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ABSTRACT Response surface methodology (RSM) refers to experimental designs for optimizing or
developing processes, initially in manufacturing. In this paper, a new method is presented and an algorithm
is implemented that modifies the axial part in a central composite design to achieve a good D-value and
efficiency. The new designs are suitable for sequential experimentation. In comparison with known designs
in the same class, the new designs are tested and found to have better D-values on a range of factors. With this
new approach, efficient orthogonal designs for response surface methodology were generated for a number
of parameters that were previously impossible to construct. The new generated designs and their comparison
with known designs from the literature are presented in tables for practitioners’ use.

INDEX TERMS Composite design, construction, D-value, Hadamard matrices, orthogonal design.

I. INTRODUCTION
The sets of techniques collectively termed response surface
methodology (RSM) are used to analyse relationships
between explanatory variables (factors) and one or more
responses, or to maximize the response by adjusting
individual variables. These sets allow for rates of change
and interactions between variables, such as temperature,
density, or pressure. This methodology therefore has wide
applications such as design optimization in mechani-
cal engineering [1]–[3], health engineering [4], materials
engineering [5], and applied physics [6], [7]. Box and
Behnken in [8] introduced a class of three-level second-order
designs (SODs) for fitting second-order response surfaces
over a spherical region. Additional works on Box and
Behnken designs can be found in [9].

A considerably useful type of SOD is the central composite
design (CCD) which was first introduced in [10] requiring
five levels for each factor. Today, these designs still remain
the the most popular designs for second order models in
response surface methodology. [11] and [12] undertook work
to reduce the points needed to construct a CCD. Small com-
posite designs were suggested in [13] and they aimed in
generating designs with small and even number of factors.
The subset designs were introduced in [14]. These designs
were obtained by using two-level factorial designs in subsets
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of factors while the other factors were held at the middle
level. CCDs with a minimum number of runs for 7, 8, and
9 factors were constructed in [15]. Other small composite
designs are provided in [16]. The previous mentioned designs
were constructed by focusing on factorial part to reduce the
number of runs and they used the classical axial part. For a
comprehensive overview on response surface methodology,
one is referred to [17].

Most of the known approaches that reduce the run size in
the literature are focused on selecting factorial runs while
keeping the axial part fixed. Composite designs were con-
structed in [18] by replacing the classical axial part with
orthogonal designs with large number of runs resulting in
large number of runs for the whole designs Georgiou et al.
work in [19] is another research that addresses axial points,
although some of their designs for odd numbers of factors are
not orthogonal. In [19], the classical axial points are replaced
with points from an orthogonal design (OD) for even number
of factors. This method gave new results, but it was restricted
to the existence of the needed ODs and it does not maintain
orthogonality for designs with a minimum number of runs
and odd number of factors.

All the existing composite designs in the literature, with
odd number of factors, have either the classical axial part
(see [10]–[16]) or an axial part that maintain only one or
two of the following properties: a) minimum number of runs
and b) orthogonality and c) highest D-value (see [18], [19]).
This paper aims at developing a method for constructing
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designs that solve this issue and generating designs that
simultaneously posses all the three desirable properties a), b)
and c). The designs that succesfully posses all the three
properties could exist for odd orders only (see [15], [16],
and [19]). This situation strongly motivated this research and
this investigation for designs that can simultaneously have all
the three desirable properties and at the same time be easy to
construct and use. As the used criteria have demonstrated the
high efficiency of the proposed designs, these designs can be
directly implemented in theoretical and practical applications
with immediate benefits.

The focus of this paper is to construct second-order
response surface designs and generalize the approach in [19]
by replacing the axial points by a new structure of a block
form that is consists of a number of different ODs. This new
construction method includes all the designs with classical
axial points and all the designs in [19], but the proposed
approach does not need the restriction for the existence of one
OD that was necessary in [19]. For this reason the method can
be applied to add and even orders leading tomany alternatives
even in the simplest block structure. Moreover, the designs
constructed from this proposed method have fewer runs,
a higher D-value and have their main effect orthogonal.

II. MODEL AND DESIGN CRITERIA
Suppose that one wants to test the effects of k predictors,
denoted as x1, x2, . . . , xk , on a response variable y, subject
to random error. Generally, the first attempt is to approximate
the shape of the response surface by fitting a first-order model
to the response

y = β0 +
∑k

i=1
βixi + ε, (1)

where β0, βi, i = 1,. . . ,k are unknown parameters and ε
is a random error term. When the first-order model in (1)
appears inadequate to describe the true relationship between
the response and the predictors due to the existence of surface
curvature, it can be upgraded to a second-order model

y = β0 +
∑k

i=1
βixi

+

∑k

i=1
βiix2i

+

∑k−1

i=1

∑k

j=i+1
βijxij + ε, (2)

where β0, β1 and ε are as in (1) while βii and βij denote the
unknown coefficient of the quadratic effects and the 2-factor
interactions respectively. The standardization of the design
matrix should be applied after the experiment has been per-
formed and at the stage where the model matrix is being pre-
pared for the analysis of the collected data. Standardization
can follow the classic standardization method for CCD or
more advance techniques such as those in [20]. This is out
of the scope of this paper and is not to be explored further
here.

The design which is appropriate for a given experimen-
tal situation depends on the objectives of the experimenter.

Several criteria have been proposed in the literature for this
purpose; see for example [21]. One of the most important
criteria for the design matrix is the D-value criterion that
can be used to evaluate central composite designs, where
more informative design has higher D-value. The D-value
criterion is calculated as 103|X ′pXp|

1/p/n, where Xp is the
model matrix, and p is the number of coefficients in the
model to be estimated, and describes the ‘‘information per
point’’ for the design (see [22]). A design with all the main
effects orthogonal to each other and also orthogonal to all the
quadratic effects is said to satisfy the property of orthogonal
quadratic effects (OQE).

Another criterion used in this paper is the average predic-
tion variance (AVP). Given any settings of factors, the product
of the error variance and a quantity that depends on the design
and the factor settings is often referred to as the prediction
variance. Usually, prediction variance is unknown as its value
is dependent on the error variance which is also unknown
prior to experimentation. More so, the error variance does not
determine the ratio of the prediction variation - relative pre-
diction variance. Thus, the value of relative prediction vari-
ance can be known before the collection of data as it solely
depends on the factor settings and the design.While executing
an experiment and thus fitted a least square model, the mean
squared error (MSE) of the fitted model can be used to
estimate the error variance. Furthermore, themultiplication of
the relative prediction variance of a particular setting results
in the estimated value of the actual prediction variance of that
setting. Concisely, the prediction variance is small throughout
the design space, the error variance reduces as sample size
increase and comparatively, preferable designs are those with
lower prediction variance. The designs are also evaluated in
terms of the maximum prediction variance (MVP) which is
part of the prediction variance where the value of MVP is the
worst (least desirable from a design point of view) value of the
relative prediction variance. The relative prediction variance
at xi is given by x ′i (X

′
pXp)

−1xi [23].

A. ORTHOGONAL DESIGNS
An orthogonal design A, of order n and type (s1, . . . , su),
which is denoted as OD (n; s1, . . . , su), is a square matrix
of order n with entries ±xk , where for each k , ±xk appears
exactly sk times in each row and column of the design matrix
and xk are commuting variables. Also, all rows and columns
are pairwise orthogonal.
Thus,

AA′ = A′A = (s1x21 + . . .+ sux
2
u )In, (3)

where In is the identity matrix of order n. It is known that
the maximum number of variables in an orthogonal design of
order n is ρ(n), where ρ(n) is the Radon number and ρ(n) =
8c+2d with n = 2tb, b being an odd number and t = 4c+d ,
0 ≤ d < 4 [24].
Example 1:A few examples of orthogonal designs of order

2, 4, 6, and 8 are presented in Table 1 and will be used in our
construction method.
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TABLE 1. Examples of orthogonal designs ODs.

All the designs in Example 1 maintain their orthogonality
when the variables are replaced by any real value. This advan-
tage will allow us to investigate and find the best possible
replacement of the variables. By doing so, high efficiency
is acheived for the designs that will be generated by the
proposed method, as described in the following sections.

III. METHODOLOGY
In this section, a generalized method is presented that incor-
porates many known methods in the literature as special
cases. The idea of this methodology is to introduce the use
of orthogonal matrices in a block structure to generate the
axial points. This will provide huge flexibility in the choices
of matrices and will allow better coverage of the space of
interest. The method is based on a block structure that is
presented in this section. In the followings, 0n×m is used to
denote an n × m matrix with all its entries equal to zero.
Dimentions n × m will be ommited when they are obvious.
The following Lemma is very important in our approach.
Lemma 1: If there are t orthogonal square matrices Ti of

orders n1, n2, . . . ., nt . Then, the following structure will give
an orthogonal square matrix of order n = n1+n2+ . . . .+nt :

T =


0n1×nt · · · 0n1×n2 T1
0n2×nt · · · T2 0n2×n1
...

...
...

...

Tt · · · 0nt×n2 0nt×n1

.
Proof: Since all Ti matrices are orthogonal thenT′Twill

be a diagonal matrix and so T is an orthogonal n× n matrix.

Remark: Lemma 1 is essential as it provides a useful
alternative (the orthogonal square matrix T) for the axial part
of a new generalized CCD. The method is general and works
for any number of blocks t = 1, 2, . . . .. The special cases
for t = 1 (see for example section II.A) and t = 2 will be
explicitly explored in this paper.
Example 2: If t = 2 is used and the following matrices are

selected as the needed blocks

T1 = OD4, 4× 4matrix
T2 = b, 1× 1matrix

}
H⇒ k = 4+ 1 = 5,

then the generated orthogonal matrix T is a 5× 5 matrix.
In the following, the proposed construction method is

described and illustrated for a modified CCD in the special
cases of k = 5, 7, 9, 11, 13, and 15 factors. The method
builds a three-part design matrix X which will be suitable to
fit a second-order response surface model (2) as follows:

X =


Fk
Vk
Ck
−Vk

 ,
where FK is the factorial part, Vk the axial part and Ck the
center points.

Step 1: Factorial part Fk
The k needed balanced columns are selected from an

already known two-level design with suitable properties. For
example, one can use columns from a 2k−p fractional factorial
design or select any k columns from a Hadamard matrix of
order nf . The columns chosen for the factorial part should
be coming from an orthogonal two-level design so that the
orthogonality of the composite designs is ensured. This part
of the design is called the F part. So, choosing the factorial
part is based on the criteria used to evaluate the design. In this
paper, the columns of the factorial part are chosen in suchway
so that the derived composite design maximizes the D-value
and has the orthogonality property.

Step 2: Axial part Vk
The selection of the axial part is crucial for the presented

methodology. A few possible choices that are used in this
paper will be shown, but there are a lot of other options that
work as well for the new general developed method. When
looking for composite designs it is desirable that these satisfy
the following three properties: a) orthogonality, b) minimum
number of runs and c) high D-value. In the case of designs
with an odd number of factors, all three properties a), b),
and c) are hard or impossible to achieve in one design. The
trivial choice of axial part in the classic response surface
designs, such as the central composite designs, gives only two
(a and b) out of the three desirable properties. All other pos-
sible choices of axial parts require even orders to just achieve
orthogonality [24]. The proposed method can be applied to
generate designs with either even or odd number of factors.
The designs generated with even number of factors have the
same parameters and properties as the optimal designs in the
literature. The interesting and new cases of of the construction
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methodology described in this paper, are those for designs
of odd number of factors, as designs with these parameters
could not exist previously. Examples of designs with k =
5, 7, 9, 11, 13 and 15 factors satisfying all three properties a),
b) and c) are presented for the first time in this paper.

There are many possible choices of Ti for the suggested
orthogonal blocked structure of the axial points, but one
choice is presented that provides a higher D-value for the
generated design in comparison to the known results.

To achieve finding the best D-value, there are a number
of parameters that needs to be tested. For each case, a com-
puter function using Matlab software is written to perform an
exhaustive search. The best parameters were kept at each step
and were used to produce the design with best D-values. All
the variables on the design were replaced by integer values
(−1,0,1) and the optimal case was kept. These 3 values were
investigated as they perform the edges of the multidimen-
sional hypercube and it is proofed that the optimal will occur
in one of those edges. See for example [25].

In the following, the structures for generating the new axial
parts of the proposed designs are developed and presented.
This will be particularly helpful and will provide a direct
construction when the number of factors is k = 5, 7, 9, 11, 13
and 15.

i. For k = 5 factors, the orthogonal design
OD(4; 1, 1, 1, 1) is used to start the exhaustive
search. Then, the OD4 matrix of axial runs is extended
into a 5 × 5 matrix of axial runs using the following
structure:

V5 =
(
04×1 OD4
a 01×4

)
.

The variables x1, x2, x3, x4 are suitably replaced by
elements from the set

{
0,±a

}
. The best replacement

of the variables (with respect to the D-value criterion)
is selected by an exhaustive computer search.

ii. For k = 7 factors, the orthogonal design OD(6; 4, 1)
is used to start the exhaustive search. Then, the OD6
matrix of axial runs is extended into a 7 × 7 matrix of
axial runs using the following step:

V7 =
(
06×1 OD6
a 01×6

)
.

The variables x1, x2 are replaced by elements from
the set

{
0,±a

}
. The best replacement of the variables

(with respect to the D-value criterion) is selected by an
exhaustive computer search.

iii. For k = 9 factors, the orthogonal design
OD(8; 1, 1, 1, 1, 1, 1, 1, 1) is used to start the exhaus-
tive search. Then, the OD8 matrix of axial runs is
extended into an 9 × 9 matrix of axial runs using the
following step:

V9 =
(
08×1 OD8
a 01×8

)
.

The variables x1, x2, x3, x4, x5, x6, x7, x8 are replaced by
elements from the set

{
0,±a

}
. The best replacement of

the variables (with respect to the D-value criterion) is
selected by an exhaustive computer search.

iv. For k = 11 factors, the orthogonal design
OD(8; 1, 1, 1, 1, 1, 1, 1, 1) is used to start the exhaus-
tive search. Then, the OD8 matrix of axial runs is
extended into a 10×10 matrix by including the orthog-
onal design OD(2; 1, 1) as a second block and then the
10 × 10 matrix is extended into an 11 × 11 matrix of
axial runs in the following structure:

V11 =

 08×1 08×2 OD8

02×1 OD2 02×8
a 01×2 01×8

.
The variables x1, x2, x3, x4, x5, x6, x7, x8, x9 and x10
are replaced by elements from the set

{
0,±a

}
. The

best replacement of the variables (with respect to the
D-value criterion) is selected by an exhaustive com-
puter search. Note that there may be up to 10 vari-
ables(elements) if different variables names in the two
orthogonal designs that are used as blocks.

v. For k = 13 factors, the orthogonal design
OD(8; 1, 1, 1, 1, 1, 1, 1, 1) is used to start the exhaus-
tive search. Then, the OD8 matrix of axial runs is
extended into a 12×12 matrix by including the orthog-
onal designOD(4; 1, 1, 1, 1) as a second block and then
the 12× 12 matrix is extended into a 13× 13 matrix of
axial runs in the following structure:

V13 =

 08×1 08×4 OD8

04×1 OD4 04×8
a 01×4 01×8

.
The variables x1, x2, x3, x4, x5, x6, x7, x8 are replaced by
elements from the set

{
0,±a

}
. The best replacement of

the variables (with respect to the D-value criterion) is
selected by an exhaustive computer search. Again, it is
possible to have up to 12 variables (elements), in the
axial part.

vi. For k = 15 factors, the orthogonal design
OD(8; 1, 1, 1, 1, 1, 1, 1, 1) is used to start the exhaus-
tive search. Then, the OD8 matrix of axial runs is
extended into a 12×12 matrix by including the orthog-
onal design OD(4; 1, 1, 1, 1) as a second block and
then the 12 × 12 matrix is extended into a 14 × 14
matrix of axial runs by including the orthogonal design
OD(2; 1, 1) as a third block and then the 14×14 matrix
is extended into a 15 × 15 matrix of axial runs using
the following structure:

V15 =


08×1 08×2 08×4 OD8

04×1 04×2 OD4 04×8
02×1 OD2 02×4 02×8
a 01×2 01×4 01×8

.
The variables x1, x2, . . . , x14 are replaced by elements
from the set

{
0,±a

}
. The best replacement of the vari-

ables (with respect to the D-value criterion) is selected
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by an exhaustive computer search. In this case, themax-
imum possible number of variables(elements) in the
axial part is 14.

This axial part is called the V part. A number nc is selected
as needed and the corresponding nc × k matrix of center
points is generated. This part of the design is called the
center points (or C part). Note that any design which is
constructed by the above process satisfies the orthogonal
quadratic effects (OQE) property. Also, alternative choices
of Tis such as OD6 + OD8 have been tested and gave designs
with less D-value.
Remark: Note that the classical CCD can be considered as

a special case of the presented method with axial points being
of this form with t = 1 and T1 being a multiple of the identity
matrix.

The special case for t = 1 and axial parts other than the
identity matrix was studied in [19]. Note that the approach
with t = 1 is not suitable to study the case of k×k orthogonal
matrices of many odd values of k . In this paper, it is illustrated
how this extension can easily overcome these difficulties,
even for t = 2, and generate orthogonal RSM designs using
the proposed k×k orthogonalmatrices as axial parts when k is
odd. Illustrative examples of the new designs with improved
properties are explicitly provided for k = 5 and k = 9.
More results and more new designs that are obtained by the
proposed method are tabulated and presented in section IV.
Remark:With the proposed method, all the known designs

in [19] can be regenerated. Furthermore, this methodwas able

to discover new designs in cases of odd number of factors with
the orthogonality property.

The construction method is illustrated with the help of the
following explicit examples.
Example 3: For the design with k = 5 factors and n = 26

runs, five columns out of a Hadamard matrix of order 16 are
selected for the factorial part. To do this, all possible choices
of 5 columns are searched from all 5 inequivalent Hadamard
matrices of order 16. For the axial part, the orthogonal design
OD4 (x1, x2, x3, x4) of order 4 is used and the variables x1,
x2, x3, and x4 are replaced by a, 0, −a and a, respectively.
This can be written as OD4 (a, 0, −a, a). In short, this
is one of the best replacements of the variables from the
set
{
0,±a

}
.

This result was discovered and verified by an exhaustive
computer search but note that multiple alternative replace-
ments gave the same best result, with respect to the D-value
criterion. The axial part is constructed by extending the 4× 4
orthogonal matrix using the method that was described in
section III. The structure of the desirable composite design
X is X ′ = (F ′,V ′,C ′,−V ′)), where F and V are defined
as Eq. (4) and Eq. (5), shown at the bottom of the page.
If needed, one C =

(
0 0 0 0 0

)
or more central points

can be added. In this illustrative example, center points are
not added, but this can be done as and when needed by the
practitioners.

The produced final design matrix X26,5 as (6), shown
at the bottom of the page. can be used to fit a sequential

F =



1 1 1 1 −1
1 1 1 −1 1
1 1 −1 1 1
1 1 −1 −1 −1
1 −1 1 1 1
1 −1 1 −1 −1
1 −1 −1 −1 1
1 −1 −1 1 −1
−1 1 1 1 1
−1 1 1 −1 −1
−1 1 −1 1 −1
−1 1 −1 −1 1
−1 −1 1 1 −1
−1 −1 1 −1 1
−1 −1 −1 1 1
−1 −1 −1 −1 −1



(4)

V =


0 a 0 a a
0 0 a −a a
0 −a a a 0
0 −a −a 0 a
a 0 0 0 0

 (5)

X ′26,5=
(
F ′;V ′;−V ′

)
=


+ + + + + + + + − − − − − − − − 0 0 0 0 a 0 0 0 0 −a
+ + + + − − − − + + + + − − − − a 0 − a − a 0 − a 0 a a 0
+ + − − + + − − + + − − + + − − 0 a a − a 0 0 − a − a a 0
+ − + − + − − + + − + − + − + − a − a a 0 0 − a a − a 0 0
− + + − + − + − + − − + − + + − a a 0 a 0 − a − a 0 − a 0

 (6)
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TABLE 2. The generated designs.

second-order response surface model in (2) and achieves a
higher D-value than any known design in the literature using
minimum runs. The D-value of this design and the D-value
of all the generated designs are presented in Table 2. This
table shows the design parameters, design construction, and
evaluation. The first column of Table 2 shows the design
which is denoted by Dk,n. Here k is the number of factors
and n the number of runs. The second column, p, corresponds
to the number of parameters in the full second-order model
having k factors. The third column shows the number of
runs for the factorial part nf , the number of centre points

nc, and the number of runs na for the positive axial points.
Fourth column gives the factorial part F in coded form,
as described by the coding scheme. Fifth column presents the
axial part V in coded form as described. Finally, sixth column
presents a rounded D-value of the design when a = 1 for
comparison reasons.
Example 4: For the design with k = 9 factors and n = 55

runs, nine columns out of a Hadamard matrix of order 36
are selected for the factorial part. To do this, all possible
choices of 9 columns are searched from a large number
of inequivalent Hadamard matrices of order 36. Note that
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Hadamard matrices of order 36 have not yet been classified
so our search for the selection of the best columns from
Hadamard matrices of order 36 was not exhaustive in this
case. For the axial part, the orthogonal design OD8 (x1, x2, x3,
x4, x5, x6, x7,x8) of order 8 is used and the variables x1, x2, x3,
x4, x5, x6, x7, x8 are replaced by the values 0, a, a, a, 0, a, 0, a.
These values maximize the D-value among all the possible
selections of eight values from the set

{
0,±a

}
. In short, this

is one of the optimal replacements of the variables using
elements from the set

{
0,±a

}
. This result was found and

verified by a computer search. The axial part is constructed
by extending the 8 × 8 orthogonal matrix using the method
that was described in section III. The structure of the desirable
composite design X is X ′ = (F ′,V ′,C ′,−V ′)), where F and
V are defined as Eq. (7) and Eq. (8), shown at the bottom of
the page.

F =



−1 − 1 − 1 − 1 1 − 1 − 1 − 1 1
−1 − 1 − 1 − 1 1 1 1 − 1 − 1
−1 − 1 − 1 1 − 1 − 1 − 1 1 − 1
−1 − 1 − 1 1 − 1 − 1 1 1 1
−1 − 1 − 1 1 − 1 1 − 1 − 1 1
−1 − 1 1 − 1 − 1 − 1 1 − 1 1
−1 − 1 1 − 1 − 1 1 − 1 1 − 1
−1 − 1 1 1 1 − 1 − 1 1 − 1
−1 − 1 1 1 1 1 1 − 1 1
−1 1 − 1 − 1 1 − 1 1 1 − 1
−1 1 − 1 − 1 1 1 − 1 1 − 1
−1 1 − 1 1 − 1 1 1 − 1 1
−1 1 − 1 1 − 1 1 1 1 − 1
−1 1 1 − 1 − 1 − 1 − 1 − 1 1
−1 1 1 − 1 − 1 − 1 − 1 1 − 1
−1 1 1 − 1 1 − 1 1 − 1 1
−1 1 1 1 1 1 − 1 − 1 1
−1 1 1 1 1 1 1 1 − 1
1 − 1 − 1 − 1 − 1 1 − 1 1 1
1 − 1 − 1 − 1 1 − 1 1 − 1 − 1
1 − 1 − 1 − 1 1 1 − 1 − 1 − 1
1 − 1 − 1 1 1 − 1 1 1 1
1 − 1 1 − 1 − 1 1 1 − 1 − 1
1 − 1 1 − 1 − 1 1 1 1 1
1 − 1 1 1 − 1 − 1 1 1 − 1
1 − 1 1 1 1 − 1 − 1 1 1
1 − 1 1 1 1 1 − 1 − 1 − 1
1 1 − 1 − 1 1 − 1 − 1 1 1
1 1 − 1 − 1 1 1 1 1 1
1 1 − 1 1 − 1 − 1 − 1 − 1 1
1 1 − 1 1 − 1 − 1 1 − 1 − 1
1 1 − 1 1 − 1 1 − 1 − 1 − 1
1 1 1 − 1 − 1 − 1 1 − 1 − 1
1 1 1 − 1 − 1 1 − 1 1 1
1 1 1 1 1 − 1 − 1 − 1 − 1
1 1 1 1 1 1 1 1 1



, (7)

V =



0 0 a a a 0 a 0 a
0 − a 0 a − a a 0 a 0
0 − a − a 0 a 0 a 0 − a
0 − a a − a 0 a 0 − a 0
0 0 − a 0 − a 0 a − a a
0 − a 0 − a 0 − a 0 a a
0 0 − a 0 a a − a 0 a
0 − a 0 a 0 − a − a − a 0
a 0 0 0 0 0 0 0 0


(8)
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The whole design X55,9, is presented in coded form
in Table 2.
Remark: The Coding Scheme To save space, the obtained

designs are presented in a coded form. For the factorial part,
−1 is replaced by zero and each run is treated as a binary
number converted to the decimal system. For the axial part,
a is set to 1, and every run is treated as a vector over GF(3)
where −1 is replaced by 2 and written as a number over
the decimal system. The inverse process is followed to get
the design point i.e. converting the provided number from
decimal system to binary or ternary for the factorial and
axial part respectively. The number of factors k represents the
length of each run, and it is necessary for both the coding and
decoding scheme.
Example 5: In the design with 5 factors and 26 runs that is

given in (6), the first run of the factorial part is
[
1 1 1 1 −1

]
.

The coding scheme is illustrated by using this run. Replace
−1 to zero and then convert to a decimal number:

[
1 1 1 1

−1
]
→

[
1 1 1 1 0

]
→ 30. All the factorial runs are coded

following a similar process. The second run of the axial part is[
0 0 a−a a

]
. Replace a by 1, then−1 to 2 and finally convert

the resulting vector over GF(3) into a decimal number:
[
0 0

a −a a
]
→
[
0 0 1 −1 1

]
→
[
0 0 1 2 1

]
→ 13. All the axial

runs are coded following a similar process. All coded runs of
the designs are given in Table 2.

IV. RESULTS
In Table 3, AVP and MVP are generated and these results
are helpful for practitioners when they are conducting an
experiment as the values of AVP and MVP are presented,
hence they choose designs that fit their experiments.

FIGURE 1. Design space plot of k = 5 with a different number of runs.

Fig. 1 is the fraction of the design space plot of four
different designs of five factors and a different number of
runs, with the prediction variance values ranging from 0 to
10. As depicted in the figure, the relative prediction variance
for the 22-run design is uniformly higher than other three
designs. Moreover, though the three other designs (26, 30,
and 34 runs) are roughly the same size, it can be seen that the
26-run and 34-run designs are slightly smaller than the 30-run
design. The figure also reveals that 100% of the prediction

variance values of both the 26-run and 34-run designs are
below 1.3, while about 90% of the prediction variance value
of the 30-run design are also below 1.3. Lastly, approximately
50% of the prediction variance value of the 22-run design
are above the 1.2. Fig. 2 is the fraction of the design space
plot for five designs with a varying number of factors and
runs, and all the designs’ prediction variance values range
from 0 -25. For the 38-run design of seven factors, its rela-
tive prediction variance is uniformly higher than four other
designs in the plot, and also, about 55% of its prediction
variance values are higher than approximately 1.25. The
55-run design of nine factors has about 90% of its prediction
variance values below approximately 1.25, and its relative
prediction variance is uniformly lower than the 38-run design
and almost the same as the 110-run design. As for the 78-run
design, the figure reveals that 100% of its prediction variance
values are below 1.25 and its relative prediction variance
is uniformly smaller than all the other designs in the plot.
The 106-run and 110-run designs of thirteen factors have
overlapping plots, revealing that both have approximately
80% of their prediction variance values below 1.25 and both
have uniformly higher prediction variance than the 55-run
and 78-run designs.

FIGURE 2. Design space plot of k = 7, 9, 11, and 13 with a different
number of runs.

FIGURE 3. Design space plot of k = 15.

As shown in Fig. 3, this design prediction variance values
ranged from 0 to 50,000. Approximately 40% of the relative
prediction variance values are below 1000 and starting at 50%
up to 100%, the prediction value recorded an increased value
ranging from 1,000 to 50,000.
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TABLE 3. Average prediction of variance and maximum prediction variance of the proposed designs.

TABLE 4. Composite designs comparison with respect to D-value and (run sizes).

The proposed method to construct these designs is quite
general and can generate designs with desirable properties.
These designs are compared to the existing composite designs
in the literature in Table 4. The designs which are constructed
by the new method are given in Table 2.
Composite designs with the less number of runs are gen-

erated as the composite designs available in the literature
and show that the method can generate the same designs as
the existing composite designs and can also generate more
efficient composite designs in terms ofD-value with the same
design parameters. These results are presented in Table 4.
In the first two columns of this table, the number of factors
k of the design and the number of parameters p in the
full second-order model are presented. Then, the rounded
D-values are given and in parentheses the total run sizes of the
composite designs. Also, the proposed designs are compared
with the existing composite designs in [10], [13], [15], [16],
[26], and [19].

From the properties of the designs, it is anticipated that if
the proposed designs are applied to any experiments that were
previously conducted with the use of composite designs with
lower D-values, then either (i) the cost of the experimentation
will be reduced (similar power and D-value with less runs),
or (ii) the power of the tests will be improved (higher power
and D-value with a similar number of runs)-see Table 3.
Moreover, all proposed designs are orthogonal and this was
not possible in the existing literature before for this combi-
nation of factor size and run size. Therefore, in all cases,

the presented designs are improvments over the existing
designs except for the 7 factor case, where the same
highest-known D-value was also achieved as in [19] and this
is the optimal design in this class. Designs for 11, 13, and
15 factors are new and constructed in this paper for the first
time with an extremely small number of runs and a high
D-value. It can be seen that the suggested method generates
efficient and economical response surface designs combining
known designs in a new orthogonal structure. The axial points
of the classical central composite design are changed to the
best edge points through a computer search. The sequen-
tial experimentation, that is attained by this approach, gives
orthogonal designs with higher efficiency. The newly gener-
ated designs also have a minimum number of runs and higher
D-values than all the known designs in the literature.

Finally, comparing to the existing practical application
in [5], the proposed design of five factors in this paper has
6 runs less and higher D-value from the design used in [5].
Thus, the results in this paper shows that the proposed designs
can be useful to reduce the cost of materials used in the
experiment and achieve the desired results in sufficient time.

V. CONCLUSION
New second order designs for response surface methodology
are constructed and compared with the popular central com-
posite designs and other types of response surface designs.
The proposed designs are more effective in estimating the
parameters in a second-order model in terms of D-value,
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as well as in minimizing the number of runs and in achieving
orthogonality. The proposed designs are compared with other
response surface designs in terms of D-value and proved
to be superior. The proposed designs have a unique feature
that do not exist before for the axial part. The axial part
of the proposed designs maintains a minimum number of
runs and orthogonality as well which result in more eco-
nomical and more informative designs than current designs
in the literature, in terms of D-value. Some limitations of
the presented methodology include the order of designs that
can be constructed. In this paper, the method is applied for
finding D-optimal designs with factor size up to k = 15.
Then next value (k = 17) was not feasible because it could
not be completed in reasonable time. Improvements on the
methodology and algorithmmay allow a couple ofmore cases
to be studied, but it really needs a breakthrough to achieve
such designs in higher orders. One other issue is that the
generated designs are based on second order models of the
form (2) and might give poor results with respect to the
D-values in higher order models. All practitioners need to be
meticulous when applying the design techniques and always
be aware of the risks that any modelling technique embeds.
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