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ABSTRACT 3D hand pose estimation from a single depth image plays an important role in computer vision
and human-computer interaction. Although recent hand pose estimation methods using convolution neural
network (CNN) have shown notable improvements in accuracy, most of them have a limitation that they rely
on a complex network structure without fully exploiting the articulated structure of the hand. A hand, which
is an articulated object, is composed of six local parts: the palm and five independent fingers. Each finger
consists of sequential-joints that provide constrained motion, referred to as a kinematic chain. In this paper,
we propose a hierarchically-structured convolutional recurrent neural network (HCRNN) with six branches
that estimate the 3D position of the palm and five fingers independently. The palm position is predicted
via fully-connected layers. Each sequential-joint, i.e. finger position, is obtained using a recurrent neural
network (RNN) to capture the spatial dependencies between adjacent joints. Then the output features of
the palm and finger branches are concatenated to estimate the global hand position. HCRNN directly takes
the depth map as an input without a time-consuming data conversion, such as 3D voxels and point clouds.
Experimental results on public datasets demonstrate that the proposed HCRNN not only outperforms most
2D CNN-based methods using the depth image as their inputs but also achieves competitive results with
state-of-the-art 3D CNN-based methods with a highly efficient running speed of 285 fps on a single GPU.

INDEX TERMS 3D hand pose estimation, recurrent neural network, hand articulations.

I. INTRODUCTION
Accurate 3D hand pose estimation has received consider-
able attention regarding a wide range of applications, such
as virtual/augmented reality and human-computer interac-
tion [1]. As commercial depth cameras have been released
and become more common, depth-based hand pose estima-
tion methods have attracted significant research interest in
recent decades [2]. Nevertheless, it is still a challenging prob-
lem to accurately estimate 3D hand pose, because of the low
quality of depth images, large variations in hand orientations,
high joint flexibility, and severe self-occlusion.

Recently, most 3D hand pose estimation methods have
been based on convolutional neural networks (CNNs) with
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a single depth image. In these conventional CNN-based
methods, there are two major approaches to improve esti-
mation accuracy. The first involves 3D data representation
of 2D depth images. To utilize 3D spatial information,
Ge et al. and Moon et al. converted a depth image into
a volumetric representation, such as 3D voxels, and then
applied a 3D CNN for 3D hand pose estimation [3]–[5].
In addition, 3D representation of inputs based on a 3D
point cloud has been proposed [6]–[8]. Although these meth-
ods are effective for capturing the geometric properties
of depth images [3], [5], they suffer from heavy param-
eters and complex data-conversion processes, resulting in
high time complexity. For efficient training and testing, 2D
CNN-based methods that attempt to extract more information
from 2D inputs are still being widely researched. In this
study, we adopt a 2D depth image itself as input without a
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further data representation process to utilize the efficiency
of 2D CNN.

The second approach involves effective network archi-
tecture designs that utilize the structural properties of
hands [9]–[12]. For a network model, hierarchical networks
that divide the global hand pose estimation problem into
sub-tasks have been proposed, where each one focuses on a
specific finger or hand region. Sun et al. [11] divided global
hand pose estimation into local estimations of palm and
finger pose and then updated the finger location according
to the palm pose in a cascade manner. Madadi et al. [10]
designed a hierarchically tree-like, structured CNN using five
branches to model the five fingers and an additional branch
to model the palm orientation. Zhou et al. [12] designed a
three-branch network, where the three branches correspond to
the thumb, index finger, and the three other fingers, according
to the differences in the functional importance of different
fingers. More recently, Du et al. [9] proposed a two-branch
cross-connection network that hierarchically regresses palm
and finger poses through information-sharing in a multi-task
setup. These studies have demonstrated that handling differ-
ent parts of the hand via a multi-branch CNN can improve the
accuracy of 3D hand pose estimation. However, these meth-
ods estimate all joints of the finger directly without explicitly
considering finger kinematics. For a finger, the movements
of different joints in the finger are dependent on each other
and can be represented as a kinematic chain. To better capture
spatial dependencies between adjacent joints, in our work,
we adopt a recurrent neural network (RNN), which is mainly
used to handle the sequential features of the joints in a finger.

FIGURE 1. Performance/inference speed trade-off on NYU dataset. The
proposed HCRNN has advantages both in estimation accuracy and fast
inference speed.

Fig. 1 depicts the inference time (ms) versus mean distance
error (mm) graph of some state-of-the-art 3D hand pose esti-
mation methods on the NYU [13] dataset. Note that, in terms
of estimation accuracy, the proposed method is ranked in
the 5th place behind SRN [14], V2V-PoseNet [5], A2J [15],
and Point-to-Point [8] which have higher computational
complexity than the proposed method. The proposed

HCRNN operates approximately 80, seven, and three
times faster than V2V-PoseNet [5], Point-to-Point [8], and
A2J [15], respectively. On the other hand, in terms of infer-
ence speed, the proposed HCRNN is in the 2nd place behind
Feedback [16], while HCRNN improves the estimation accu-
racy of Feedback by about 40%. In summary, the HCRNN
achieves both goals, effectiveness and efficiency, in 3D hand
pose estimation.

Fig. 2 illustrates the proposed hierarchical convolutional
RNN (HCRNN), which takes the 3D geometry of a hand
into account for 3D hand pose estimation. The six sepa-
rate branches are based on the observation that the hand is
composed of six local parts (i.e. the palm and five fingers)
with different amounts of variations due to the articulated
structure of the hand. Inspired by the recent study in which
sequential features of a sequence-like object are obtained in
a single image [17], we first extract the sequential features
of joints by applying the combination of convolutional and
fully-connected (FC) layers to the feature from the encoder
network. Then, we propose to make use of an RNN tak-
ing these joint features as inputs to capture the sequential
information of a finger and to extract the interdependent
information of the finger joints along the kinematic chain.

Our contributions can be summarized as follows:

1) We propose the HCRNN architecture that decomposes
global hand estimation into sub-tasks of estimating the
local parts of the hand. Based on the understanding that
the palm and finger exhibit different flexibilities and
degrees of freedom, the separate branches estimate the
3D positions of the palm and five fingers. We apply
the RNN to utilize spatial information between the
sequential-joints of the finger.

2) We design a relatively efficient network that not only
achieves promising performance with the mean errors
of 6.5, 9.4, and 7.7 on the ICVL [18], NYU [13], and
MSRA [11] datasets, respectively, but also runs fast,
at over 285 fps, on a single GPU. The speed versus
accuracy trade-off graph can be seen in Fig. 1.

II. RECURRENT NEURAL NETWORKS AND ITS VARIANTS
RNNs learn a hidden representation for each time step of
sequential data by considering both the current and previous
information. Thanks to their ability to memorize and abstract
the sequential information over time, RNN has achieved great
success in sequential data modelings such as natural language
processing (NLP) and speech recognition. Formally, the hid-
den state and the output feature at the current time step, t , can
be respectively obtained by

ht = tanh(Whxt + Uhht−1 + bh), (1)

yt = Wyht + by, (2)

whereWh, Uh, and bh are the parameters for the hidden state
andWy and by are the parameters for the current output. This
recurrent structure allows the RNN to convey the information
in the past time steps to the current prediction process.
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FIGURE 2. The overall architecture of the proposed method for 3D hand pose estimation. It is designed with a hierarchical structure, where each separate
branch estimates the 3D positions of the palm and five fingers. In the finger branches, the RNN-based regression block is added to capture the spatial
dependencies between the sequential-joints of the finger. fk represents the feature of the kth finger, Jg and J0 denote the global hand joint and the palm
joint, respectively, Lg and L0 are the global joint regression loss and the palm joint regression loss, respectively.

However, as the time gap between information grows, the
basic RNN cannot preserve temporal memories and faces
the problem of long-term dependencies due to the vanishing
gradient [19].

To tackle the aforementioned problem, long short-term
memory (LSTM) [20] has recently been proposed, which
replaces the nonlinear units of the basic RNN. Among
the numerous variants of LSTM, the gated recurrent
unit (GRU) [21] is one of the most popular modules owing to
its ability to reduce the complexity of LSTM. There are two
key components in GRU, which are referred to as the update
gate and reset gate. The update gate, zt , controls the balance
between the previous and current feature information, while
the reset gate, rt , is used to modulate the states of the previous
hidden feature. At the time step t , the current gate output yt
is computed as follows:

rt = σ (Wrxt + Urht−1 + br ), (3)

zt = σ (Wzxt + Uzht−1 + bz), (4)

h̃t = tanh(Whxt + rt � Uhht−1 + bh), (5)

ht = zt � ht−1 + (1− zt )� h̃t , (6)

yt = Wyht + by, (7)

where W , U , and b terms with a specific subscript represent
the parameters for each layer, respectively, σ (·) is a sigmoid

function, h̃t is the current memory content, ht is a current
hidden state, and � represents element-wise multiplication.
In this work, we adopt a GRU as a basic RNN module.

III. PROPOSED METHOD
A. OVERALL NETWORK ARCHITECTURE
Fig. 2 illustrates the overall architecture of the proposed
3D hand pose estimation methods. The proposed network
mainly consists of two parts: an encoder that transforms an
input depth image onto the abstracted feature space; a joint
regression sub-networks (SubNets) that are composed of six
branches corresponding to five fingers and a palm. The input
depth image is firstly fed into an encoder for low-level feature
extraction. Then, the regression SubNets take the obtained
feature map from the encoder as an input and predict the 3D
pose of a palm and fingers.

B. ENCODER NETWORK
The encoder of the proposed 3D hand pose estimationmethod
is based on ResNet with full pre-activation [22] as described
in Table 1. The encoder has five residual blocks, each of
which consists of two 3 × 3 convolutional layers. For the
skip connection in the residual block, we use a 1× 1 convo-
lutional shortcut. Average-pooling layers for down-sampling
are appended after each residual block except for the last
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TABLE 1. Detailed architecture of the encoder network for initial feature
extraction.

two blocks. We design the encoder to be shallow because an
input depth map has a plainer texture as compared with the
inputs used for classification or segmentation tasks. Unless
otherwise noted, the encoder takes the input with a spatial
size of 96× 96, and thus the output feature map has a spatial
size of 12× 12 with 256 channels.

C. REGRESSION SUBNET
As the different parts of the hands have different amounts
of variation and degrees of freedom (DoF) due to the artic-
ulated structure of the hand [11], it is inefficient directly
regressing all parts together from the encoded feature. Among
hand joints, the palm is much more stable than fingers and
mainly affects global hand positions. The five fingers are
largely independent and have more flexibility than palm [11].
By decomposing the global hand pose estimation problem
into sub-tasks of palm and finger pose estimation, the opti-
mization of the network parameters can be simplified by lim-
iting the search space [23], [24]. Based on the aforementioned
properties of hands, we design our joint regression SubNet as
hierarchically structured networks with six separate branches
for the estimation of the palm and five fingers: thumb, index,
middle, ring, and little finger.

1) SEQUENTIAL MODELING OF FINGER JOINTS
Although recent state-of-the-art 3D hand pose estimation
methods mostly adopt discriminative learning-basedmethods
as deep learning technology advances, model-based methods
still have their own advantages [25]–[27]. As considering the
joint connection over the finger, the movements of different
joints of a finger are highly related to each other. With a
finger root, i.e. metacarpophalangeal (MCP), as the base
position, each finger is composed of sequential-joints, which
can be represented as a kinematic chain. Using the kinematic
structure of a hand, the model-based methods can constrain
the solution space of the hand joint positions. To take the
advantages of both the model- and discriminative-learning-
based methods, we estimate the nth joint of the kth finger,
J (n)k , by using the feature sequence for the previous links as
follows:

J (n)k = F (n)
k

(
f (n)k , f (n−1)k , · · · , f (1)k

)
, (8)

where F (n)
k (·) is a mapping function from the feature

sequence onto the 3D coordinate and f (i)k , i = 1, · · · , n,

is the abstracted feature of the kth finger’s joint. Note that
f (1)k represents the feature of the MCP joint. Reflecting the
kinematic structure of the finger, we design a regression sub-
network (SubNet) of (8) by using a recurrent model in which
the hidden layer containing the information of previous links
controls the current estimation as follows:

h(n)k = G
(
h(n−1)k , f (n)k ;2k

)
, (9)

J (n)k = Wkh
(n)
k + bk , (10)

where h(n)k and h(n−1)k are the current and previous hidden
states, respectively, G(·) is a GRU, 2k represents the param-
eter for the FC layers in the GRU, and Wk and bk are the
parameter for the linear regression.

FIGURE 3. Architecture of the RNN-based regression block, which takes a
feature sequence of a finger as input. It conveys the feature information
of the spatially adjacent joints, which is utilized for estimating the
position of sequential finger joints. f (i )

k , i = 1, · · · , N , represents the

abstracted feature of the kth finger’s joint. J (n)
k and L(n)

k are the nth joint
of the kth finger and its corresponding finger joint regression loss,
respectively, and h(N)

k is the output hidden state.

2) FINGER BRANCH
Fig. 3 depicts the RNN-based regression block in the finger
branch. For a finger, each 3D joint position is recurrently
estimated by using its input encoded feature and the previous
joint information in the latent space. Inspired by the recent
study where sequential features of a sequence-like object are
obtained in a single image [17], we first extract the sequential
features of joints from the output of the encoder network. To
this end, we first apply a 3×3 convolution with 256 channels
followed by a global average pooling to the feature map from
the encoder for each branch in order to extract the hand-part-
specific information. For example, let fk be such a feature vec-
tor of kth finger branch. Taking fk as an input, N different FC
layers are employed to obtain the feature vectors of each joint,
f (1)k , · · · , f (N )

k , where N is the number of joints in the finger,
as shown in Fig. 3. To estimate the first joint of the finger J (1)k ,
i.e. the MCP joint, f (1)k and a zero vector as an initial hidden
state are fed into the GRU as in (9) and (10). Then, the hidden
state in the GRU conveys the sequential information to the
end joint along the kinematic chain. The 3D coordinates of
adjacent finger joints J (n)k for n = 1, · · · ,N are sequentially
estimated by utilizing the previous hidden state.

3) PALM BRANCH
Like the finger branches, the hand-part-specific feature f0 for
the palm branch is first extracted. As mentioned at the begin-
ning of this section, the palm is inflexible and more stable
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than fingers. Thus, the palm joint J0 is directly estimated by
applying a series of FC layers to the palm feature f0.

4) ENSEMBLE STRATEGY
To incorporate the inter-finger correlation, instead of directly
concatenating the joint predictions of each branch, we adopt
the feature ensemble strategy as in [9], [10], [12]. The features
from the last FC layers of the palm branch and the hidden
states h(N )

k for k = 1, · · · , 5 containing the previous joints
information from the finger branches are concatenated and
followed by 1,024 dimension FC layers to estimate the global
3D hand position Jg.

D. LOSS FUNCTIONS
To train the proposed network, we adopt the smooth `1
loss [28] defined as

smooth`1 (x) =

{
0.5x2, if |x| < 0.01,
0.01(|x − 0.005|), otherwise,

(11)

The smooth `1 loss is more robust to outliers than `2 loss and
it is experimentally proven that smooth `1 loss is also effec-
tive in 3D hand pose estimation tasks [6], [14], [15]. In the
joint regression SubNet, we define the global joint regression
loss Lg along with the local joint regression loss Ll as the
constraint to enforce each finger branch to be specialized in
predefined subsets of the hand joints as follows:

Lg =
T∑
i=1

∣∣∣̃J (i)g − J (i)g ∣∣∣smooth , (12)

Ll = L0 +
5∑

k=1

N∑
n=1

∣∣∣̃J (n)k − J
(n)
k

∣∣∣
smooth

, (13)

with

|y|smooth =
∑
j

smooth`1 (yj), (14)

where T andN are the number of whole joints and the number
of joints in the finger, respectively, yj is the jth component of
y, and L0 is a palm joint regression loss. J̃ (i)g and J (i)g represent
the ground truth and estimated 3D coordinates of the ith hand
joint, J̃ (n)k and J (n)k denote the ground truth and estimated 3D
coordinates of the nth joint from the kth finger branch. The
total loss function is defined as:

L = Lg + λLl, (15)

where λ is a weight factor to balance the two losses. In our
experiment, λ is set to 1.

E. IMPLEMENTATION DETAILS
As mentioned in the previous subsection, the input feature
vectors of each branch fk are obtained by 3× 3 convolutional
layers with 256 channels followed by global average pooling
layers. The number of output dimensions of the FC layers in
the palm branch and the RNN-based regression block is set
to 256 except those of the last FC layer for joint regression

and the ensemble layer with 1,024 dimensions. We add a
batch normalization (BN) layer after each convolution layer
to simplify the learning procedure and improve the general-
ization ability. The rectified linear unit (ReLU) is employed
as an activation function after the convolutional and FC lay-
ers except for the last FC layer, which performs final joint
regression. To simplify the hand pose estimation task, we first
extract a fixed-size cube around the center points from the
depth image. Because the center point which is obtained by
the center of mass after simple depth thresholding can be
inaccurate, some methods [5], [29] trained a simple 2D CNN
which takes cropped depth image using depth thresholding
and generates the 3D offset from the current center point
to the center of ground-truth joint locations. Following the
method in [5], we used refined center points which can be
obtained by adding the output offset value of the network
to the center of the mass. A cropped hand region from the
bounding area is then resized to a fixed size of 96× 96. The
depth values inside the cropped cube region are normalized to
[−1, 1]. The points outside the cube are assigned a depth of 1.
During training, we apply the following online data augmen-
tation tricks: Random rotation in the range [−180◦, 180◦];
random translation of [−10, 10] pixels; random scaling of
[0.9, 1.1]. We use the Adam optimizer [30] with an initial
learning rate of 1e-3, a batch size of 32, and a weight decay
of 1e-5. The learning rate is multiplied by a factor of 0.96
at every 2k iterations. We trained our networks from scratch
with parameters randomly initialized using the Xavier ini-
tializer [31]. The entire network is trained for 120 epochs in
an end-to-end manner. Our model is implemented by Ten-
sorflow [32], and a single NVIDIA Titan X GPU (Pascal
architecture) is used for training and testing. To design the
branch details for different hand pose datasets, we define the
joint subsets as shown in Fig. 4.

FIGURE 4. Subset of joints on the MSRA, NYU, and ICVL datasets. Violet
color indicates the palm joints subset, and other colors indicate the finger
joints subset.

IV. EXPERIMENTAL RESULTS
A. DATASETS AND EVALUATION METRICS
We evaluated our network on the following three public
hand pose datasets: ICVL [18], NYU [13], and MSRA [11].
The NYU and ICVL datasets provide initially divided train-
ing and test images. TheMSRA dataset consists of sequences
from 9 different subjects and we use a leave-one-subject-out
cross-validation strategy for evaluation. More details of these
datasets are as follows:

1) MSRA DATASET
The MSRA dataset [11] contains 76k frames from nine
different subjects with 17 different gestures. This dataset
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was captured with Intel’s Creative Interactive Gesture Cam-
era [33] and has 21 annotated joints, including 1 palm joint
and four joints for each finger as shown in Fig. 4(a). Fol-
lowing the most commonly used protocol [11], we used a
leave-one-subject-out cross-validation strategy for evaluation
on this dataset.

2) NYU DATASET
The NYU dataset [13] was captured with three Microsoft
Kinects. It contains 72k training and 8k testing images from
three different views. The training set was collected from
one subject, while the testing set was collected from two
subjects. According to the evaluation protocol that most pre-
vious works follow, we used only a frontal view and a subset
of 14 annotated joints which is depicted in Fig. 4(b) for both
training and testing.

3) ICVL DATASET
The ICVL dataset [18] was captured with an Intel Realsense
Camera. In this dataset, there are 22k frames from 10 dif-
ferent subjects for training and 1.5k images for testing.
The training set includes an additional 300k augmented
frames with in-plane rotations, but we did not use them
because we applied online data augmentation during training,
as described in Section III-E. This dataset has 16 annotated
joints, including 1 palm joint and 3 joints for each finger,
as shown in Fig. 4(c).

4) EVALUATION METRICS
To evaluate the performance of the different 3D hand pose
estimation methods, we used two metrics. The first metric is
the average 3D distance error between the ground truth and
predicted 3D position for each joint. The second one is the
percentage of succeeded frames whose errors for all joints
are within a threshold.

B. SELF-COMPARISONS
To analyze the contributions of each component of the pro-
posed method, we conducted self-comparative experiments
on the NYU [13] dataset. First, we evaluated the effect of
the number of branches. For this experiment, as shown in
Fig. 5(a), we designed a two-branch network consisting of
one branch for palm joint regression and the other one for
unified finger joint regression, which is a similar approach
in [9]. In other words, in the finger branch of the two-branch
network, the RNN-based regression block estimates recur-
rently the joints of the five fingers simultaneously. For a
fair comparison with the proposed architecture, we adjusted
the number of convolution channels and dimensions of FC
layers in the finger branch of the two-branch network so that
each network has a similar number of parameters. As shown
in Table 2 and Fig. 6, the proposed network architecture
with six branches performs better and reduces the mean 3D
distance error (mm) by 0.51 (from 9.88 to 9.37) as compared
with the baseline network architecture. This result demon-
strates that regressing all fingers jointly is inefficient because

FIGURE 5. Baseline architectures for self-comparisons. a) Two-branch
baseline network with one branch for palm and the other branch for
finger joint regression. b) Baseline network where the RNN-based
regression block is replaced with fully connected layers. c) Baseline
network where the joint predictions of each branch are directly
concatenated instead of adopting ensemble strategy.

the five fingers are largely independent [11]. By building a
fine-grained branch for each finger, the network can learn
richer features for finger pose estimation.

We also evaluated the effect of the RNN-based regression
on finger joint estimation. We designed another network
architecture, where the RNN-based regression block is
replaced with FC layers, as shown in Fig. 5(b). In each finger
branch of the FC-layer-based network, the output features
are directly extracted from the input finger features with a
simple FC layer instead of considering the structural prop-
erties of finger joints. As shown in Table 2 and Fig. 6, the
proposed RNN-based network architecture achieves a better
result than the FC-layer-based network with direct regression
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FIGURE 6. Self-comparison results on 3D distance errors (mm) per hand
joint.

TABLE 2. Self-comparison results on NYU dataset.

and reduces the mean 3D distance error (mm) by 0.68 (from
10.05 to 9.37). This experiment confirms that the proposed
RNN-based regression can drive the network to utilize spatial
dependencies between the sequential-joints of the finger for
accurate 3d hand pose estimation.

Finally, we evaluated the effect of the ensemble strat-
egy. We designed a baseline architecture, where the joint
predictions of each branch are directly concatenated instead
of fusing features from each branch as in Fig. 5(c). As shown
in Table 2 and Fig. 6, the mean 3D distance error (mm)
of the baseline network achieves 9.52mm, while the mean
error of the proposed HCRNN achieves 9.37, which shows
that adopting the ensemble strategy in the regression layer
improves the prediction accuracy.

Although HCRNN with the RNN-based regression block
estimates the joint of the fingers recurrently through the

TABLE 3. Comparison of the proposed method with state-of-the-art
methods on three 3D hand pose datasets. Mean error indicates the
average 3D distance error. And ‘‘∗’’ means that ResNet-50 pre-trained on
ImageNet is used as the backbone network.

shared GRU and therefore takes longer inference time than
baseline networks, HCRNN improves the accuracy of base-
line networks by about 5%, 7%, and 2%, respectively. These
results show that designing a CNN network exploiting the
articulated structure of the hand achieves an improvement in
the accuracy of 3D hand pose estimation.

C. COMPARISION WITH STATE-OF-THE-ART METHODS
We compared the proposed network on three public 3D hand
pose datasets with the most recently proposed methods using
2D depth maps as an input, including DISCO [35], Deep-
Prior [36], its improved version DeepPrior++ [29], Feed-
back [16], Multi-view CNNs [34], REN-4 × 6 × 6 [38],
REN-9 × 6 × 6 [39], Pose-REN [40], Generalized [41],
Global2Local [10], CrossingNets [37], HBE [12], Cross-
InfoNet [9], A2J [15], and SRN [14] as well as methods
using 3D inputs, including 3D CNN [3], SHPR-Net [6],
3D DenseNet [4], HandPointNet [7], Point-to-Point [8], and
V2V-PoseNet [5]. The average 3D distance error per joint
and percentage of success frames over different error thresh-
olds are respectively shown in Table 3 and Fig. 7. It is
seen that our results outperform most 2D CNN-based meth-
ods on three datasets. Our method shows similar results
to A2J [15] on ICVL dataset but slightly worse perfor-
mance on NYU dataset. Nevertheless, due to the adop-
tion of a complex ResNet-50-based backbone network, A2J
requires a higher computational complexity than the proposed
method as described in Table 4. As compared to SRN [14]
which shows the best performance in both 2D and 3D input
data-based methods, our method achieves comparable results
on ICVL and MSRA datasets. For NYU dataset, our method
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FIGURE 7. Comparison with state-of-the-art methods. Top row: percentage of success frames over different error thresholds. Bottom row: 3D distance
errors per hand joint. Left: ICVL dataset, Center: NYU dataset, Right: MSRA dataset.

FIGURE 8. Comparison of mean error distance over different yaw (left)
and pitch (right) viewpoint angles on MSRA dataset.

is inferior to SRN on accuracy but shows better running
efficiency. As compared with the methods using 3D inputs,
our method performs better than 3DCNN [3], SHPR-Net [6],
HandPointNet [7], and 3D DenseNe [4] and achieves com-
parable performance with Point-to-Point [8] on the ICVL
and MSRA datasets. On the NYU dataset, the results of the
proposed method are worse than those of V2V-PoseNet [5]
but are better in terms of percentage of success frame rates
when the error threshold is larger than 30mm. On the MSRA
dataset, following the evaluation protocol of prior works [3],
[11], [40], we also measured the mean joint error over var-
ious viewpoint angles. As shown in Fig. 8, our method can
obtain promising results from large yaw and pitch angles,
which demonstrates the robustness of our proposed method
to viewpoint changes. The qualitative results of our method
on three datasets are shown in Fig. 9. It can be seen that our
method can accurately estimate 3D hand joint locations on
the three datasets.

D. RUNTIME
Because 3D hand pose estimation tasks play an impor-
tant role as a sub-system in the overall human-computer

TABLE 4. Comparison of inference speed with state-of-the-art methods.
The inference speed is measured with a single GPU.

interaction (HCI) system such as in-vehicle infotainment
(IVI), virtual reality (VR), and augmented reality (AR), the
inference speed is an important factor for the practical appli-
cation. Table 4 compares the inference speed of conventional
and the proposedmethods on a single GPU.While top-ranked
methods using 3D inputs have a higher inference time owing
to the time-consuming 3D convolution operation or data con-
version procedure, our method has a faster inference speed
owing to its efficiency of 2D CNN-based architecture. The
proposed HCRNN is ranked in 2nd place among the com-
pared methods behind Feedback. Based on the aforemen-
tioned results, it can be seen that our proposed HCRNN
not only achieves competitive performance compared with
state-of-the-art methods but also is very efficient, having a
high frame rate, which shows the applicability to real-time
applications.
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FIGURE 9. Qualitative results on the three public datasets. Left: ICVL dataset. Center: NYU dataset. Right: MSRA dataset. The ground truth is
shown as red lines, and the prediction is shown as green lines.

V. CONCLUSION
To design a practical architecture for 3D hand pose esti-
mation, we considered the articulated structure of the hand
and proposed an efficient regression network, namely termed
HCRNN. The proposed HCRNN has a hierarchical architec-
ture, where six separate branches are trained to estimate the
position of each local part of the hand: the palm and five
fingers. In each finger branch, we adopted an RNN to model
spatial dependencies between the sequential-joints of the fin-
ger. In addition, HCRNN is built on a 2D CNN that directly
takes 2D depth images as inputs, making it more efficient than
3D CNN-based methods. The experimental results showed
that the proposed HCRNN not only achieves competitive per-
formance comparedwith state-of-the-art methods but also has
a highly efficient running speed of 285 fps on a single GPU.
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