techniques is highly reliant on expert indi-
viduals and also time-consuming. Therefore, a fast and robust
segmentation of femur and femoral neck for geometrical
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features, without user intervention, would be useful to assess
the risk of osteoporotic fracture in individuals with severe
abnormalities.

Most research studies are focused on thresholding-based
techniques [7]–[10] for bone segmentation since the higher
intensity values of bone are more informative for the sep-
aration of bone from the surrounding soft tissue on CT
images [11], [12]. However, local thresholding approaches
are influenced by intensity in homogeneities [8], [9] and
produce poor segmentation results in detecting low-contrast
bone contours.

Most recently, some popular model based segmentation
methods were proposed such as the statistical shape model
and Atlas based segmentation [13]–[19]. The statistical shape
models are used for femur segmentation. The kinds of typ-
ical models are active contour model (ACM), active shape
model (ASM), active appearance model (AAM) [13]–[17].
These models initialized contour points through the training
process or manually segmentation. And contour points are
deformed into the shape of target. The object detection and
segmentation that use shape- and appearance-based models
require positioning landmarks on the contour of bones on the
training images [20], [21]. However, the shape of the femur
is different for each person and requires generating many
templates of the high-variability of the femoral contour to
produce large datasets. Although shape-based techniques are
simple, manual positioning is tedious and time-consuming.
The Atlas based segmentation is used for segmentation of
anatomical image structure and bone [18], [19]. This method
registers the labeled image which is also called the Atlas
image. Thosemodels detect the part of the target image which
is most similar with the labeled image. For segmenting an
object, both the statistical shape models and Atlas based seg-
mentation need the information of the shape and orientation
for alignment of the trained and target objects.

A deep learning segmentation network is used to perform
pixel-wise classification of femoral analysis [22], [23]. How-
ever, deep learning frameworks require abundant training and
ground truth data. Furthermore, the aforementioned meth-
ods of the femur detection do not address the segmenta-
tion performance of unevenly-distributed bone tissue with
holes between the femoral head and hip joint space. This is
considered a severe abnormality group and the most com-
plex for segmentation, according to [9], [24]. Hence, this
study addresses the segmentation of femur and femoral neck
in severely-diseased hip joints based on the distribution of
regional characteristics. The extraction of the femoral neck
is highly dependent on the position of the evenly-distributed
femoral head. Hence, the extraction of the femoral neck from
a severely abnormal or unevenly-distributed femur without
manual intervention is one of themost important prerequisites
of osteoporotic fracture identification.

In this study, we proposed a fully-automated frame-
work for the segmentation of the acetabulum, femur, and
femoral neck on both the left and right sides of a hip joint
CT with severe abnormalities using region-precise intensity

distributions, adjacent neighbor pixels, and Hough transform
techniques as shown in Fig. 1. The performance of the pro-
posed automatic segmentation results was compared with the
semi-automatic segmentations of the femur by using an ACM
andASM. Various performancemetrics were used to evaluate
the potential benefit of our proposed automatic technique
based on the manual segmentation of the femur.

II. MATRIALS AND METHODS
To evaluate our proposed automatic method, we used coronal
pelvis CT scans of 30 subjects which included 13 males
and 17 females between 30 and 90 years old, who had also
undergone BMD evaluation. The Institutional Review Board
of Kyungpook National University Hospital approved the
study protocol. Images were acquired by means of a CT
scanner (GE Medical Systems, Madison, WI) with a voxel
size of 1mm and a slice interval of 1.5mm. The number of CT
image slices for each patient ranged from 50 to 90. Based on
the T-score value of femoral BMD, out of 30 subject’s, 13 did
not have osteoporosis, 13 were osteopenia, and 4 were deter-
mined to have osteoporosis. BMD evaluation was performed
on the femoral neck with the use of dual-energy x-ray absorp-
tiometry (GE Healthcare, Madison, WI). The subjects were
classified as normal (T-score ≥ −1.0), osteopenia (T-score
between −1 and −2.5), or osteoporotic (T-score ≤ −2.5) at
each skeletal site according to theWorld Health Organization
guidelines. The ground truth segmentation of the proximal
femur was generated by manual selection of the femoral
contour on CT images through Adobe Photoshop CS5 that
allows generating two regions defined as proximal femur and
the background. The coronal slices correspond to the image
sizes from the beginning to the ending of the femoral neck
were used for generating the ground truth masks.

A. AUTOMATED SEGMENTATION OF THE FEMUR AND
FEMORAL NECK
The proposed region-based segmentation framework for
femur and femoral neck with severe abnormalities is illus-
trated schematically in Fig. 1. The proposed framework con-
sists of three parts: i) segmentation of the acetabulum from the
femoral head, ii) segmentation and enhancement of the femur
from its surrounding tissue, and iii) extraction of the femoral
neck. The number of slices above and below the center slice
that portray the shape of the femoral head and bone were
included for volumetric detection of the femur and femoral
neck. In pelvis CT, we initially selected the femoral slices
which correspond to the images from the beginning to the
ending of the femoral neck. Most of the image sizes are fixed
to be 512 × 512 pixels except three images of which the
sizes are 512× 523, 512× 527, and 658× 527. In addition,
we also chose the center slice which has the largest and
most prominent part of the femur. Thereafter, we proceed
to the segmentation of the femoral neck using the center
slice. The size of the femur is almost similar from patient to
patient and its position is also located nearly in the similar
place because the original size of the image is fixed. The
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FIGURE 1. Proposed region-based segmentation framework for femur and femoral neck with severe bone abnormalities.

FIGURE 2. Selection of both right and left ROI from coronal pelvis CT for
the segmentation framework: (a) original image, (b) right hip, and (c) left
hip.

FIGURE 3. Location of distribution of bone region using histogram-based
thresholding.

original image width was considered when selecting both the
left and right hip region of interest (ROI) by calculating a
window size of (half of width× height) pixels for each image,
as shown in Fig. 2. Both the left and right hip ROI were
subjected to the segmentation framework. First, we applied
a thresholding technique to locate the distribution of the bone
region. The value was initialized to an intensity of 900, which
is defined as the starting threshold based on the histogram.

FIGURE 4. Selection of desired right (upper row) and left (lower row)
bone regions for segmentation: (a) input image, (b) thresholding image,
and (c) labeling image using centroid and area size.

It was increased incrementally by an intensity of 100 until
a single object of bone region was located. The first bone
region was located at an intensity of 1100 as shown in Fig. 3.
The connected component labeling was used to preserve the
largest connected component object of desired bone region
while removing unwanted objects (Fig. 4).

B. SEGMENTATION OF ACETABULUM
In this part of our study, we focused on the detection of
the acetabulum for a femoral contour, which was one of
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FIGURE 5. Histogram-based thresholding for the separation of
acetabulum from femoral region.

FIGURE 6. Tracing of acetabulum on both right and left ROI:
(a) thresholding image and (b) labeling image using centroid trace of
acetabulum (red contour) and femur (green contour).

FIGURE 7. Extraction of acetabular region candidates: (a)(b) accurate
segmentation results and (c)(d)(e) failure segmentation results.

our most challenging tasks. The evenly distributed bone
contour region showed relatively higher intensity than both
the area inside the bone regions and the area between the
acetabulum and femoral head. To find two objects of bone
regions, we further increased the thresholding value, and the
results vary for each image depending on its precise region
as shown in Fig. 5. The labeling technique was used to

FIGURE 8. Extraction of acetabular region candidate using height:
(a) acetabulumh is shorter than a certain ratio boneh and
(b) acetabulumh is same length as boneh.

obtain the centroid of each bone region; the upper acetabu-
lum is represented by the red contour, and the lower femur
is represented by the green contour (Fig. 6). Examples of
successful segmentation of the acetabulum are presented
in Figs. 7(a) and 7(b). However, the task of segmenting the
acetabulum failed in cases where the femoral head was close
to the upper region (Figs. 7(c), 7(d), and 7(e)). This proce-
dure was not effective for unevenly distributed bone tissue
in a severely narrowed inter-bone region. Therefore, due to
the asymmetry of the human body, severely affected bone
exhibited over-segmentation of the acetabulum. Furthermore,
the gap between the acetabulum and the femoral head varies
with different images [25]. The over-segmentation results
were corrected using two methods based on the total height
of the bone and the size of the joint space, as follows:

1) Measurement of bone height: The total height of all the
bones and the height of the acetabulum were used to
segment the acetabulum (Fig. 8). From the previous
procedure, we have two segmented regions. Usually,
the normal situation is that the upper region is the
acetabulum, and the lower region is the femur. The
height of the upper region is regarded as that of the
acetabulum. Still, there is a special case that the acetab-
ulum is connected to the femoral head and the small
fragment of the femur is recorded as an independent
region. Hence, height of such a large region is wrongly
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FIGURE 9. Removal of joint space from acetabulum: (a) joint space
image, (b) labeling image, and (c) removal of joint space image.

calculated as that of the acetabulum. If the height of
the acetabulum is almost equal to the height of all the
bones, the method of increasing our prior threshold
intensity incrementally by 10 can separate the acetab-
ulum from the femoral head region. At every incre-
mented step we check whether the following condition
is satisfied:

boneh × 0.75 > acetabulumh, (1)

where boneh and acetabulumh are height of all the
bones and height of acetabulum. This process extracts
the acetabulum from touching the femoral head.

2) Measurement of joint space size: The segmented
acetabulum in some cases was still attached to the sur-
face of the femoral head (Fig. 9(a)). To remove the joint
space, we first applied the distance transform method
twice to trace the acetabular pixels from left to right
and then from top to bottom to extract the object pixels
surrounded by high-intensity bone region [26], [27].
Second, we multiplied and applied region labeling
to the two resultant traced images of acetabular pix-
els from left to right and then from top to bottom,
which calculated the area of the joint space pixels [28].
An area greater than 100 pixels was detected as the
joint space region (Fig. 9(b)). Finally, the detected joint
space between the acetabulum and femur was removed
by applying the thresholding-based technique of incre-
mentally increasing the intensity by 10 beyond the prior
threshold until the joint space was removed (Fig. 9(c)).
These procedures were automatically performed for all
over-segmented slices.

C. SEGMENTATION AND ENHANCEMENT OF FEMUR
In this part of our study, we aimed to trace and enhance the
contour of the femur. We obtained the femur by subtracting

FIGURE 10. Segmentation of femoral region candidate: (a) whole bone
region, (b) acetabulum, (c) subtraction of acetabular image of (a) from
(b), and (d) resultant femur.

the segmented acetabulum in Fig. 10(b) from Fig. 10(a).
Then, we extracted the region with the largest area from the
whole bone region by using connected component labeling.
However, the extracted femoral contour exhibited artifacts;
accordingly, the enhancement of bone contour is essential
to the extraction of the femoral neck [29]–[31]. To segment
the femoral neck more precisely, we converted all of the
voxels between 0 and 255 intensity. Then, we used 3 × 3
median filtering to reduce the noise surrounding the femoral
region. The resulting image was converted into a binary
image. Binarization with simple thresholding is not suitable
because it removes important information from the weak
contour. Therefore, we used two-step binarization. In the first
step, we used a contour mask of 5 × 5 pixels to calculate
the threshold [29]. In the second step, we implemented an
Otsu’s thresholding technique for the selection of an auto-
matic threshold. Finally, we multiplied the maximum size
of the region mask by 1.5 intensity to enhance the femoral
region. Fig. 11 shows the segmentation and enhancement
results after using the techniques described in this section.

D. EXTRACTION OF THE FEMORAL NECK REGION
Identification of the femoral head contour is essential for the
subsequent process of identifying the neck region. However,
the automatic estimation of the femoral neck in a severely
affected bone CT image was another challenging task in
this study. To extract the femoral neck, we performed the
following steps:

1) We applied Canny edge detection to determine the
contours of the bone object (Fig. 12(b)).

2) The circle detection Hough transformmethod was used
to determine the center point of the femoral head [32];
the radius was not used to calculate the circle. The
directed Hough transform algorithm is described by
five steps:
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FIGURE 11. Enhancement of femur: (a) original femur image, (b) local
thresholding using 5 × 5 mask, (c) Otsu’s thresholding image, and
(d) femoral region.

FIGURE 12. Center point detection using Hough transform: (a) femoral
region, (b) Canny edge, and (c) center point using Hough transform.

i) Quantize the parameter space for parameters a
and b of a circle.

i) Initialize the accumulator array M (a, b) to zero.
ii) Compute the gradient magnitude G(x, y) and

angle θ (x, y).
iii) For each edge point in G(x, y), increment all

points in the accumulator array M (a, b) along a
line using the following equation:

b = atanθ − xtanθ + y (2)

iv) Determine the center point of the femoral head
using the local maxima in the accumulator array,
shown as a red point in Fig. 12(c).

The starting point of the femoral neck position was
measured from the center point along the smallest dis-
tance tangent lines. However, the disconnected femoral
head contour strongly influenced the measurement of
the neck position, as shown in Fig. 13(a).

3) To fill the contour discontinuities, an automatic con-
tour filling technique based on various orientations was
used 33]. It extracted r candidate points on the femoral
head from the center point using orientation angles

FIGURE 13. Filling femoral head contour: (a) Canny edge, (b) contour
filling, and (c) morphological dilation.

FIGURE 14. Tracing starting point from center point for femoral neck.

from−45◦ to 180◦. Contour discontinuities were iden-
tified where the average of the r candidate points was
higher than the average value of r × 0.75 by an exper-
iment. In Fig. 13(b), red points represent r candidate
points,green points represent the disconnected contour,
and blue points represent filling the contour.

4) Finally, morphological dilation was applied after the
contour filling, as shown in Fig. 13(c).

5) Measurement of the starting point position for femoral
neck detectionwas achievable after themissing contour
was filled. It was achieved by calculating the minimum
distance from the center point to the neck points of both
the right and left side of the femoral head, as shown
in Fig. 14. The neck candidate point positions were
detected at every 2 to 3 intervals, which represents
the minimum distance. The estimated points were con-
nected to form a straight line as shown in Fig. 15(b).
The femoral head left side was more curved than the
right side; accordingly, the ending point was traced
from the left side with from 0◦ to 3◦ slope relative to
the starting point. Similarly, the ending point for the
right side was detected by fixing the same value for
the left side starting-to-ending-point distances. Finally,
the entire contour was connected through the estimated
points, segmenting the femoral neck region as shown
in Fig. 15(c).

6) Similarly, the starting and ending points of the neck
region and slope were measured on both right and left
sides of all femoral slices to extract the femoral neck
region to enable the estimation of osteoporotic fracture
risk (Fig. 16).
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FIGURE 15. Extraction of femoral neck: (a) Canny edge, (b) upper contour
of femoral neck, and (c) femoral neck contour.

FIGURE 16. Femoral neck extraction results of hip ROI.

III. MODELS BASED ON ACTIVE CONTOUR AND ACTIVE
SHAPE FOR FEMUR SEGMENTATION
We adopted an edge-based active contour model (ACM) to
detect the femoral contour in this study [34]. The traditional
ACM or snake has been widely applied in image analysis
applications for the segmentation of desired objects, but it
is weak in detecting sudden changes in the perimeter of an
object [34], [35]. It is a list of ordered points: a continuous
parametric function (x (s) , y (s)), where the ranges of s are
[0, 1] and defined as:

E∗snake =
∫ 1

0
(Einternal (v (s))+ Eexternal (v (s))

+Eimage(v (s)))ds. (3)

v (s) = (x (s) , y (s)), (4)

where Einternal , Eexternal , and Eimage are internal energy, exter-
nal energy, and image energy. The edge-based ACM used in
this study was calculated using the location of the contour
on the plane to evaluate its energy value. In subsequent itera-
tions, the contour balanced its location to the desired object in
the image, which modified its shape to minimize its energy.
The developed mask image using the set of selected initial
points was used to cover the input image. The number of
iterations was optimized to 100, which reduced the contour
to preserve foreground pixels from background pixel objects.
Furthermore, we used active shape model (ASM) to segment
the femur [36]. The landmark points were manually selected
with twelve major points to cover the contour of the input
image. The number of iterations was fixed to 100 and train the

data set using three fold cross validation [37]. ASM worked
well with regular and stable femoral shape and failed to
detect the irregular bone contour shape was observed. The
performance of the ACM and ASM methods in segmenting
femur was compared with the proposed method and ground
truth is shown in Fig. 17.

IV. EXPERIMENTAL SETUP AND EVALUATION
The proposed method was evaluated on 30 hip volumetric
CT images. We evaluated the performance of the proposed
method in segmenting femoral region with manual segmen-
tation detected by an expert. Furthermore, we compared
the proposed method with the ACM for the segmentation
of femur. The performance evaluation was calculated by
using performance metrics based on precision, recall, false-
positive rate (FPR), false-negative rate (FNR), and the Dice
similarity coefficient (DSC). Precision describes the ratio of
correctly segmented locations to the total segmented loca-
tions, defined as TP

/
(TP+ FP). Recall demonstrates the

ratio of correctly segmented locations to all observations
in the actual class and is defined as TP

/
(TP+ FN ). FPR

and FNR are used to indicate misclassification error rates,
defined as FP

/
(FP+ TN ) and FN

/
(FN + TP). The differ-

ences between proposed method and manual detection were
evaluated in terms of DSC, which is defined as DSC =
2(S ∩ G)

/
(S + G), where S is the segmented femur by auto-

matic method and G is the manually-detected femoral region.
A DSC value of 0 denotes no similarity between the two
segmented bone regions, and 1 indicates exact similarity. The
segmentation framework developed in this study was imple-
mented using Matlab 2018b (The Mathworks, Inc. Natick,
MA, USA).

V. RESULTS
The qualitative performance of the proposed method in seg-
menting femoral regions was compared with the performance
of the ground truth and ACM methods, as shown in Fig.
17. The qualitative results of the femoral contour were sim-
ilar to the femoral contour of the ground truth. Due to the
narrowed inter-bone regions, the competitive ACM method
showed femoral contour discontinuity, which is not appro-
priate for fully-automated extraction of the femoral neck
region. However, our proposed method accurately identified
the femoral contour in weak and narrowed inter-bone regions.
The proposed automatic approach resulted in a higher average
precision (95.5%) and recall (99.2%) than with the semi-
automatic ACM method, indicating the robustness of the
proposed method in detecting the femoral contour for subse-
quent tasks (Table 1). The proposed method for segmenting
femoral regions achieved low FPR and FNR, whereas the
semi-automatic segmentation method produced high FPR
and FNR. TheDSC performance metric was 3.3% and 15.2%
higher than with the ACM and ASM, respectively. The
femoral contour detected by our proposed method is similar
to ground truth. As a result, the proposed system can be used
as a reliable system for accurate femoral neck extraction.
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FIGURE 17. Segmentation results of femur on both right and left sides of the hip ROI: (a) input image, (b) ground truth image,
(c) segmentation result of ACM, (d) segmentation result of ASM, and (e) segmentation result of proposed method.

TABLE 1. Comparison of performance proposed method with active
contour and active shape models for femur segmentation.

Next, we compare the execution time of the ACM and
ASMmeasured the elapse times for 30 patients and averaged
them. For the proposedmethod, we start tomeasure the elapse
time when the center slice is located and continue until the
femur is segmented. For the ACM and ASM, we start to
measure the elapse time when the iterative procedure starts
and continue until the femur is segmented. The result is shown
in Table. 2. The proposed method, ACM, and ASM require
0.38, 0.81, and 12.8 sec on average, respectively to segment

TABLE 2. Comparison of execution time of propose method with active
contour and active shape models for femur segmentation.

femur. The proposed method is about 2 and 33 times faster
than the ACM and ASM, respectively. The ACM and ASM
need enough iterative time to find the correct contour.

We also show the 3D visualization of surface rendering
of the extracted femoral neck region from two perspective
angles as shown in Fig. 18. The images of the first column
are observed from the side and the images of the second
column are approximately seen from up to bottom. For 3D
visualization, we generate the femoral mask from the center
slice and we apply it to all other slices. Thereafter, we use
the 3D volume rendering software called RadiAnt DICOM
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FIGURE 18. 3D visualization by surface rendering of extracted femoral
neck region: (a) two perspective views of normal case and (b) two
perspective views of osteoporotic case.

FIGURE 19. Failed example of proposed method: (a) input image and
(b) result of edge detection and contour of femoral neck.

Viewer 5.5.1. Figs. 18(a) and 18(b) represent the normal and
the osteoporotic case, respectively. The osteoporotic case has
a hole inside the bone, because the osteoporotic patient shows
low density in the inside bone called the trabecular bone.
We infer that the osteoporotic patient has the trabecular bone
of low density, leading to the hole of Fig. 18(b).

Next, we show the failed case caused by the proposed
method as shown in Fig. 19. Fig. 19(a) is the input image and
an example of osteopenia. As the bone density has decreased,
the cortical bone becomes thinner. The contour of the femoral
head and neck is not clear and the edge corresponding to the
right part of the femoral head and neck is missing and the
detected neck is different from the real one. The detected neck
part is printed in red in Fig. 19(b). As a result, the starting
points of the femoral neck are not detected correctly.

VI. DISCUSSION
To the best of our knowledge, most previous automatic anal-
ysis methods of proximal femur and femoral neck worked
well in evenly distributed healthy bone but failed in unevenly
distributed diseased bone and with noisy data [7]–[13]. This
study proposed a fully-automated approach for the segmen-
tation of femur and femoral neck in hip joint CT images,

especially with severe abnormalities indicating a risk of
osteoporotic fractures. The accurate segmentation of the
femoral contour is important for the detection of the femoral
neck; this study revealed that this automatic method for
femoral region segmentation from CT images accurately
matches the results achieved manually by an expert. The
accuracy of the segmentation of the femur by our automatic
method was quantitatively compared with the semi-automatic
segmentation results by using an ACM and ASM. A highly
satisfactory similarity agreement between automatic and
manual methods (DSC > 94.8) was achieved that exceeded
the semi-automatic method of femur segmentation. In addi-
tion, the average values of precision and recall evaluated
for the segmentation of the femur using our approach were
always greater than the semi-automatic ACM and ASM val-
ues for femoral contour detection.

This study achieved high segmentation performance for
evenly distributed femur and enabled the consideration of hip
joint space for unevenly-distributed bone tissue. The main
contribution of this study was to demonstrate a method of
separating the closely-overlapped joint space of the acetabu-
lum and femoral head before segmentation. For this purpose,
we developed a simple and effective intensity-based tracing
technique without any user interaction that automatically
enhances acetabulum and femur segmentation.

Although current automated methods produce accurate
femur segmentation on healthy pelvic bone CT data, they
yield unacceptable segmentation of the bone that poses vari-
ations in shape and blurred edges [6], [7]. The snake-based
method using manual initialization wrongly detects the
non-bone region as a bone structure and fails to detect the sep-
aration between bones [6]. Femur segmentation using com-
puterized schemes on various orientations of bone skeletal
structures requires the interactive selection of seed points on
each bone [9]. Compared with these, our method of segmen-
tation of femur and femoral neck based on region characteris-
tics accurately detects both evenly- and unevenly-distributed
bones. Our fully-automated segmentation technique with
DSC = 94.8% is similar to the deep segmentation network
with DSC = 95.3%. However, the deep network required
extensive training and large number of ground truth data [16].
Thus, the simplicity and flexibility of our automatic approach
is of clinical use for hip joints with severely affected groups.

The limitation of this work is the small number of datasets.
Future work should employ many databases using different
scanners to improve the proposed method for segmentation
and detection of fractures. The proposed framework focused
on the segmentation of three different bone regions, and
thus additional work to extract the quantitative morphometric
features from different locations of the femur such as the
head, neck, and trochanter would increase the value of the
proposed framework for fracture identification.

VII. CONCLUSION
This study presented a complete automatic framework for the
segmentation of both the left and right acetabulum, the femur,
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and the femoral neck in hip joint CT images with severe
abnormalities. The proposed methods for the segmentation
of acetabulum based on bone height and joint space size is
simple and performed robustly for unevenly-distributed bone
structures. The experimental results based on 3D visualiza-
tions of the femoral neck showed that the proposed method
is more accurate and improves subsequent measurements of
bone fracture determination. Compared to the standard ACM
and ASM, the segmentation performance of the femur by
our proposed method produced high similarity agreement
with the manual region segmentation method. However, the
computational cost of manual segmentation is higher than our
automatic method. Thus, the proposed framework could be
both helpful and efficient in clinical use for severely affected
hip joints with a risk of osteoporotic fracture.
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