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ABSTRACT This research features a user-friendly method for face de-occlusion in facial images where
the user has control of which object to remove. Our system removes one object at a time, however, it is
capable of removing multiple objects through repeated application. Although we show the effectiveness of
our system on five commonly occurring occluding objects including hands, a medical mask, microphone,
sunglasses, and eyeglasses, more types of object can be considered based on the proposed methodology.
Our model learns to detect a user-selected, possibly distracting, object in the first stage. Then, the second
stage removes the object using the object detection information from the first stage as guidance. To achieve
this, we employ GAN-based networks in both stages. Specifically, in the second stage, we integrate both
partial and vanilla convolution operations in the generator part of the GAN network. We show that by
using this integration, the proposed network can learn a well-incorporated structure and also overcome
the problem of visual discrepancies in the affected region of the face. To train our network, we produce
a paired synthetic face-occluded dataset. Our model is evaluated using real world images collected from the
Internet and publicly available CelebA and CelebA-HQ datasets. Experimental results confirm our model’s
effectiveness in removing challenging foreground non-face objects from facial images as compared to the
existing representative state-of-the-art approaches.

INDEX TERMS Generative adversarial network, object removal, image editing, image completion.

I. INTRODUCTION
The goal of this work is to effectively remove user-selected
foreground objects from facial images and fill in the result-
ing hole with plausible content. We synthesize distraction-
free face results from images that originally contain multiple
types of occluding objects. In this work we consider five
objects: hands, a medical mask, microphone, sunglasses, and
eyeglasses. However, this method can be applied to vari-
ous object types. We allow the user to select the object
to be removed by employing an object label encoder. Our
model can remove multiple types of occlusions on the face
by sequential application of the system as can be seen
in Figure 1. Automatic editors of this sort can be used for
further processing of faces such as segmentation, occluded
face recognition [1], [2] and data augmentation [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Orazio Gambino .

Removing objects and filling in the holes in facial images,
especially when the resulting holes are large and irregu-
larly shaped, is the most challenging scenario. It becomes
more challenging when the damaged region involves a tran-
sition between two different segments. For example, objects
like medical masks, microphones, and hands cover portions
beyond the actual boundary of the face. Hands add more
complexity since the textures of the hands and face are
similar.

Conventional object removal works [4]–[6], remove
unwanted objects and produces missing content by itera-
tively finding similar patches from the remainder of the
image or an external database. While these non-learning-
based algorithms produce smooth results, they are heavily
dependent on the available image statistics. In general, these
traditional methods synthesize plausible results for small
objects with standard locations but fail critically for large
arbitrarily located objects.
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FIGURE 1. Result of our method for test samples having more than one type of occluding object on the face: (a) first round output of our model given the
corresponding target object label, (b) second round output of our model given the corresponding target object label, (c) third round output of our model
given the corresponding target object label.

Recent deep-learning-based image inpainting methods
[7]–[14] show potential in removing unwanted objects and
reconstructing the damaged regions. In [15] and [8], only
centered rectangular regions are considered, making its usage
limited with regard to our task. Approaches like those in [7],
[10], [12] attempt to handle arbitrarily shaped objects but
are unable to overcome the complexity of the task and
produce artifacts. FaceD [13] proposed a 3D morphable
model (3DMM) conditioned face de-occlusion algorithm to
restore de-occluded faces from six common occluded non-
face objects. This method produces plausible results but
struggles with large, complex occlusions. Moreover, it cannot
handle the removal of multiple types of objects on the face.
All of these deep-learning-based methods assume that an
object map or a 3D face model is given. One recent work [16]
automatically detects and removes a medical mask object
from facial images. This method generates better results in
removing mask objects but does not generalize well for mul-
tiple types of objects.

Moreover, all aforementioned deep-learning-based meth-
ods only use vanilla convolution as the backbone of
their deep-learning-based networks. This vanilla convolution
applies the same filter weights throughout the image, regard-
less of whether the region is valid or affected. This helps in
achieving well-incorporated predictions but leads to severe
visual artifacts, especially at the boundaries of the valid and
affected regions of the image as reported by [17] and [18].
This problem becomes more severe if a region to be filled
is large or of irregular shape. In this case, many approaches
such as those in [7], [9], and [10] either use extensive post-
processing or an additional refinement network. In contrast,

our work does not use any supplementary processing or extra
refinement network.

To overcome the limitations of vanilla convolution and
properly handle irregularly shaped objects, improved convo-
lution schemes, such as partial convolution [17] and gated
convolution [18] were developed. In PConv [17], convolution
is masked and re-normalized to valid pixels only. After each
operation, the mask is updated to compute a new region of
valid pixels. On the other hand, GConv [18] generalizes par-
tial convolution using gated convolution to learn the updated
mask automatically. These methods perform better than those
using vanilla convolution and overcome the problem of visual
artifacts like color discrepancies and obvious edge responses
surrounding the removal region. However, these methods
focus more on valid regions and do not effectively consider
affected regions, hence they generate unsatisfactory results
when the foreground object occludes two different segments
of the face. For example, most of the time, medical masks,
hands, and microphones cover both the chin and part of the
neck. This problem becomes more severe when the object,
e.g., hands or sometimes mask, and the face segments have a
similar texture.

To address the limitations of the aforementioned methods,
we propose a novel GAN-basedmodel to effectively remove a
user-selected non-face object and generate sharp content for
the removed region in facial images. Our model consists of
two stages: 1) an object detection module, and 2) an image
completion module. In the object detection module, we auto-
matically detect the user-labeled object and generate a binary
segmentationmap of the object. To allow the user to select the
target object, we employ an object label encoder. We detect
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only one object at a time, taking into consideration accurate
and computationally efficient detection. In the image com-
pletion module, we remove the object and fill the resulting
region with plausible content using the input image and the
output of the first stage, i. e., the object binary segmentation
map. To achieve this, we use a GAN-based network with
two discriminators.We took the approach of gradually adding
both discriminators to the network to achieve a coarse-to-fine
effect using a single network instead of using an additional
refinement network [9], [10]. In addition, we integrate both
vanilla and partial convolution operations into a single net-
work to effectively remove the complex unwanted object and
produce well-incorporated and sharp content at the affected
region. To train our system, we created a paired synthetic
face-occluded dataset by editing images from publicly avail-
able [19] and CelebA-HQ [20] datasets.

To summarize, the main contributions of this work are:
• We propose an effective method for face de-occlusion in
facial images where the user has control of which object
to remove. Our method is capable of removing multiple
objects one-by-one through repeated application of our
network.

• By employing a combined operation of vanilla and par-
tial convolutions in a single network, we generate well-
incorporated and visual-artifact-free content.

• To overcome the data scarcity problem, we created a
large synthetic face-occluded paired dataset using pub-
licly available CelebA and CelebA-HQ datasets.

• Experimental results demonstrate that, although trained
on a synthetic face-occluded dataset, our method effec-
tively removes non-face objects and produces struc-
turally and perceptually plausible facial content in
challenging real images.

II. RELATED WORK
In this section we will review relevant work in more detail
in the context of object removal and object detection in an
image.

A. OBJECT REMOVAL
Object removal is the task of removing an object from
an image and reconstructing the region affected by
removal of the object. Image editing/inpainting is a typical
method used to accomplish this task. Conventional methods
[4], [6], [21] remove objects in an image and then inpaint
the damaged part by propagating similar pixels from the
neighboring regions or other source images using an iterative
search approach. Patchmatch [22] achieves better results and
has better computation speed than [4], [6], [21]. However,
it fails to generate consistent and semantically aware content
for large arbitrarily shaped damaged regions, especially in
facial images.

In recent years, neural network has garnered tremendous
success in a variety of application domains such as sub-space
clustering [23], deep clustering [24], face recognition [1], [2],

image segmentation [25], [26], image manipulation
[7], [8], [27] and so on. We only review some state-of-the-
art deep learning based representative work related to image
manipulation. Over the past few years, deep learning based
GAN networks [28] have shown significant improvements
in image manipulation applications [7]–[10], [12], [27].
Bau et al. [27] dissects their GAN network used to identify
well-localized neurons which help control the manipulation
of specific objects across the image. They achieve good
results for adding or removing objects by controlling those
identified neurons in their GAN network. However, they fill
the removed region randomly and usually copy content from a
remaining portion of the image. This can help in scene-level
images but cannot help in removing objects and generating
complex semantics in facial images.

On the other hand, GAN based image inpainting
approaches [7]–[10], [12], [13] have shown potential for
application in removing objects and reconstructing complex
damaged regions in an image. Iizuka et al. (GL) [7] use
a GAN setup with two discriminators to remove an object
and recover the damaged region with fine details and global
coherency. GICA [10] and MRGAN [9] take a coarse-to-fine
approach. For this, they use a two-stage network, producing
coarse content for the damaged region in the first stage and
then refining the coarse output in the second stage. Although
GL, GICA, and MRGAN produce plausible results, they are
heavily dependent on post-processing like Poisson image
blending (GL) or an extra refinement network (GICA and
MRGAN) to overcome the problem of visual artifacts. Edge-
Connect [12] produces better results without using any post-
processing or extra refinement network by using edge map
information from the image along with a binary segmentation
map of the object. However, their system is unable to generate
a reasonable edge map for regions occluded by large objects.

FaceD [13] utilizes 3Dmorphable model information and a
GAN-based network with two discriminators which are grad-
ually added to the network. We also use two discriminators
along with the generator by gradually adding them to the net-
work in the image completion module. In contrast to FaceD,
our local discriminator looks at the generated region instead
of the whole face region. Our network enhances the content
in the affected region explicitly by focusing on the generated
region while, in FaceD, the effect of the local discriminator
is similar to that of a global discriminator. Moreover, FaceD
uses 3DMM as guidance information which can be helpful
in reconstructing the facial geometry but does not provide
explicit information about the occluded object. These limita-
tions result in FaceD generating severe visual artifacts when
removing large and complex nature objects, especially hands
and masks.

Din et al. [16] recently proposed a two-stage network to
automatically detect and remove mask objects from facial
images. While impressive results were produced in removing
medical masks, their network is incapable of automatically
detecting and removing multiple types of complex objects.
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B. OBJECT DETECTION
The task of locating different objects with respect to the
background of an image is called object detection. Over-
Feat [29] is one of the first deep-learning-based object detec-
tion algorithms. This is a convolution neural network (CNN)
based algorithm to simultaneously classify, locate, and detect
objects in an image. This model has been replaced by the
Regional [30]–[33] and the YOLO family [34]–[36]of mod-
els for real-time detection.

All of thesemethods produce impressive results for various
object types, however, they require a large number of training
samples and computational power. Because we are concerned
with the small number of object types that occur in facial
images, we employ a simple GAN-based segmentation net-
work with more user control focusing on the desired non-face
object, taking both accurate segmentation and computational
efficiency into consideration.

In the fully convolutional neural network (FCN) [25] a
fully CNN-based segmentation network is proposed that con-
sists of convolution, pooling, and up-sampling layers only.
A skip connection architecture is introduced to overcome
the problem of resolution reduction. Ronneberger et al. [26]
proposed a U-Net architecture built upon FCN which yields
better segmentation results with less training data. The main
modifications are (1) U-Net has a symmetric shape, and
(2) the skip connections between the encoder (contracting
path) and decoder (expansive path) apply a concatenation
operator instead of a sum. Skip connections help provide
local information to the global information. A symmetric
shape allows a network to have a large number of feature
maps in the expansive path, facilitating the transfer of more
information. Due to its simple architecture and better perfor-
mance, other work has also exploited the U-Net architecture
with minor modifications for image inpainting [17], multiple
sketch styles generation [37], image unmosaicing [11], [38],
object removal [9] and object detection in facial images [16].
Din et al. [16] employed a simple U-Net architecture to
efficiently detect medical masks in facial images. Some mod-
els [9], [11], [37], [38] improved performance by using a
discriminator along with the U-Net architecture. We also
use the U-Net architecture along with a discriminator and
target object label encoder to detect multiple types of
non-face objects in facial images. This helps our model
detecting the non-face object with reasonably efficient com-
putational power as compared to previous state-of-the-art
methods.

III. OUR APPROACH
Given a facial image partially covered by a non-face object,
the intent of this work is to automatically remove the
object and complete the image, providing a visually plau-
sible appearance. The overall structure of our framework
is illustrated in Figure 2. It consists of two main mod-
ules, the object detection module and the image completion
module.

A. OBJECT DETECTION MODULE
The goal of the object detectionmodule is to generate a binary
segmentation map of the non-face object in the input image.
Given the input occluded image, Iinput , we aim to detect and
generate a binary segmentation map, Iseg, for the occluded
object. Iseg, is a binary segmentationmapwith 1 indicating the
non-face object and 0 indicating the remaining image pixels.

1) ARCHITECTURE
The object detection module consists of a generator and a
discriminator network. The generator G1 is composed of a
U-Net-like [26] architecture. Unlike U-Net, it has one addi-
tional encoder, known as the object label encoder, as shown
in Figure 2. The input encoder consists of five blocks of
convolution layers. Here, each block is a convolution layer
followed by a LRelu activation function and an instant_norm
layer, except for the first layer of the encoder. The object label
encoder is a much shallower network compared to the input
encoder. Both encoders receive different inputs: the input
encoder takes an input image, Iinput , while the object encoder
receives a target object label, llabel . Motivated by [37], [39],
we have represented target object label as one one-hot vector.
We use separate encoders for the input image and target
object label. If we use one encoder (input encoder) for both
the input image and target object label, it can encode the
input image information well, but ignores the object label
information (which is usually due to its deep network archi-
tecture). Hence, the input image and object label are first
encoded through their respective encoders. The output of
both encoders are concatenated and fed into the decoder. The
decoder architecture is a mirror copy of the input encoder
except that convolution is replaced by a deconvolution layer.
The last layer of the decoder uses a tanh activation function
without a normalization layer.

We also use discriminator,Dlabel , along with generatorG1,
to produce plausible results. The discriminator architecture is
the same as the architecture used for discriminator in [40].
This penalizes dissimilar structures at the patch scale of
70 × 70. Unlike the discriminator used in [40], our discrim-
inator is not a binary classifier (real or fake) but classifies
the considered target object label. It has an output of a single
t + 1 dimensional vector logits. Logits from 1 to t are given
the label of ‘‘target object’’, and t + 1 is the logit for fake
object, Ilabel_fake.

2) LOSS FUNCTION
The loss function we use to train the object detection module
is a combination of Ll1 loss and the GAN objective function.
Ll1 loss measures the pixel distance between the predicted
binary segmentation map, Ipre_seg and the corresponding tar-
get map, Igt_seg, while the GAN objective function for both
Dlabel and G1 are as follows.

LDlabel = Ladv(Dlabel((Ipre_seg, Igt_seg), Ilabel)
+Ladv(Dlabel((Iinput , Ipre_seg), Ilabel_fake) (1)

LG1 = Ladv(Dlabel((Iinput , Ipre_seg), Ilabel) (2)
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FIGURE 2. The overall architecture of our framework.

Our discriminator, Dlabel , is not only a real or fake classifier
but also classifies the target objects considered.

To obtain a cleanmask, Iseg, we use a noise removalmodule
as shown in Figure 2. The noise removal module uses the
simplemorphological image processing operations of erosion
and dilation.We face the problem of noise in the form of holes
left in the segmentation map rather than isolated pixels. To fill
the holes, we first dilate the binary segmentation map and
then erode it with a disc of size 3 pixels for both operations.

B. IMAGE COMPLETION MODULE
The goal of this module is to remove the foreground non-face
object and fill the region left behind with plausible content.
The main blocks of this module are the completion generator,
discriminators, and perceptual network. The generator, G2,
takes the input image, Iinput (occluded image), along with the
object segmentationmap, Iseg, as a combined input and gener-
ates an occlusion-free image, Ioutput . The two discriminators

Dglobal and Dlocal , force generator, G2, to produce visually
plausible and naturalistic looking images by determining
the Ioutput , as real or fake face. Additionally, the percep-
tual network helps in content preservation of the generated
image, Ioutput .

1) COMPLETION GENERATOR
The completion generator, G2, has the same architecture
as the segmentation map generator G1. Unlike in G1, two
parallel encoders are used (the vanilla convolution. encoder
and partial convolution encoder), as shown in Figure 2. The
vanilla convolution encoder is the same as the input encoder
used in G1, while the partial convolution encoder is the one
used in PConv [17]. The vanilla convolution encoder takes in
the input image and the binary segmentation map. It uses a
standard convolution network, which applies the same filter
to the whole image regardless of valid and affected regions,
and produces a feature map after each convolution operation.
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FIGURE 3. Effect of each encoder (vanilla conv. and partial conv.) and of
using both in parallel in the image completion module. a) Input image,
b) results of our model using only the vanilla conv. encoder, c) results
using only partial conv. encoder, and d) results using both encoders in
parallel.

Using only the vanilla convolution encoder helps to achieve
well-incorporated predictions but also leads to visual artifacts
such as blurriness, especially at the boundaries of valid and
affected regions as can be seen in Figure 3 (b).
The partial convolution encoder takes in both the input

image and the inverse segmentation map (uncovered regions
are treated as valid pixels for rule-based mask updating).
A partial convolution layers network and a segmentation
map update function are used jointly. The partial convolution
applies the convolution operation only to valid regions to pro-
duce a feature map, while the map update function produces
a slightly extended valid region after each convolution opera-
tion. Therefore, as we apply the partial convolution operation,
the segmentation map gets thinner and thinner, or in other
words, the valid region of the image increases as can be seen
in Figure 4. This makes the partial convolution encoder very
effective in handling irregular affected regions and in pro-
ducing sharp content. However, partial convolution focuses
more on operating in valid regions and does not effectively
handle affected regions, resulting in artifacts and the missing
of minor details (highlighted with yellow box), especially at
the boundaries of valid and affected regions of the image
as can be seen in Figure 3 (c). Hence, using both encoders
(vanilla and partial) in parallel not only successfully removes
the object, but also generates well-incorporated and sharp
content with fine details compared to using either encoder
alone (see Figure 3 (d)).
Additionally, we use a squeeze and excitation (SE)

block [41] at the output of the first three blocks of the vanilla
convolution encoder only. The SE blocks help improve per-
formance by learning the weights for each channel of the
feature vector. The encoded information from both encoders

FIGURE 4. Visualization of segmentation map update in partial conv.
encoder.

is concatenated and fed into an atrous convolution block.
The atrous convolution block consists of four layers of atrous
convolutions (rate: 2, 4, 8, 16) [42]. This helps capture the
large fields of view, making the generated missing portion
coherent with rest of the face. The decoder takes the output
of the atrous convolution block as input, then up-samples to
predict an output image, Ioutput , without a non-face object.

Ioutput = G2(Iinput , Iseg). (3)

The decoder architecture is the same as that used in the
object detection module. However, instead of using a skip
connection between the vanilla convolution encoder and
decoder, we use skip connections between the partial convo-
lution encoder and decoder. This provides significant/updated
information to the decoder because after each convolution
operation, the segmentation map is updated in the partial
convolution encoder, while the segmentation map in the
vanilla convolution encoder remains the same throughout
the training iterations. Figure 4 provides a visualization of
the segmentation map (valid region) update in the partial
convolution encoder.

2) DISCRIMINATORS
We use two discriminators, Dglobal and Dlocal , as shown
in Figure 2. The architecture of both discriminators is the
same as the discriminator in pix2pix [40]. Discriminator
Dglobal , penalizes dissimilar structures at the patch scale of
70 × 70, while Dlocal penalizes at the smaller patch scale of
40×40. The role of both discriminators is to force the comple-
tion generator to produce visually plausible and semantically
consistent images. To obtain a coarse-to-fine effect, we add
both discriminators gradually to the network [13], [16].
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Discriminator Dglobal looks at the entire generated image
while Dlocal focuses more on the generated missing region.

3) FEATURE MATCHING NETWORK
The feature matching network is a pre-trained VGG-19 fixed
network [43]. The purpose of this network is to encourage
the generator output, Ioutput , to have feature representation
similar to the ground truth, Igt .

4) LOSS FUNCTION
To force the completion generator to produce realistic and
perceptually correct missing content, we use similarity loss
which is an amalgam of Ll1 loss, structural similarity
loss SSIM [44] and feature matching loss Lfeat . This is
expressed as:

Lsim = Ll1 + Lssim + Lfeat . (4)

where, Ll1 , is the pixel difference between the generated
image, Ioutput and the ground truth, Igt , whileLSSIM measures
the structural similarity at the patch level of 11× 11 between
Ioutput and Igt as following:

Lssim = 1− SSIM (Ioutput , Igt ). (5)

On the other hand, featurematching lossLfeat [45] penalize
any perceptually unreasonable generated output Ioutput by
computing the distance from the intermediate layers acti-
vation maps of Ioutput and Igt , from a pre-trained network
(VGG-19 [43]). Let fi be the activation map of the ith layer
of the VGG-19 network, then the feature matching loss is
defined as:

Lfeat =
∑
i

||fi(Ioutput )− fi(Igt )|| (6)

We exploit the intermediate convolution layer feature maps
(conv_3, conv_4 and conv_5) of the VGG-19 network to
obtain rich structural information, which helps in recovering
a plausible structure for the face semantics.

Generator, G2, learns to produce real-looking synthesized
content by incorporating feedback from the two discrimina-
tors (Dglobal , Dlocal). To train the model in a GAN setup,
the generator tries to minimize the following function while
the discriminators try to maximize it:

Lglobaladv = min
G2

max
Dglobal

E[log(Dglobal(Ioutput , Igt ))

+log(1− Dglobal(G2(Iinput , Iseg))) (7)

Llocaladv = min
G2

max
Dlocal

E[log(Dlocal(Iseg ⊗ Ioutput , Iseg ⊗ Igt ))

+log(1− Dlocal(Iseg ⊗ G2(Iinput , Iseg))) (8)

Here, ⊗ denotes element-wise multiplication.
The joint loss function used to train the image completion

module is defined as:

Ljoint = λ1Lsim + λ2Lglobaladv + λ3Llocaladv (9)

We have set the weight parameters as λ1 = 100, λ2 = 0.3 and
λ3 = 0.7.

IV. EXPERIMENTS
This section describes the synthetic face-occluded dataset
creation and training details of our model.

A. SYNTHETIC FACE OCCLUDED DATASET
There is no publicly available dataset that contains facial
image pairs with and without occlusion objects. We con-
structed a synthetic face-occluded dataset using the publicly
available CelebFaces Attributes Dataset (CelebA) [19] and
CelebA-HQ dataset [20]. Both CelebA and CelebA-HQ are
large-scale face attribute datasets with more than 200k and
30k celebrity images, respectively. Each face image in the
aforementioned dataset is cropped and roughly aligned by
eye position. We synthesized occlusions caused by the five
most common non-face objects, hands, a mask, sunglasses,
eyeglasses, and a microphone. We used more than 40 differ-
ent types of each object which varied in size, shape, color,
and structure. We randomly placed non-face objects on the
faces. Then we generated a corresponding binary segmenta-
tion map, Igt_seg, of the objects using Adobe Photoshop CC
2018. Some examples of the occlusion objects used are shown
in Figure 6. Figure 5 shows examples from our face-occluded
synthetic dataset. We created a total of 60k training samples
and all samples were resized to 272 × 272. Our test data
consisted of 4,000 real images collected from the CelebA
dataset [19], CelebA-HQ dataset [20] and the Internet.

B. IMPLEMENTATION AND TRAINING DETAILS
To train the map module, we feed input image, Iinput , into
the network and generate a binary segmentation map, Iseg,
that is close to the target binary map Igt_seg. Generated binary
map, Iseg, and its inverse (1 - Iseg), along with input image,
Iinput , are fed into the completion network and generate the
final output, Ioutput . Instead of training the whole network
of the image completion module at once, we train it into
two steps. This allows us to obtain a coarse-to-fine-network
effect using a single network instead of using two networks
separately as is done in most previous work [9], [10], [18].
In first step we train the completion generator G2, and global
discriminator Dglobal for the first 150 epochs, focusing only
on obtaining the global structure of the face and coarse results
in the affected region. In the second step, we add the local
discriminator, Dlocal , to the network and train the model for
another 150 epochs. The local discriminator, Dlocal , looks at
the affected region only, and hence focuses on refining the
coarse results in the removed region.

We have implemented our model in tensorflow [46].
We train the twomodules alternatively instead of in an end-to-
endmanner because: 1) Eachmodule achieves optimal results
at different amount of training steps, and 2) we train the
image completion module in two steps to pursue a coarse-to-
fine strategy, which does not suit well an end-to-end training
scheme. We used 60k training samples sized at 272 × 272
from our synthetic face-occluded dataset. To train our model,
we randomly cropped these samples to 256 × 256. We used
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FIGURE 5. Example images from our synthetic face occluded dataset.

a batch size of 10 and trained the model for 300 epochs using
a single NVIDIA GeForce 2080Ti GPU.

V. RESULTS AND COMPARISON
Using real world images, we compare our model both
qualitatively and quantitatively to five different methods:
(1) GICA [10], (2) EdgeConnect [12], (3) PConv [17],
(4) GConv [18], and (5) FaceD [13]. Ourmethod is denoted as
‘‘Ours’’. For fair comparison, we have retrained all the other
models, except for FaceD [13] on our synthetic face occluded
dataset. We have also provided an accurate object binary
segmentation map of the object along with the input image
at both the training and inference stages because the tested
methods assume that an exact object binary segmentation
map is given. We have used the object binary segmentation
map for our system training and testing generated by our
object detection module. FaceD does not provide the open-
source code of their work and dataset (assuming 3DMM

FIGURE 6. Example images of occlusion objects used in our synthetic
face-occluded dataset.

synthesis of the face). Hence for fair comparison, we have
used test images obtained from the relevant paper [13] and
made a comparison with their results.
Qualitative Comparison: Figure 7 shows a comparison

using real world samples produced by our model (‘‘Ours’’)
and the other state-of-the-art approaches: GICA [10], Edge-
Connect [12], PConv [17] and GConv [18]. Methods using
vanilla convolution as the backbone operation of their net-
works (GICA and EdgeConnect) show visual discrepancies
such as blurriness and failure to generate complex face
semantics as can be seen in Figure 7 (b) and (c). PConv
and GConv use partial convolution and gated convolution,
respectively, and produce sharp results compared to methods
using vanilla convolution, but still show apparent artifacts,
especially at segments of the face overlapped by the occlud-
ing object as can be seen in Figure 7 (d) and (e). On the
other hand, our method based on both vanilla and partial
convolution obtains results that are visually pleasing and
removed complex objects like hands andmaskswith seamless
boundary transitions.

Figure 8 shows a comparison between our model and
FaceD [13] for challenging face-occluded cases with com-
plex backgrounds, poses, and illuminations. Exploiting a 3D
approach helps FaceD to reconstruct the 3D face geometry
and to remove small objects plausibly (e. g., microphones and
glasses) as shown in the last four examples of Figure 8 (b).
However, it suffers in synthesizing large and complexmissing
regions of the face due to the lack of explicit information
about the occluded object as compared to our model.

All state-of-the-art methods we compare with our model
use a GAN setup, except for PConv which instead uses
an encoder-decoder architecture scheme without any dis-
criminator. For fair comparison and to validate that our
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FIGURE 7. Qualitative results comparison of our model with other state-of-the art image editing models on real world test images. a) Input image,
b) GCA [10], c) EdgeConnect [12], d) PConv [17], e) GConv [18], and f) Ours. Note: There is no ground truth since all samples are real world images
collected from the Internet.

encoder-decoder architecture scheme works better than
PConv, we have trained our model as an auto-encoder by
dropping both discriminators while keeping the other settings

the same as in our full model. Figure 9 (c) shows that our
model (auto-encoder setup) performs better than PConv full
model (see Figure 9 (b)). This is because integrating vanilla
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FIGURE 8. Qualitative comparison of our model with FaceD [13]: a) test images from FaceD [13], b) result copied from main paper of FaceD work [13],
c) Ours.

FIGURE 9. Results comparison of our model (trained with and without
discriminators) with PConv [17]: (a) input, (b) results of PConv full model,
(c) results of our model without discriminators, and (d) results of our full
model.

and partial convolution encoders helped our model learning
well-incorporated structure and also sharp contents at the
affected region. Moreover, adding discriminators (adversarial
training) to our auto-encoder setup results in producing more
naturalistic outputs than both the PConv full model and our
model without an adversarial training scheme as can be seen
Figure 9 (d).

Figure 10 shows the performance comparison on image
completion for test samples having more than one type of
occluding object on the face, where we have replaced the sec-
ond stage (image completion module) by the state-of-the-art
inpaintingmethodGCA [10], EdgeConnect [12], PConv [17],
GConv [18]. We can see that all previous state-of-the-art

methods fail to produce plausible results for complex
scenarios.
Quantitative Comparison: Table 1 shows a quantitative

comparison of our model with state-of-the art methods.
As mentioned in [8] and [38], there is no good quantitative
metric available to evaluate image editing results because
the goal of these methods is to not to generate exact con-
tent, but to produce realistic-looking content. Nonetheless,
we measure the quantitative performance using four popular
metrics: 1) Structural SIMilarity (SSIM) [44], 2) Peak Signal
to Noise Ratio (PSNR), 3) Naturalness Image Quality Eval-
uator (NIQE) [47], and 4) Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE) [48]. SSIM and PSNR are
calculated using the results for the synthetic test dataset since
we do not have ground truth for real images, while NIQE and
BRISQUE are evaluated using the results from the real test
samples. It can be seen in Table 1 that our method outper-
forms all state-of-the-art methods. Our model performance
for the eye/sunglasses and microphone are slightly higher
than for mask and hands occlusions because masks and hands
occlude large areas of the face which are also complex and
difficult to reconstruct, such as the boundaries of the chin and
neck.
Additional Results and Limitations:We have further tested

our network on occlusions that do not exist in our synthetic
face-occluded training dataset (mobile phone, card, scarf,
and apple, etc.). Figure 11 shows these results which were
obtained by providing segmentation maps of the objects man-
ually. The results show that our model produces reasonable
results for those that do not exist in our training dataset. The
results confirm that the proposed model can remove different
types of complex and challenging face occlusions. However,
to warrant a robust performance regardless of occluding
object category it is necessary to develop a novel approach
that can work in an object-agnostic manner.
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FIGURE 10. Qualitative results comparison of our model with other state-of-the art image editing models for test samples having more than one type of
occluding object on the face: (a) first round output of our model and other state-of-the art image editing models given the corresponding target object
label, (b) second round output of our model and other state-of-the art image editing models given the corresponding target object label.

Failure cases occur when more than 70% of the face is
occluded, especially in the case of occluding hands. In these
instances, object detection and image completion modules
fail to differentiate between the face and hands due to the large
portion of the face being occluded and the similar texture of
the hands and face.

A. ABLATION STUDY
We have analyzed the effects of different object detec-
tion module settings. Figure 12 (b) shows the results from
the object detection module when we fed both the input
image and the target object label through the input encoder,
while 12 (c) shows the results for using separate encoders for
both the input image and the target object label. We can see

that using a single encoder for both inputs does not produce
reasonable results compared to using separate encoders for
both inputs. For example, in the first row we want to generate
the segmentation map of the microphone but due to its small
size, the microphone object is ignored and the segmentation
map for glasses is produced. Also, in the second row of
Figure 12, the network generated a segmentation map of a
microphone along with a segmentation map of the glasses,
although there is no microphone object in the input. However,
these issues are not seen in the output of the setting of our
method.

These problems occur because the input encoder usually
ignores the target object label information, which is a one-
hot vector, due to its deep network architecture. On the other
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FIGURE 11. Our model results for occlusions that do not exist in our training dataset: (a) input, (b) output. Note: We provided the manual segmentation
map of the object for all test samples.

TABLE 1. Quantitative comparison of our methods to other
state-of-the-art representative methods. The best result are boldfaced.

FIGURE 12. Comparison results of image object detection module under
different settings. a) Input image. b) Results of object detection module
using only input encoder taking in both input image and target object
label. c) Results of object detection module using separate encoder for
both input image and target object label. Note: All results were obtained
without using a noise removal module for both cases.

hand, a separate encoder helps both networks to focus more
explicitly on each input. The comparison indicates that using
separate encoders greatly improves the performance of the

object detection module and results in promising guidance
information for the image completion module.

VI. CONCLUSION
In this paper, we propose a user-friendly automatic face de-
occlusion method. We show the effectiveness of our method
on five commonly occurring occluding objects which can be
extended to more types of objects. Our system removes one
distracting object at a time, however, it is capable of removing
multiple distracting objects through repeated application very
smoothly. Our model first detects the occlusion object and
generates a segmentation map of the object, then uses the seg-
mentation map as guidance information to remove the object
and fill in the empty region. We have shown that integration
of vanilla and partial convolution operations significantly
improves performance in challenging scenarios involving the
generation of content for two different segments occluded by
the object. In conclusion, our model outperforms the previous
state-of-the-art approaches in the task of object-removal from
facial images both in terms of qualitative and quantitative
results.
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