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ABSTRACT Histogram equalisation (HE) is a widely used image contrast enhancement technique which is
less computationally complex, but it fails to preserve the brightness and natural appearance of the remotely
sensed images. To overcome these limitations several modifications have been reported in the literature.
However, the images processed by most of the methods still suffer with the problems of saturation artifacts
and un-even expansion of intensities. This paper proposes a novel fuzzy mapped HEmethod to overcome the
aforementioned limitations by partitioning the histogram into multiple segments, expanding each segment to
full dynamic range using fuzzy mapping function, then equalising each segment independently, and finally
normalising the combination of equalised segments. The normalisation process is controlled by a non-
negative control factor, which requires a training data for its estimation. Experimental results demonstrate
that the application of proposed method in the area of remote sensing yields better results than the
contemporary methods.

INDEX TERMS Histogram equalization, saturation artifacts, un-even expansion of intensities, fuzzification.

I. INTRODUCTION
The real-world applications such as remote sensing, astron-
omy, military etc. generally use high resolution (HR) images
carrying enormous amount of minuscule data that plays a
significant role in interpreting the information correctly [1],
[2]. Although the remote sensing devices equipped with HR
cameras record image/video with appropriate geometric and
radiometric corrections, but may not be sufficient to deliver
an image with desirable brightness and contrast [3]–[6]. The
images received at the earth station might not be visually
pleasing due to undesirable atmospheric conditions such as
haze, fog, excess darkness etc. The dynamic range of intensity
of images under extreme weather conditions is generally
much narrower than its desirable value, which largely impacts
the visibility of such poor contrast images. The information
extracted from such images is limited because of insuffi-
cient visual perception of the images. Hence, it is vital to
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enhance the image contrast, so that the visual appearance of
the image can be improved for accurate interpretation and
understanding.

Among various contrast enhancement techniques, linear
stretching (LS) and histogram equalisation (HE) are most
effective, low cost and widely used techniques. LS technique
achieves contrast enhancement by stretching the image his-
togram across the permissible dynamic range, but it fails to
enhance the images that contains low peak regions across
the extreme edges of the histogram. The piecewise LS
(PLS) method overcomes this problem, but it needs man-
ual selection of parameters for section determination, hence
can’t be used in automated systems [7]. Recently, histogram
compaction transform with local linear stretching (HCTLS)
method has been proposed to remove the small regions from
image histogram and uses dual gamma correction on dark and
bright regions [7].

On the other hand, HE methods achieve overall contrast
enhancement by stretching the dynamic range of the image
histogram using cumulative distribution function (cdf) as a
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mapping function [8]. In terms of thresholding, HE tech-
niques are broadly classified in three categories, namely con-
ventional HE (CHE or uni-HE), bi-HE, and multi-HE. Note
that, the CHE method acts as a core of bi-HE and multi-
HE methods. CHE method expands the standard deviation of
the image to larger extent, but unable to preserve the mean
brightness and natural appearance of output image due to
over enhancement [9]. The undesirable artifacts observed in
CHEmethod have beenminimised by advanced HEmethods,
which divides the input image histogram into either two
(termed as bi-HE) or more than two (termed as multi-HE)
non-overlapping segments, and then equalise each segment
independently.

Among bi-HE methods, brightness preserving bi-HE
(BBHE) [9] is one of the earliest work that partitions the
histogram into two segments before equalising the segments.
Recently bi-HE using modified histogram bins (BHEMHB)
method has been suggested [10], which integrates the his-
togram segmentation process with the modification of his-
togram bins. Compared to CHE method, both BBHE and
BHEMBEmethods are able to significantly control the equal-
isation process. The recursive mean based HE (RMSHE)
method [11] that divides the histogram into more than two
segments by applying BBHEmethod recursively is a classical
yet popular multi-HE method. However, the multi-HE meth-
ods fail to prevent the excessive saturation of intensity bins
causing the visual artifacts and loss of natural appearance in
the processed images.

To overcome the limitation of un-even expansion of inten-
sity bins in classical multi-HE methods, several crisp and
soft computing based algorithms have been introduced which
either defines the target metric to control the enhancement
process or pre-process the original histogram before equali-
sation process [12]. Along with crisp HE methods, the fuzzy
based HE algorithms have also been utilised to preserve the
brightness and natural appearance of the images. Most of the
fuzzy based HE methods either transform the crisp histogram
into fuzzy histogram before segmentation process or utilises
fuzzy logic for segmenting the crisp histogram into sub-
histograms before enhancement process [8], [13], [14].

This paper proposes a fuzzy based HE technique that trans-
forms the SDDMHE method [12] by mapping each segment
in a way that it can achieve maximum expansion of bins
during equalisation process without encountering the satura-
tion problem. The algorithm transforms each segment to the
new dimension with the help of a fuzzy mapping function
and then applies HE over each sub-histogram individually.
The proposed idea is based on the fact that, compared to
crisp expansion, the fuzzification of intensities provide more
degree of flexibility in the expansion process, therefore reduc-
ing the chances of overlapping of intensities.

The reminder of the paper is as follows: Section II presents
the histogram equalisation method using fuzzy maximal
dynamic expansion. The comparison of results of various HE
methods are discussed in Section III. Finally, the paper is
concluded in section IV.

II. PROPOSED METHOD
Consider an image I , having [Xl,Xu] intensity levels (where
Xl and Xu is lower and upper intensity level respectively). The
cdf at k th intensity level (Xk ) can be defined as:

c(Xk ) =
Xk∑

q=X0

nq
N

∀Xk ∈ {X0,XL−1} (1)

where, nq is the number of pixels whose intensity value is
less than or equal to Xq, N is the total number of pixels in the
image, and L = 256 for 8 bit image. The mapping function
for k th intensity level, can be obtained from the input cdf as:

T (Xk ) = |XL−1 × c(Xk )| (2)

where, |x| is the integer nearest to x. Note that, the value of
c(XL−1) is unity. The output image O, can be obtained by:

O(i, j) = T [I (i, j)] (i, j) ∈ I (3)

The proposed method relies on the fact that the expan-
sion of intensity levels by HE on each segment plays an
important role in preservation of natural appearance of the
images. If the sub-histograms opted for equalisation process
is narrow, then the equalised intensities will saturate over
each other, resulting into visual artifacts in the processed
images. The proposed method partitions the input histogram
into four sub-histograms (or segments) using mean intensity
as thresholds, similar to RMSHE with n = 4. Then each
segment is expanded to the full intensity range [X0,XL−1]
using fuzzy mapping function. It may be noted that, n = 4
is selected as trade-off value to preserve the brightness as
well as to guarantee the less saturation artifacts by avoiding
unessential increase in the computational complexity of the
algorithm [12].

Let input histogram H [Xl,Xu] is partitioned into n non-
overlapping segments, such that

H [Xl,Xu] =
n⋃

r=1

Hr [X
r,n
l ,X r,nu ] (4)

where, Hr denotes r th segment with X r,nl and X r,nu as lower
and upper boundaries respectively. Note that X1,n

l = X0 and
Xn,nu = XL−1. It is worthy to note that, intensity overlap-
ping or saturation during the enhancement process using LS,
HE is a common problem that need to be countered effi-
ciently. Otherwise it might lead to loss of information or neg-
ative extraction of information. This is particularly important
in remote sensing images. The proposed fuzzy expansion
process is somewhat similar to PLS, but with fully automated
histogram stretching process. It is this step where proposed
algorithm differs with other competing HE methods.

The purpose of using fuzzy membership function is to
provide randomness into the mapped sub-histograms of the
image. It has been observed that during the equalisation pro-
cess, the high probability regions of the histogram overlaps
with low probability regions, which is one of the sources
of visual artifacts and loss of information content in the
processed images [12]. In order to avoid the this overlapping,
the sub-histograms can bemapped to new fuzzy levels instead
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FIGURE 1. Demonstration of fuzzy mapping with respect to linear crisp
mapping of gray level intensities for the sample sub-histogram
constituting random 44 gray scale levels ranging between [60], [104].

of linearly separated crisp levels. The fuzzification of inten-
sities provides more levels for expansion that slays down the
probability of overlapping of intensities compared to crisp
expansion of intensities.

Let intensity level Xk of r th segment is to be mapped to new
fuzzy intensity level (Xkf ) which can be determined from (5).

Xkf =



X ′k × X
′

L/2 × (2X ′k − 3)

4X ′k
2
− 2X ′k − 1

if X ′k ∈
[
X ′l

r,n
,X ′u

r,n
/2
)

X ′L/2 × (2X ′k − 3)× (3X ′k − 1)

4X ′k
2
− 6X ′k + 1

if X ′k ∈
[
X ′u

r,n
/2,X ′u

r,n]
(5)

where, X ′k = Xk/X ′u
r,n, Xk ∈W is the original crisp intensity

level of the image, X ′l
r,n
= X1,n

l , X ′u
r,n
= Xur,n − X r,nl and

Xkf ∈ R is the fuzzy mapped intensity level. Fig. 1 demon-
strates the role of fuzzy mapping in transforming the gray
scale levels into fuzzy levels. From Fig. 1, it can be asserted
that the fuzzy mapped intensities are able to transformed
grey level intensities Xk ∈ W to Xkf ∈ R without largely
disturbing the behaviour as that of linear crisp stretching.

After stretching the image histogram to new fuzzy inten-
sities, CHE technique is used to equalise each segment inde-
pendently. The equalised segments are then added together
to construct an enhanced image. Further, the defuzzifica-
tion or normalisation of intensity levels of the output image
is performed, which transfers the fuzzified intensities back to
crisp intensities lying in the range [0,L− 1]. The normalised
intensity (X ′′k ) is the weighted average of corresponding inten-
sity of input and processed image.

X ′′k =

∣∣∣∣ (wmin × Xk )+ Tc(Xkf )wmin + 1

∣∣∣∣ (6)

where, Tc(Xkf ) is the fuzzy intensity produced after com-
bining all equalised sub-images, and wmin is a non-negative
weight. Two image features namely, entropy (E) (defined in
Eqn. 7) and universal image quality (UIQ) (defined in Eqn. 8)

are used to determine the value of wmin [15]. These features
are the measure of information content and perceived quality
of enhanced image O(i, j) respectively. The low value of E
and UIQ in enhanced image may result due to the saturation
of intensities during enhancement process, and is undesirable
in remotely sensed images. The value of wmin is selected such
that E and UIQ of the normalised output image O(i, j) are
maximised.

The entropy of the output image (O(i, j)) can be defined
as:

E = −
L−1∑
k=0

p(X ′′k )× log2p(X
′′
k ) (bits) (7)

where, p(X ′′k ) is the probability of kth intensity level in
enhanced image O(i, j). Similarly, UIQ is defined as:

UIQ =
4σIO × m(I )× m(O)

(σ 2
I + σ

2
O)[(m(I ))

2 + (m(O))2]
(8)

where,m(I ) andm(O) aremean brightness of input and output
images respectively, σ 2

I and σ 2
O are variance of intensity in

input and output images respectively. These parameters and
σIO are defined as follows:

σ 2
I =

1
N−1

N∑
i=1

(Ii − m(I ))2, σ 2
O =

1
N−1

N∑
i=1

(Oi − m(O))2

σIO =
1
N

N∑
i=1

(Ii − m(I ))(Oi − m(O))

where, N is the total number of pixels in the image. To deter-
mine the optimal value of wmin, it’s value is calculated for
each of the 30 training images and then averaged. The char-
acteristics of data sets are listed in Table 1. The optimal
value of wmin is obtained as follows. Let w1 and w2 are the
weights used to optimize entropy (E) and universal image
quality (UIQ) of output image O(i, j). The process starts by
initializing the values of w1 and w2 to zero and increasing
them at the constant step, and corresponding values of E and
UIQ are recorded. The process continues until the values of
E and UIQ saturates and change in corresponding values are
zero. The minimal value ofw1 andw2 at which E andUIQ are
correspondingly maximized are noted as wminE and wminUIQ
respectively. The optimal weight wmin is then obtained by
averaging wminE and wminUIQ , the weights that optimize E
and UIQ individually. The process of determining wmin can
be mathematically written as:

wminE = min(w1)|E is maximum (9)

wminUIQ = min(w2)|UIQ is maximum (10)

wmin =
wminE + wminUIQ

2
(11)

The execution time for estimating the value of wmin is
317 seconds. The average error associated with the training
data can be estimated in terms of entropy error (i.e. difference
between input entropy and output entropy) and inverse UIQ
(i.e. 1− UIQ), the respective values are 0.07 bits and 0.015.
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TABLE 1. Characteristics of ID1, ID2 images and average data sets.

The proposed method can easily be extended to the colour
images by transforming the RGB image into luminance-
chrominance colour spaces such as HSV, CIE L ∗ a ∗ b, HSI
etc., and applying the proposed algorithm to the luminance
component L∗ or V only. The chrominance components
are left untouched. Finally, the inverse transformation with
equalized luminance component and original chrominance
components is applied to get back the enhanced RGB image.

III. RESULTS AND DISCUSSION
A data set of 100 high altitude aerial test images including
30 training images are used to compare the performance of
proposed method with other contemporary methods. These
images have been taken from the USC’s SIPI image database
(http://sipi.usc.edu/database/database.php?volume=aerials)
and Inria aerial image database having spatial resolution
of 0.3m [16]. In order to visualise the impact of contrast
enhancement algorithm, the standard deviation of all the
sample images has been reduced from its original value.

In this section, the qualitative and quantitative assessments
of only two images (ID1 and ID2) are presented here. Also,
the average performance (averaged over all 100 test images)
of proposed method is evaluated and compared with other
state-of-the-art methods such as CHE, BBHE [9], BPDFHE
[13], SDDMHE-M (n = 4) [12], BHEMHB [10], RMSHE
(n = 4) [11] and Fuzzy segmented HE (l− = 0.1349 and
l+ = 0.2481) [8]. For the proposed method, n = 4 and
wmin = 18.2 are used. All experiments have been simulated
in MATLAB R2013b on a PC equipped with 8.0 GB RAM
and Intel Core i5 1.80GHz CPU.

The histograms of images ID1 and ID2 have very narrow
dynamic range (low contrast), either due to insufficient light
source or covered with haze, thereby affecting the visibility
of the region. As the human perception mechanisms are very
sensitive to the edges, the compression of visual dynamic
range reduces the subjective clarity of the image because
the intensity of pixels surrounding the edges have smaller
variance. The contrast of such images can be efficiently
enhanced by widening the differences among the intensity
bins surrounding the edges of the image. The rarefaction of
the bins is possible by utilising the cdf of the image.

Fig. 2 shows the subjective comparison among different
HE algorithms for ID1 image captured during insufficient
light source. By observing these images, it can be stated that
the proposed method performs efficiently and the image pro-
cessed by proposed method is evenly enhanced similar to that
of SDDMHE-M method. Although the gray scale expansion
of histogram by SDDMHE-M has less saturation artifacts

than the proposed method, extreme edges of the histogram
clearly fail to capture the complete dynamic range of the gray
scale; thereby making the histogram equalisation process
relatively cumbersome. Whereas, the other HE methods have
changed the original characteristics of the image histogram to
larger extent. This change in characteristics is mainly due to
the problem of saturation of intensities, which is undesirable.
Therefore, it can be concluded that the proposed method not
only reduces saturation artifacts, it also utilises the complete
dynamic range for improved visibility of processed image.
Note that, the zoom-in version of region of interest are given
in appendix for better interpretation.

A close observation of Fig. 3 reveals that the ID2 image
processed by CHE, BBHE and Fuzzy HEmethods suffer with
over enhancement of mid region while saturating the extreme
regions, while BPDFHE, RMSHE and BHEMHB methods
have produced images of high brightness. That is, most of the
methods suffer from over or under enhancement in various
histogram regions. On the other hand, SDDMHE-M and the
proposed methods give almost similar quality output image,
but the histogram of the image of SDDMHE-M do not covers
the complete dynamic range of intensities. Observing the
floral designed floor on the extreme left of the pentagon, it can
be stated that the proposed method has utilised the visual
dynamic range of the image more efficiently than SDDMHE-
M (or any other contemporary) method by expanding the
intensities of sub-histograms to full dynamic range with the
help of fuzzy mapping function.

For quantitative comparison, five performance metrics
namely peak signal to noise ratio (PSNR), UIQ, image qual-
ity measure rating (R) [17], absolute mean brightness error
(AMBE), and E are used. Table 2 lists the values of all these
metrics for images ID1 and ID2, as well as average values
for 100 test images. Among the five considered metrics, three
metrics namely PSNR,UIQ, and Rmeasure the visual quality
of the output images. Ideally, the value of UIQ and R should
be unity and zero respectively, whereas high value of PSNR
signifies better preservation of natural appearance. AMBE
measures the brightness preservation characteristics, whereas
entropy E is the measure of information richness in the output
image. Note that, in Table 2 the best performing metric for
average performance is highlighted with boldface.

By observing Table 2, it can be concluded that the proposed
method preserves the natural appearance of the ID1 and
ID2 images quite effectively and outperforms other contem-
porary methods in terms of PSNR and UIQ. Although the
value of R of the proposed method for ID2 image is not
considerably large but lies very close to that of SDDMHE-
M method. Furthermore, the value of AMBE for proposed
method for ID1 and ID2 images is 9.57 and 4.82 respectively
is again little bit higher than that of SDDMHE-M but quite
close to it, which indicates effective brightness preservation
characteristic of the proposed method. It can also be observed
from Table 2 that the proposed method has high value of
E , which are quite close to that of input images, signify-
ing the information richness of the output image. Table 2
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FIGURE 2. Results of various HE methods for ID1 image with respective histograms with respect to
original image.

TABLE 2. Comparison of various HE methods for ID1, ID2 images and average of 100 test images in terms of PSNR, UIQ, R, AMBE, E and computation time.

also includes the value of parameters averaged over 100 test
images and their execution time (in seconds). It can be
observed that, out of five metrics, the proposed method out-

performs in three metrics on the average basis. Although the
execution time of the proposed algorithm is higher than that
of CHE, but still close to that of BPDFHE and SDDMHE-M

112458 VOLUME 8, 2020



M. F. Khan et al.: Fuzzy Mapped HE Method for Contrast Enhancement of Remotely Sensed Images

FIGURE 3. Results of various HE methods for ID2 image with respective histograms with respect to
original image.

FIGURE 4. Results of proposed method on transformed colour image.

methods. The high time complexity (O) of the proposed
method lies in expansion of each segment to full dynamic
range using fuzzy expansion function and defuzzification of
intensity levels, i.e. additional O(ηf L + ηdL) compared to
classical multi-HE method (RMSHE), where ηf and ηd are

bounded constant time procedure that adds up all elements of
fuzzification and defuzzification functions respectively.

As stated earlier, the proposed method can easily be
extended to the colour images, by transforming the RGB
image to CIE L ∗ a ∗ b (or HSV) colour space. Then the
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FIGURE 5. Zoom-in results of HE methods for a specific region in
ID1 image (building in the top right) with respect to original image.

FIGURE 6. Zoom-in results of HE methods for a specific region in
ID2 image (floral designed floor on the extreme left of the pentagon) with
respect to original image.

luminance component L∗ (or V ) is enhanced using proposed
method, while conserving the chrominance components of
the image. Finally, the inverse transformation is performed

to obtain the output RGB image. Fig. 4 shows the contrast
enhancement of the San Francisco (GoldenGate) image using
proposed method. Observing Fig. 4 it can be stated that,
application of proposed method on L∗ and V components
enhances the image contrast without introducing any visual
artifacts.

IV. CONCLUSION
In this paper, a novel fuzzy mapping based HE method has
been proposed. The novelty of proposed method lies in the
fuzzy scaling of each segment to the full range of intensi-
ties with help of fuzzy membership function, followed by
the optimised normalisation process. To achieve artifact free
contrast enhancement, the proposed method avoids un-even
distribution of bins in the output image histogram, and utilises
the dynamic range more efficiently during enhancement pro-
cess. This has been achieved by fuzzifying the intensities of
each sub-histogram to the full dynamic range. The simulation
results show that the proposed method outperforms other
contemporary methods for three metrics namely PSNR, UIQ
and R used for average performance evaluation. Despite its
effectiveness, the computational complexity of the proposed
method is higher compare to conventional HE, but compa-
rable to that of other methods. Reducing the computational
complexity of proposed method is the objective of future
research.

APPENDIX
Observing Fig. 5(a)-(i), it can be stated that, excessive sat-
uration and un-even expansion of intensity bins by CHE,
BBHE, BPDFHE, RMSHE, BHEMHB and Fuzzy segmented
HE methods have introduced severe artifacts in the pro-
cessed images. On the other hand, images processed by
SDDMHE-M and proposed methods, have comparatively
better results than contemporary HE methods. A close obser-
vation of Fig. 5(e) and (i) reveals that, the visual dynamic
range of SDDMHE-M method is slightly lower than pro-
posed method or the intensity of pixels surrounding the edges
have smaller variance, that resulted into marginally reduced
subjective clarity of the image processed by SDDMHE-M
method. A similar behaviour has been observed in Fig. 6.
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