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ABSTRACT This paper presents an adaptive neuro-fuzzy sliding mode control (ANFSMC) scheme for
diving motion control of an autonomous underwater vehicle (AUV) in the presence of parameter perturba-
tions and wave disturbances. In the derivation of diving motion equations of an AUV, the pitch angle of
the vehicle is often assumed to be small in the vertical plane. This is a quite strong restricting condition
in underwater operations and may cause serious modeling inaccuracies in AUV’s dynamics. The problem
of nonlinear uncertain diving behavior with restricting assumption on the pitch angle directly is resolved
by a neural network (NN) based equivalent control. The online NN estimator is designed to approximate
a part of the equivalent control term containing nonlinear unknown dynamics and external disturbances.
Subsequently, corrective control based on an adaptive fuzzy proportional-integral control is applied to
eliminate the chattering phenomenon by smoothing the switching signal and also compensate structured
uncertainties. The weights of NN are updated such that the corrective control signal of the ANFSMC
converges towards zero. The adaptive laws are developed to compute coefficients of PID sliding manifold
and adjust the gain of fuzzy switching control. The simulation results are presented to shows the efficacy of
the control performance.

INDEX TERMS Autonomous underwater vehicle, adaptive neuro-fuzzy sliding mode control, diving
motion, neural network, parameter perturbations and chattering phenomenon.

I. INTRODUCTION
Autonomous underwater vehicles (AUVs) have gained high
demand exclusively for the investigation of artificial marine
structures. Periodic inspection is necessary for the repair of
underwater structures because of hazardous and unstructured
seabed environments. As a result, precise navigation is a
critical requirement for the operation of deep-sea AUV in
exposure to high ambient pressure and along with inadequate
underwater communications [1]. Especially, AUV’s depth
tracking control is more difficult to achieve than the other
guidance control modules such as steering and forward speed
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control because it has dynamic behaviors related to the
vertically non-symmetric hull force and restoring force [2].
The diving motion control of an AUV in a complex oceanic
field is a great challenging task. This is primarily due to
the highly coupled, nonlinear system dynamics and time-
varying behavior with significant parametric uncertainties
and unpredictable environmental conditions that exist in the
sea [3]. In the vertical plane, AUV’s diving behavior has
been reduced to a certain multi-variable linear system [4],
wherever two main assumptions were made on the AUV’s
dynamics. One hypothesis is that the pitch angle of the vehicle
is considered to be small in diving activities, and the other one
is that bounds of uncertainties are assumed to be known in
advance [5], [6]. To handle the control problems with these
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characteristics, So the navigational control module desired
to have the capacities of learning and adapting to the varia-
tions in the dynamics and hydrodynamic coefficients of the
vehicle. With this intention, many researchers concentrated
their interests in the development of several proper control
techniques for controlling motion of underwater robotic vehi-
cles such as supervisory control [7], neural network control
[8], self tuning control [9], nonlinear control [10], adaptive
control [5], output feedback control [11], gain scheduling
control [12], robust H∞ control [13], sliding mode control
(SMC) [14], fuzzy logic control [15], [16] (FLC), genetic
algorithm-based control [17] and neuro-fuzzy control [18].
Among these control schemes, SMC provides satisfactory
and effective tracking performance in the presence of model
uncertainties, parameter variations, and disturbances [19],
[20]. However, in practical implementation, the traditional
SMC suffers from high-frequency oscillations around the
sliding surface known as the chattering effect, which mainly
caused due to the inclusion of the switching function in the
corrective control part. In addition to that, prior knowledge
of upper bounds of the perturbation vector is needed to
get robustness and error convergence towards zero. Also,
there is a requirement of accurate mathematical modeling
of the system for computing equivalent control [21]. To deal
with the challenges in context to SMC design, uncertainty
and disturbance estimator (UDE) strategy found to be very
promising estimation technique because of its simplicity in
design as well as ease of implementation. The integration
of UDE- SMC along with finite-time stabilization is widely
accepted in literature [22]–[24]. Since it does not require the
upper bound of uncertainty, which is the limitations of SMC.
The other advantage of this combination is, it gives chatter-
free control performance because of the absence of switching
terms in the control law. The control design of fuzzy logic
controller based on the sliding mode control theory assures
chattering free performance and guaranteed closed-loop sta-
bility while simultaneously reduces the number of fuzzy
rules [25], [26]. Further, a single-layered neural network is
used to approximate the smooth nonlinear uncertain system
functions, wherein inputs of NNs are all the states of AUV’s
diving model. In the case of neural network control, training
time is unpredictable and may not be suitable for real-time
maneuvering [27], [28]. So, several computational intelli-
gence techniques were combined and successfully applied
to the complex engineering problem in the past decade,
such as online neuro-fuzzy control [29], self adaptive neuro-
fuzzy inference system [30], and online genetic algorithm
based optimization of fuzzy control [31]. Although intelligent
control is very promising for AUV operations, it requires sub-
stantial computational power, due to the complex decision-
making process. The aforementioned control issues will be
resolved in this paper by designing a simplified, intelligent
diving autopilot based on single-layered adaptive neuro-
fuzzy sliding mode control. The structure of the controller
is divided into three parts: adaptive proportional-integral-
derivative (PID) sliding manifold, NN estimator, and fuzzy

smoothing control. An integral term included in the linear
hyperplane as proportional-derivative (PD) sliding surface
definition, which resulted in a PID-like sliding surface, can
provide a fast transient response with a minimum steady-state
error. Adaptive laws compute the coefficients of the sliding
surface. Online NN estimator based equivalent control term
to estimate the nonlinear system dynamics and exogenous
disturbances as the linearly combined unknown nonlinear
functions and fuzzy proportional-integral switching control is
designed to alleviate the chattering problem and the unknown
bounds of parametric uncertainties. The proposed control
scheme provides a direct solution to the nonlinear depth
dynamics without any restricting condition on the AUV’s
pitch angle during diving progression and also offers robust-
ness against uncertain hydrodynamics and unknown ocean
disturbances. The main contributions of this paper can be
summarized as follows:
• The main focus is taken on the design of an adaptive
neural network controller for free-pitch-angle diving
motion behavior of AUV in uncertain, complex sea
environment. We construct a simplified neural network
to approximate a given unknown nonlinear function
dynamics and reject bounded external disturbances.

• Single neuron with a linear activation function,
namely ADALINE, based equivalent control estimator
designed. It uses a backpropagation (BP) algorithm
for online training and also responsible for forcing the
system states to a certain sliding manifold.

• The smoothing of switching control action in SMC is
achieved by a single input fuzzy PI uncertainty estima-
tor. The control design relies on the online estimated
vector of structured uncertainties rather than relying on
the upper bound and periodicity of perturbations.

• The closed-loop stability and robustness are guaranteed
for unknown bounded dynamics, parametric uncertain-
ties, and external disturbances. The tracking perfor-
mance enhanced by using adaptive mechanisms utilized
to update parameters of proposed diving autopilot.

The remainder of this paper is organized as follows: AUV’s
diving modeling equations are expressed in section 2. The
robust composite control design for path tracking control of
AUV in the dive plane is illustrated in section 3. The closed-
loop stability analysis of the system is discussed in section 4.
In order to demonstrate the effectiveness of the proposed
control scheme, certain simulation studies are presented in
section 5. Finally, we make a brief conclusion on the paper in
section 6.

II. AUV MODELING
Customarily, underwater robotic vehicles (URVs) are
designed to have symmetric configuration; hence, it is rea-
sonable to presume that the body-fixed coordinate is located
in the center of gravity with neutral buoyancy. In this work,
we consider the MAYA AUV, as shown in Fig. 1, which
has a streamlined torpedo-like body propelled by a single
thruster, and its dynamics are complex, highly nonlinear,

109892 VOLUME 8, 2020



G. V. Lakhekar et al.: Robust Diving Motion Control of an AUV

FIGURE 1. AUV in body-fixed and earth-fixed reference frame.

coupled, and time-varying. For vehicle maneuvering in the
ocean environment, two stern planes and a single stern rudder
underneath the hull are used [33]. The notation used in this
paper is in accordance with (SNAME, 1950) and the structure
of the vehicle is standard as in [32].

The simplified vertical plane dynamics of an AUV can be
expressed in dimensional form as
Surge motion equation:

mu̇+ mqw = −(W − B) sin θ + CXu2 + CX u̇u̇+ T (1)

Heave motion equation:

mẇ− mqu = (W − B) cos θ + CZwuw+ CZ quq

+ u2CZ δsδs + CZ ẇẇ+ CZ q̇q̇ (2)

ż = −u sin θ + w cos θ (3)

Pitch motion equation:

Iyq̇ = BZCB sin θ + CMwuw+ CMquq

+ u2CM δsδs + CMẇẇ+ CM q̇q̇ (4)

θ̇ = q (5)

The variables u and w denote surge and heave velocities,
respectively, while θ , q, and z represent pitch angle, pitch
angular velocity, and depth position. T is the thruster force
for the surge speed, W is the weight of a vehicle, and B is
the buoyancy of AUV body in the sea. The movement of a
vehicle in a vertical plane controlled by stern plane angle
δs. In addition, the moment caused by BZCB is the vertical
distance between the center of gravity zG and the center of
buoyancy zB, which causesmoment andC(.) are the simplified
model coefficients. In the formulation of the diving model,
we use the assumption that the roll and yaw angular velocities
are close to zeros, and the vehicle’s forward speed is to be
constant u0. The diving motion model is formally written as

d
dt
xν = fν(xν, ẋν)+ bν(xν, ẋν)δs + dz (6)

where, xν = [z, q, θ] ∈ <3 is the state vector, fν ∈ <3 is
a nonlinear function (includes the cross added mass terms,

coriolis, centripetal and damping terms, gravitational force
and moment terms), bν ∈ <3 is the actual input matrix and dz
is the external disturbance.
Assumption(1): The approximately known control gain

matrix b̂ν(xν, t) is invertible and bounded positive definite
over entire state space.
Assumption(2): The uncertainty vector F̃(xν, ẋν, t) =

1fν(xν, t)+1bν(xν, t)u+ dz(xν, t) and its partial derivatives
are continuous and locally uniformly bounded in Euclidian
norm as ‖F̃(xν, ẋν, t)‖ ≤ %(xν, ẋν, t) <∞. The upper bound
of uncertainty norm is unknown and it is also ensures that,
F̃(xν, ẋν, t) has locally bounded rate of change.
Assumption(3): We assume that dz satisfies |dz| ≤ cz,

where cz is a known constant.
Assumption(4): fν(xν, ẋν, t) and bν(xν, ẋν, t) are smooth

unknown nonlinear functions with bν > 0. Further,
we assume that |d(b−1)/dt| ≤ cbϕb, where ϕb is a known
function and cb is the smallest one among the unknown
positive constants that satisfy the above inequality.

III. CONTROLLER DESIGN
The development of the proposed ANFSMC scheme for
diving control of an AUV is discussed in this section. The
navigational control problem is to synthesize an intelligent
diving autopilot so that it can provide path tracking solutions
to the nonlinear depth dynamics along with relaxation on the
AUV’s pitch angle movement in ocean waves and currents.

The robust composite controller for free pitch angle diving
motion behavior of an AUV in adverse circumstances is
depicted in Fig. 2, wherein switching control term is approx-
imated by simplified fuzzy logic control and other control
parts based on equivalent control to provide convergence of a
system’s trajectory to the sliding surface within a finite time
period is computed by ADALINE NN. The output of the
online NN estimator is combined with fuzzy PI smoothing
control to gives robust control performance against uncer-
tainties in the model parameters, unknown external dis-
turbances, and time-varying parameters. Basically, online
NN configuration utilized to approximate nonlinear system

FIGURE 2. Block diagram of adaptive neuro-fuzzy sliding mode diving
control for AUV.
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dynamics and also reject the effect of ocean disturbances.
In addition, switching control term is the fundamental cause
of chattering and their design based on the bounds of uncer-
tainties, so as to replace switching term by an adaptive fuzzy
PI control to suppress chattering as well as perturbations
effects. We can summarize the design procedure for the
ANFSMC includes the following steps:

• Design PID sliding surface with the online tuning of
sliding surface coefficients.

• Determine fuzzy PI smoothing control as an uncertainty
estimator

• Design ADALINE NN to estimate nonlinear system
dynamics and reject disturbances

• Online compute output gain of fuzzy PI control by an
adaptive law

• Calculate the overall control signal for diving control

In this control technique, NN and FLC are applied concur-
rently, but each control term is primarily accountable for
controlling one of the two phases of sliding mode control
action. In the beginning, the fuzzy logic system is leading and
drives the system towards the sliding surface. As the system
moves from reaching phase to sliding phase, the output of the
fuzzy decreases and the NNweights are updated accordingly,
so that an exact equivalent controller is estimated to keep
the system on the sliding surface. The learning rate of NN
is inversely related to the sliding parameter, and therefore the
NN becomes more dominant in the control action that occurs
in the sliding phase. The weights of the NN are updated by
using the iterative gradient algorithm, due to which reaching
time is shorten and gain factor of fuzzy inference system
along with surface coefficients are determined by using
adaptive laws.

A. PID SLIDING SURFACE
Let us define PID sliding manifold σ(t) in the state space <2

by the equation σ (ze, θ, q) with following equation

σ(t) = Kp(zd(t) − z(t))+ Kiθ(t) + Kdq(t) = Gxνe (7)

where, the vertical tracking error ze is the difference between
depth parameter z and desired vertical position zd . The sliding
surface coefficients Kp, Ki and Kd are designed such that
the sliding mode on σ = 0 is stable i.e. convergence of
σ goes to zero in turn guarantees that z̃ converge to zero.
The values of PID coefficients are strictly positive constant
[Kp, Ki and Kd ] = G ∈ <T . The stability and transient per-
formance of control systems depend on the proper selection
of sliding surface coefficients. PID sliding surface improves
the tracking performance by reducing errors to a satisfactory
value. In PIDmanifold, the proportional term drives the states
to the neighborhood of the sliding surface, and the integral
action forces the states onto the sliding surface irrespective
of the bounds of the uncertainties and disturbances, while the
derivative action provides a stabilizing effect to counter the
possible excessive control produced by the integral action.
The integral term and the derivative term play important roles

in ensuring that the states move onto the sliding surface. The
gains of PID sliding surface can be computed online by the
following adaptive laws as,

K̇p = −η1σe (8)

K̇i = −η2σ
∫
edt (9)

K̇d = −η3σ ė (10)

where, ηi > 0 is the learning rate i = 1, 2, 3. The control
law based on a continuous time varying PID sliding surface,
here coefficients are systematically obtained according to
the adaptive laws [34]. An adaptive strategy is presented
to tune the PID parameters online to control the process
states onto a sliding surface that characterizes the closed-loop
performance. The online tuning of PID parameters provides a
quick and smooth hitting of the system states onto the sliding
surface and also tracks the setpoint very well without any
oscillation. However, it is capable of handling only constant
parametric uncertainty, inadequate robustness against exter-
nal disturbance. The PID’s integral and derivative gains can
be automatically tuned to satisfy the reachability condition.
Hence, the stability of the closed-loop system can be guar-
anteed as long as the integral and derivative gains are tuned
according to (9) and (10).

B. EQUIVALENT CONTROL
Filippov’s construction of the equivalent dynamics is the
method normally used to generate the equivalent control
law. The control effort is obtained from the solution of the
system’s algebraic equation σ̇ = 0 without considering
lumped uncertainty to achieve the desired performance under
the nominal operating model condition, and it is referred as
equivalent control.

ueq = (Gbν)−1
(
dφ(t)
dt
− Gfν(xν, t)− Gdz(xν, t)

)
(11)

The control should be selected such that a candidate Lya-
punov function satisfies the stability criteria, has to be posi-
tive definite, and its derivative has to be negative semidefinite:

V =
1
2
σ Tσ (12)

dV
dt
= σ T σ̇ (13)

Equivalent control is valid only on the sliding surface. There-
fore, an additional term should be defined to pull the system to
the surface. For this purpose, the derivative of the Lyapunov
function can be selected as follows:

V̇ = −σ T0σ ≤ 0 (14)

where, 0 is the positive definite matrix, By equating (14)
and (13) and carrying out necessary computations, the overall
desired continuous control signal is determined as follows:

ud = ueq − (Gbν)−10σ (15)
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For the computation of desired continuous control (15)
required information about equivalent control. However,
if system parameters fν(xν, t) and bν are not known exactly,
then the calculated equivalent control inputs will be com-
pletely different from the needed equivalent control input. So,
this solution must be modified as

ueq = (Gbν)−1
(
dφ(t)
dt
− Gfν(xν, t)− Gdz(xν, t)

)
ueq = (Gbν)−1σ̇ − u (16)

Then, results of desired continuous control signal can be
rewritten as

ud = u− (Gbν)−1(0σ + σ̇ ) (17)

The above expression (17) determines ud , which satisfies
the reaching mode condition, as a function of implemented
control signal u. The desired continuous control law (17)
for AUV dynamics ensures the stability of motion on the
sliding manifold, and after the reaching manifold, control
law (17) is equal to equivalent control. For the computation of
equivalent control, information about the equivalent control
in its implicit form is needed (ueq = (Gbν)−1σ̇ − u), so this
solution is not practical for the real-time implementation. As a
result, we present a design method of on-line estimator which
estimates a part of equivalent control containing a nonlinear
system matrix fν , input matrix uncertainty 1bν and load
disturbance dz as a linearly combined nonlinear function by
the use of a NN’s most powerful ability, that is, the function
of approximation.

GN (xν) = G(fν(xν)+1bν(xν)u+ dz(xν)) (18)

The unknown nonlinear functions in this control will have
to be estimated with single-layer NN. The linearly combined
nonlinear function (fν(xν) + 1bν(xν)u + dz(xν)) is replaced
by the mapping of NN function N . The actual input matrix bν
replaced by the estimated matrix b̃ν . Then, the overall desired
continuous control signal

ud = −(Gb̃ν)−1
(
GN (xν, t)−

dφ(t)
dt

)
− (Gb̃ν)−10σ (19)

Using this control input signal, the time derivative of Lya-
punov function along the state trajectories is determined as

dV
dt
= σ T

dσ
dt

V̇ = σ T (fν(xν, t)+1bν(xν, t)u+ dz − N (xν, t))−σ T0σ

(20)

From the above equation, suppose that the NN can be trained
to satisfy the following condition:

|σ T (fν(xν, t)+1bν(xν, t)u+ dz − N (xν, t)) | < |σ T0σ |

(21)

Then, V̇ < 0 holds and consequently the convergence of σ to
zero is assured. With the control input in (19), the estimation

error represented by J , can be determined from nonlinear
AUV’s diving dynamics and sliding manifold as follows:

J = G (fν(xν, t)+1bν(xν, t)u+ dz − N (xν, t)) = 0σ + σ̇

(22)

From (21) and estimation error obtained by (22), the NN is to
be trained to minimize the function given below:

E =
(σ̇ + 0σ )2

2
(23)

Now, the goal is to build a single layer neuron with a linear
activation function, namely ADALINE NN [36], based on
the BP algorithm used to estimate the equivalent control part
which pushes the system state to a certain sliding manifold.
The structure of NN based controller is given in Fig. 3,
basically consist of the input layer and only one output node.
The resulting control input u is given as

u = W T xνe (24)

Here, W = [w1 w2 w3]T and xνe = [ze q θ ]T , the stability
can be obtained by satisfying σ̇ + 0σ = 0

FIGURE 3. Structure of ADALINE NN.

1) COMPUTATION OF WEIGHT UPDATES
In order to determine the weight updates, the sensitivity
(dE/dwi) for weights should be known. The weights are
updated as follows:

ẇi = −ηa
dE
dwi

(25)

By using the chain rule, the following equation can be written

dE
dwi
=

(
dE
du

)(
du
dwi

)
(26)

From (23) and (25)

dE
dwi
=

1
2

(
d(σ̇ + 0σ )2

du

)
xνe

dE
dwi
= (σ̇ + 0σ )

(
d(σ̇ + 0σ )

du

)
xνe (27)

Hence,

dE
dwi
= (σ̇ + 0σ )

(
d(Gẋνe + 0Gxνe)

du

)
xνe (28)
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dE
dwi
= (σ̇ + 0σ ) G bν(xν, t) xνe (29)

Then, rewritten above equation in discrete form for numerical
simulation, the weight update rule is given as

wnewi = woldi − ηa(σ̇ + 0σ ) G bν(xν, t) xνe (30)

Note that, for linear system the equation can reduces to

wnewi = woldi − ηa(σ̇ + 0σ ) G b xνe (31)

Since ηaGb is a constant parameter, ηa, G, b can altogether
be included in a constant η̄a and can be reduced as

wnewi = woldi − η̄a(σ̇ + 0σ )xνe (32)

For a nonlinear system with constant input matrix B consider,
the same result (32), can be obtained.

2) DISTURBANCE REJECTION
The least square error function (23) can be examined in more
detail as follows:

σ̇ + 0σ = Gẋνe + 0Gxνe
= Gfν(xν, t)+ GBν(xν, t)W T xνe + Gdz
+G fν(zrν, ż

r
ν)+ 0Gxνe (33)

Taking the common terms in to parenthesis, the following
expression can be obtained as

σ̇ + 0σ = Gfν(xν, t)+ (GBν(xν, t)W T
+ 0G)xνe

+G dz + Gfν(zrν, ż
r
ν) (34)

It can be seen from (34) that, when the tracking error ze goes
to zero, the weights wi have to go infinity to suppress the
effect of external disturbance. To circumvent this, it is logical
to add another term to the controller structure that will deal
with the disturbance rejection. This additional term handles
with the disturbance without being multiplied with the state
xνe. The control design for disturbance compensation is as
shown in Fig. 4. with this controller structure, the expression
for the control input is

ûeq = W T xνe + w4 (35)

By using the same weight update procedure as described
above, w4 can be updated as

wnew4 = wold4 − ηa(σ̇ + 0σ )G B(xν, t) xνe (36)

The main drawbacks of the BP algorithm are its slow rate
of convergence and its inability to ensure global conver-
gence. Some heuristic methods, like adding a momentum
term to the BP algorithm and standard numerical optimiza-
tion techniques have been used to improve the convergence
rate of the BP algorithm. The problems with this numerical
optimization techniques are that the storage and memory
requirements. Other algorithms for fast convergence include
extended Kalman filtering (EKF), recursive least square
(RLS), and Levenberg-Marquardt (LM). Though the algo-
rithms converge faster, it requires too much computation per

FIGURE 4. An improved structure of ADALINE NN.

pattern. For simplicity and ease of implementation concerned,
computation of adaptive learning rate using the Lyapunov
function approach is the key contribution in the field of NN
based control. It is observed that this adaptive learning rate
increases the speed of convergence and resolve the issues of
computation of adaptive learning rate [35].

3) ADAPTIVE LEARNING RATE
The simplified ADALINE NN structure has a single output
with linear activation function for neurons. The network is
parameterized in terms of its weights which is represented as
a weighting factor W ∈ <m. For approximation of a specific
function problem, the training data consists of N patterns,
{xpn , ypn}. Let us consider a specific pattern pn for the input
vector is xpn , then the network output is given as,

ypn = f (W , xpn ) (37)

The usual quadratic error cost function (23), which is min-
imized to train the weight vector W of NN. We consider a
Lyapunov function candidate as

Vn =
1
2
(ỹT .ỹ) (38)

where, ỹ = [y1d − y
1, . . . .., ypnd − y

pn , . . . .., yNd − y
N ]T . Then,

it’s time derivative is given as

V̇n = −ỹT
∂y
∂W

Ẇ = −ỹT J Ẇ (39)

where, J = ∂y/∂W ∈ <N×m

Theorem (1): An initial arbitrary weight W (0) is updated
by W (t ′) = W (0)+

∫ t ′
0 Ẇ .dt

where,

Ẇ =
‖ỹ‖2

‖JT ỹ‖2 + εn
JT ỹ (40)

Then, ỹ converges to zero under the condition that Ẇ exists
along the convergence trajectory.

Proof: Substitution (40) in to (39)

V̇n = −‖ỹ‖ ≤ 0 (41)

where, V̇n < 0 for all ỹ 6= 0, If V̇n is uniform conti-
nous and bounded then according to Barbalat’s lemma as
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t → ∞, V̇n → 0 and ỹ → 0. The weight update (40) in
the instantaneous gradient-descent (GD) method.

Ẇ =
‖ỹ‖2

‖JTPn ỹ‖
2 + εn

JTPn ỹ (42)

where, ỹ = ypnd − y
pnε< and Jpn = ∂y

p/∂W ∈ <1×m is the
instantaneous value of the Jacobian. The updated weight in
difference equation form is given as

W (t + 1) = W (t)+ µnẆ (t)

= W (t)+
µn‖ỹ‖2

‖JTPn ỹ‖
2 + εn

JTPn ỹ (43)

Here, µn is a constant which is selected heuristically. We can
add a very small constant εn to the denominator to avoid
numerical instability when error ỹ goes to zero. The expres-
sion of updating the weighting factor in the instantaneous GD
method represented as,

4W = −η
(
∂E
∂W

)T
(44)

= ηJTPn ỹ (45)

W (t + 1) = W (t)+ ηJTPn ỹ (46)

where, η is the learning rate. Comparing (43) with (46),
we can see the remarkable similarity where the fixed learning
rate in the BP algorithm is replaced by its adaptive version ηa
given by

ηa =
µn‖ỹ‖2

‖JTPn ỹ‖
2 + εn

(47)

However, the computation of the adaptive learning rate using
the Lyapunov function approach is the key part in neural
network-based control [35].

C. CORRECTIVE CONTROL
In this subsection, an adaptive control law is designed to
determine the consequent part of the fuzzy system, which
is introduced to approximate the switching control and to
eliminate the chattering effect. Furthermore, to attenuate
chattering, when the error state is within the boundary layer
width |σ | < φb, then fuzzy PI-type smoothing control law
is designed as an uncertainty estimator instead of traditional
corrective/ switching control term. With the estimation of
the perturbation vector, the stability and closed-loop tracking
performance of the system is going to be improved. The
estimator design relies on the online estimation of a lumped
uncertainty vector rather than relying on the upper bounds of
uncertainties. So, a priori knowledge of the bounds of uncer-
tainties is not needed, and at each time instant, the control
input compensates the uncertainty that occurs. PI uncertainty
estimator [21] is defined as

uad = Kuσ + Lest (48)

where, Ku is a diagonal positive definite constant matrix,
σ is represented as PID sliding surface variable and Lest is

the estimated uncertainty vector, which is predicted from the
surface dynamics is expressed as

Lest = ϒ
∫
σ.dt (49)

where, ϒ is a positive definite diagonal constant design
matrix that determines the rate of adaptation. The robust
adaptive term in (48) is a proportional-integral PI controller
with respect to sliding surface and is given as

uad = Kuσ + ϒ
∫
σ.dt = δpupi (50)

where, δp is a diagonal gain matrix and upi denotes PI control
action included, proportional term drives the variable σ to
a neighborhood around zero, and the integral action forces
the convergence to zero. The integral term plays a significant
role in ensuring that the states move on to the sliding surface.
For improving tracking performance of AUV in a vertical
plane, robust adaptive PI term replaces by single input fuzzy
PI control structure with respect to sliding surface variable,
which has the capability of learning and adapting to the
parametric variation, with the help of Fuzzy IF-THEN rules
for mapping of input σ to output variable ûsw.
An adaptive fuzzy logic system (AFLCS) is presented in

this section to compensate parametric uncertainties that occur
in the oceanic environment. The fuzzy logic control module
basically consists of a collection of fuzzy IF-THEN rules that
can be set as follows. The fuzzy system is based on single-
dimensional (1D) rule base, as given in Table 1. A typical
fuzzy rule in the rule-base structure of the AFLS is given as

R(m)p : IF σi is F
(m)
σi

THEN ûsw(σ |θp) is F
(m)
p̂

where, i = 1, 2, 3, . . . ., 7., m is the fuzzy rule base index,
F (m)
σi denote the fuzzy sets assigned to σ sliding surface and
F (m)
p̂ represents the fuzzy singletons assigned to the output

variable as ûsw of the fuzzy inference module. In fuzzy
inference engine, input linguistic variables employed for tri-
angular type membership function of sliding surface vari-
able are NL is Negative Large, NM is Negative Medium,
NS is Negative Small, Z is Zero, PS is Positive Small,
PM is Positive Medium, PL is Positive Large. The singleton
membership function for output fuzzy PI control variables
are employed as LNL is Lumped Negative Large, LNM is
Lumped Negative Medium, LNS is Lumped Negative Small,
LZ is Lumped Zero, LPS is Lumped Positive Small, LPM is
Lumped Positive Medium, LPL is Lumped Positive Large. NL,
NM,NS.. LNL , LNS , . . .LPL are labels of fuzzy sets and their
corresponding membership functions are depicted in Fig. 5,
respectively.

TABLE 1. Rule base for Single input Fuzzy PI algorithm.
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FIGURE 5. Input-output membership functions of fuzzy inference engine.

Fuzzy system can be designed by product inference engine,
singleton fuzzifier and center average defuzzifier. Therefore,
the output of fuzzy system can be calculated as

ûsw(σ |θp) = θTp ϕ(σi) = Kuσ + ϒ
∫
σ.dt (51)

with θTp = [Ku, ϒ] = [F1
p̂ , F

2
p̂ , F

3
p̂ , . . . .. F

Q
p̂ ]

T is the
adjustable parameter vector and ϕT (σi) = [σ,

∫
σ.dt] =

[ϕ1(σi), ϕ2(σi), ϕ3(σi), . . . . . . , ϕQ(σi)]T is the vector of
fuzzy basis function defined as

ϕmi (σi) =
5n
i=1µF (m)

σi
(σ ∗i )

6
Q
j=1

[
5n
i=1µF (m)

σi
(σ ∗i )

] (52)

where, µF (m)
σi

(σ ∗i ) denotes the membership function value of

σi in F
(m)
σi . The fuzzy approximator can determine PI uncer-

tainty estimator to provide smooth control signal and suppress
the effect of parametric uncertainties.

The overall control law u∗ is chosen as

u∗ = ûeq + Kf ûsw

= −(Gb̂ν)−1
(
Gf̂ν(xν, t)+ Gd̂z(xν, t)−

d φ̂(t)
dt

)
+Kf θTp ϕ(σi) (53)

In this composite control law, the ADALINE NN model is
designed to construct the equivalent control law based on
the estimation of nonlinear system functions and unknown
disturbances. While, fuzzy inference approximator is used
to compute corrective control by using the concept of PI
uncertainty estimator for reducing the chattering problem as
well as the effect of lumped uncertainties. The parameters of
composite control law are updated as follows:

θ̇p = −γθ |σi|ϕ
m
i (σi) (54)

K̂f =
β̂

δf + (1− δf )e−ς |σ |
p ;

˙̂
β = −γK‖σ‖ (55)

where, in the above relation γθ and γK are positive and
arbitrary constants. p, δf and ς are small positive constants to

provide the smoothness of control input. β̂ denotes the esti-
mated value of β and γK > 0 is the adaptation gain, ensures
the convergence of tracking error despite the perturbations.

The fuzzy consequent parameter θp in (54) adjusted in
order to improve the system’s control performance. The adap-
tive rule is derived from steep descent rule to decrease the
value of σ σ̇ with respect to θp. This adaptive mechanism
satisfies the objective of online learning and adjustment of
fuzzy control rules. The main advantage of this adaptive
online law is that it speeds up the reaching phase in sliding
motion behavior.

The exponential compensator in (55) is designed to cope
with the approximation error introduced by the ADALINE
NN based equivalent control estimation. Since the nonlinear
exponential reaching law to smoothly adapt the variations of
the sliding surface, thus the chattering phenomenon can be
alleviated. The result of reaching control gain exhibits fast
response and robustness near the sliding surface. However,
it still requires prior knowledge of the uncertainties bounds.
This control issues resolved by using an adaptive fuzzy PI
learning algorithm, which can be accelerated convergence of
tracking error towards zero.

In the ADALINE NNmodel, fast convergence and compu-
tational complexity are two key issues resolved by computing
the adaptive learning rate (54) using the Lyapunov function
approach. The estimation error ỹ converges to zero under the
condition that η̇a exists along the convergence trajectory. with
this adaptation scheme, the neuro-fuzzy sliding mode control
module derived from designing diving autopilot for precise
AUVmaneuvering with the relaxation on constraints of pitch
angle movement in an unstructured marine environment.

IV. STABILITY ANALYSIS
Theorem (2): By using the BP algorithm with a proper learn-
ing rate and function approximation accuracy, it is guaranteed
that quadratic cost function E defined in (23) converges to
zero, without bonding to local minimum. It means that, for
a bounded external disturbance dz(t) and unknown nonlinear
AUVdynamics, it is guaranteed that closed loop path tracking
is stable with zero steady state tracking error in dive plane.

Proof:According to Lyapunov stability criteria, we have
to show that Ė < 0. The derivative of the error function with
respect to time is given by

dE
dt
=
∂E
∂w1

∂w1

∂t
+
∂E
∂w2

∂w2

∂t
+
∂E
∂w3

∂w3

∂t
+
∂E
∂w4

∂w4

∂t
(56)

The expression for continuous changes of the weights is

dwi
dt
= −ηa

dE
dwi

(57)

substituting (57) into (56)

dE
dt
= −ηa

(
dE
dw1

)2

− ηa

(
dE
dw2

)2

. . . . . .

. . . ..− ηa

(
dE
dw3

)2

− ηa

(
dE
dw4

)2

(58)
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From (25), substitute the values of vector xνe in to (29) and
resulting scalar equations as follows:

dE
dw1
= (σ̇ + 0σ ) Gbν(xν, t) ze (59)

dE
dw2
= (σ̇ + 0σ ) Gbν(xν, t) q (60)

dE
dw3
= (σ̇ + 0σ ) Gbν(xν, t) θ (61)

Again, take the derivative of above expressions with respect
to the weights, then following equations are obtained

d2E

dw2
1

= (Gbν(xν, t) ze)2 (62)

d2E

dw2
2

= (Gbν(xν, t) q)2 (63)

d2E

dw2
3

= (Gbν(xν, t) θ)2 (64)

Furthermore, the second derivative of the error function with
respect to w4 is

d2E

dw2
4

= (Gbν(xν, t))2 (65)

From (62)-(65), it is clearly observed that the curvature of the
error surface through each weight variable is always positive
term represented as 4i. Then, derivative of error function
in (58) can be rewritten as

dE
dt
= −ηa

4∑
i=1

4i (66)

Note that (66), is a negative definite function completes the
proof. Means, it is guaranteed that tracking error in vertical
plane converges to zero.
Theorem (3): Consider the tracking control problem of an

AUV represented by (6) in vertical plane. If the proposed
controller is combination of equivalent and corrective control
as given in (53) with the adaptive laws represented in (47),
(54) and (55) for updating learning rate, fuzzy consequent and
hitting gain, then the path tracking error vector asymptotically
converges to zero in diving motion.

Proof: Let a Lyapunov function VL be defined as

VL =
1
2
σ 2
+

1
2γf

L̃T L̃ +
1
2η1

K̃P
T
K̃P +

1
2η2

K̃I
T
K̃I

+
1
2η3

K̃D
T
K̃D+

1
2
ỹT ỹ+

1
2γθ

θ̃P
T
θ̃P+

1
2ηK

K̃f
T
K̃f (67)

The time derivative of Lyapunov function is,

V̇L = σ σ̇ +
1
γf
L̃T ˙̃L +

1
η1
K̃P

T ˙̃KP +
1
η2
K̃I

T ˙̃KI

+
1
η3
K̃D

T ˙̃KD−ỹ
∂ ỹ
∂W
˙̃W+

1
γθ
θ̃P

T ˙̃
θP+

1
ηK

K̃f
T ˙̃Kf (68)

V̇L = σG (ẋνd − fν(xν, ẋν)− bν(xν, ẋν)δs − dz)

+
1
γf
L̃TKf fPI (σ )+

1
η1
K̃P

T
(−η1σe)+

1
η2
K̃I

T

× (−η2σ
∫
edt)+

1
η3
K̃D

T
(−η3σ ė)− ỹ

∂ ỹ
∂W

×
‖ỹ‖2

‖JT ỹ‖2+εn
JT ỹ+

1
γθ
θ̃P

T
(−γ θ |σi|ϕ

m
i (σi))+

1
ηK

K̃f
T

×

[
σ (δf +(1−δf )e−ς |σ |

p
)β̇−βςp(1− δf )e−ς |σ |

p
|σ |
]

(δf + (1− δf )e−ς |σ |
p )2

(69)

V̇L = σG
(
ẋνd − fν(xν, ẋν)− bν(ûeq + ûsw)− dz

)
+
Kf
γf
‖L̃‖|σ | − K̃P

T
σe− K̃I

T
σ

∫
edt − K̃D

T
σ ė

−‖ỹ‖2
‖JT ỹ‖2

‖JT ỹ‖2 + εn
− θ̃P

T
|σ |ϕmi (σ )−

|σ |K̃f
T

γK

×
[γKσκ(σ )+ Kre−ς |σ |

p
]

κ(σ )2
(70)

V̇L = σG

(
ẋνd − fν(xν, ẋν)− bν

(
− (Gb̂ν)−1

(
Gf̂ν(xν)

+Gd̂z(xν)−
d φ̂(t)
dt

)
+ Kf fPI (σ )

)
− dz

)

+Gf ‖L̃‖|σ | − σ
(
K̃P

T
e+ K̃I

T
∫
edt + K̃D

T
ė
)

−αn‖ỹ‖2 − Km|σ |θ̃P
T
− Ks|σ |κ(xν) (71)

V̇L = −σGKf fPI (σ )+ Gf ‖L̃‖|σ | − σ |σ | − αn|σ |2

−Km|σ |θ̃P
T
− Ks|σ |κ(xν) (72)

V̇L = −|σ |
(
Kc − Gf ‖L̃‖ + Kmθ̃P

T
+ Ksκ(xν)+ σ

)
≤ −

(
Kc + Kmθ̃P

T
+ Ksκ(xν)

)
|σ |

≤ −$ |σ | (73)

Here, the global asymptotic stability is guaranteed since the
derivative of the Lyapunov function is a negative definite.
Remark 1: In diving motion equations of AUV, depth state

equation is in a certain nonlinear form, which is difficult to
handle by traditional control methods. So far, AUV?s motion
behaviors in vertical plane have frequently been constrained
to a small-pitch-angle movement, in which the depth motion
is usually linearized as ż = −u0 sin θ + dz = −u0θ with
u0 the forward constant speed of the vehicle. Nevertheless,
small-pitch-angle movement is a somewhat strong restricting
condition in numerous real-time applications.
Remark 2: The proposed intelligent sliding mode control

law is also applicable to another highly coupled, nonlin-
ear, time-varying under-actuated systems, such as unmanned
aerial vehicles, missiles, unmanned airships, etc.
Remark 3: The coefficients of PID sliding surface control

are adjusted online through adaptive law presented in [34],
which offers finite-time convergence of error towards origin.
Remark 4: In conventional SMC [14], a corrective control

term may cause the chattering extremely across the sliding
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hyperplane, owing to delay and unmodeled dynamics. As a
result, wear and tear action on the thrusters in order that the
system can be damaged within a small time period. The chat-
tering problem can be eliminated by replacing the switching
control term by an adaptive PI term [21], which provides
smooth control signal.
Remark 5: An adaptive PI term as an uncertainty estimator

can be updated recursively in on line practice as mentioned
in [37]. Using uncertainty estimator, the influence of time-
varying uncertainty compensated through estimation of the
internal perturbation. While, online NN estimator is used to
approximate nonlinear system function and to minimize the
effect of ocean waves and wind.
Remark 6: The performance of the PI uncertainty estimator

improved by using a single input fuzzy PI control struc-
ture based on a reduced rule base for enhancing static and
dynamic control performance. Without violating the conver-
gence property of path tracking error and stability.
Remark 6: The robust composite proposed control law in

this article does not require any information on the lumped
uncertainties as compared with, which is almost difficult to
estimate in practical application.
Remark 7: Unlike some previous works reported in [20]

and [37]; almost all kinds of parametric uncertainties and
disturbances were considered in simulations, owing to deep-
sea underwater operations performed by AUV in diverse
operating conditions were taken in to account in numerical
simulation, without any presumptions on the periodicity or
the bound of such perturbations.
Comments: The control problems exist in the SMC design,

and their solutions through ANFSMC method are summa-
rized below:
• It is worth noting that the control performance of tra-
ditional SMC heavily depends on the sliding surface.
If the sliding surface of SMC is not designed properly,
it may lead to unacceptable tracking performance. The
selection of optimum sliding surface is tedious and a
complicated task, which prescribed desirable dynamical
characteristics.

• SMC is basically composed of equivalent control and
switching control to provide convergence of a system’s
trajectory to the sliding surface within a finite time
and reaching towards equilibrium point by maintaining
the controlled system dynamic on a sliding surface.
The computation of equivalent control requires exact
knowledge of the system dynamics and parameters, and
obviously, only an approximate value can be arrived at
for partly known or uncertain systems. While, a discon-
tinuous control strategy is formed to ensure the finite
time reachability of the switching manifolds.

• SMC suffers from the undesired high-frequency oscilla-
tions known as chattering phenomena, which is created
by the discontinuous control law and is very harmful
to actuators used in practical systems. The key tech-
nical problems in SMC design are chattering, removal
of the effects of unmodeled dynamics, disturbances and

uncertainties along with adaptive learning, and robust-
ness enhancement. In addition to that, the formulation
of SMC requires the norm of uncertainties and distur-
bances properly, which is used for the determination of
switching control gain. Therefore, perturbation estima-
tion techniques are needed to overcome the problem of
the knowledge of perturbation upper bounds.

• The use of intelligent computation techniques can solve
problems of SMC, such as chattering and alleviate diffi-
culties in the computation of the equivalent control. A set
of switching manifold coefficients are tuned online by
adaptive PID control law, which provides desirable set-
point tracking performance. It should be pointed out that
NNs offer a model-free approach for path tracking con-
trol with bounded disturbance rejection, which appears
attractive; one should not underestimate the efforts of
getting the solutions through NNs. As well, fuzzy PI
designed to compensate for the effect of parametric
uncertainties and provide a smooth control signal. The
adaptive exponential reaching law utilized to improve
the reaching time and ensuring the settling of states at
its desired value. The proposed control approach has the
advantage that it only requires a bound to exist, while
the magnitude of this bound does not need to be known.

V. SIMULATION STUDIES
To demonstrate the effectiveness and robustness of the pro-
posed controller, an intensive series of simulation studies
has been carried out on a nonlinear AUV model in a dive
plane for trajectory tracking control. The main purpose of
this work is to design adaptive neuro-fuzzy autopilot for the
free-pitch-angle diving behavior of an AUV in the presence
of model parameter uncertainty and disturbances. For sim-
ulation studies, diving dynamics of MAYA AUV were con-
sidered, and their model parameters presented in manuscript.
The control performance of traditional SMC, FSMC, and
ANFSMC has been compared under two different reference
path tracking problems, such as set point regulation and sinu-
soidal trajectory tracking control. In numerical simulation,
the initial conditions of the AUV in diving motion behavior
are considered as [q(0) θ (0) z(0)]T = [0 0 0]T and initial
velocities are [u(0) v(0) r(0)]T = [1.5 0 0]T with control
parameters in Table 2. The motivation for simulation studies
is to illustrate the benefits of the control scheme to drive
an AUV in the dive plane smoothly and freely, without any
restricting conditions.

A. SET-POINT CONTROL
With consideration of the above control parameter settings
and AUV specifications along with their non-dimensional
hydrodynamic coefficients given in Table 3, we first applied
the proposed controller to MAYA AUV with step input com-
mand zd = 5m under nominal condition. The simulation
responses of dive plane coordinates along with the control
signal are shown in Fig. 6. It can be seen that smooth depth
trajectory tracking and pitch angle regulation are achieved in
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TABLE 2. Control setting values.

TABLE 3. Specifications and non-dimensional hydrodynamic coefficients
of MAYA AUV.

FIGURE 6. Set point tracking response of AUV in diving motion behavior.

less than 10 s. The maximum camber (control input) required
is approximately 8mm, which can be easily provided through
control fins. It is clearly noticed that the heave velocity goes
to zero, when the desired path is regulated. While, in the
case of SMC and FSMC, depth tracking response shows
oscillations and reach to the desired level at 28 s and 18 s
respectively. Also required control input signal of FSMC and
SMC are nearby 9 mm and 10 mm respectively, to drive
AUV in dive plane through the control fins. The proposed
control scheme offers a smooth and better tracking response
in comparison with traditional SMC and FSMC.

To evaluate the tracking performance of the closed-loop
system with the proposed controller, we applied it to AUV
with set point variation, 20% model uncertainty, and sam-
pled Gaussian noise as an external disturbance. The tracking

FIGURE 7. Response of AUV in step input command variation.

FIGURE 8. Depth tracking response in presence of disturbance and
uncertainty.

response of ANFSMC shows smooth better tracking control
performance in setpoint variation as compared with other
traditional control techniques, as seen in Fig. 7. In setpoint
variation, we can see that there is a notable difference in the
settling of desired depth position and pitch angle regulation in
diving motion. Whereas, FSMC and SMC exhibit oscillatory
behavior in tracking of desired depth position and required
more settling time. In order to show the effectiveness of
the proposed control scheme introduces sampled Gaussian
noise and model parameter uncertainty, which can be signif-
icantly reduced by ANFSMC as compared with SMC and
FSMC in depth parameter regulation, as depicted in Fig. 8.
In general, ANFSMC appeared to be less sensitive to the
disturbances and parametric variations in contrast to the SMC
and FSMC. To show the accuracy and effort of the proposed
controller quantitatively, we examined performancemeasures
such as ISE and IAE of step input command responses, step
command variation in dive plane, and under the influence
of external disturbance and parameter variation. In quan-
titative analysis, a smaller value of performance measures
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TABLE 4. Quantitative analysis of set point tracking control of AUV in dive plane.

TABLE 5. Quantitative analysis of sinusoidal tracking control of AUV in dive plane.

FIGURE 9. Sinusoidal trajectory tracking response of AUV in dive plane.

shows that better controller performance characteristics. It is
observed that ISE and IAE values of the proposed controller
for the above-mentioned conditions are considerably reduced
in magnitude than other control techniques dealt with in this
paper, as tabulated in Table. 4.

B. SINUSOIDAL TRAJECTORY TRACKING CONTROL
In the second stage of numerical simulation, sinusoidal ref-
erence signal zd = 2 sin(π t) applied to the diving model
of AUV gives corresponding results of tracking, as seen
in Fig. 9, considering that the initial state coincides with
the initial desired state. As observed in sine wave trajec-
tory tracking, ANFSMC is able to provide trajectory track-
ing with a small associated error and no chattering at all.
It is clearly noticed that the traditional SMC and FSMC

FIGURE 10. Sinusoidal trajectory tracking in presence of disturbance and
uncertainty.

had a large deviation from the desired path along with
some oscillation. Despite the external disturbance forces
and 20 % parameter variation with respect to diving model
parameters, the ANFSMC allows the underwater robotic
vehicle to track the desired trajectory with a less tracking
error, and the undesirable chattering effect did not appear
in Fig. 10, the disturbance signal employed in simulation
as d(t) = 0.5 sin(π t).
From these simulation results, SMC is not recommended

unless its design doesn’t base on the model dynamics and
has a large deviation error with oscillatory behavior. To over-
come this problem, the model-independent FSMC technique
introduced to reduce oscillatory behavior and reaching time.
Meanwhile, tracking response can be enhanced by combining
NN and FSMC with gain adaptation scheme, able to handle
ocean disturbance and parametric uncertainty. The trajectory
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tracking control performance in the dive plane is also con-
firmed by quantitative analysis, as given in Table 5. From
performance indices, it is to be noted that the proposed control
scheme provides minimum tracking errors in diving motion
behavior in comparison with conventional SMC and FSMC.

VI. CONCLUSION
A combined form of the robust intelligent control method
for diving motion control of an AUV was proposed in this
article. The efficacy of the controller was demonstrated with
the assistance of numerical simulations on vehicle motion
control in a dive plane. The proposed control scheme utilized
the benefits of sliding mode, neural network, fuzzy logic, and
adaptive PID techniques, while the shortcomings attributed
to these methods are remedied by each other.From obtained
simulation results, the strengths of the proposed method are
attributed as follows:
• Development of single-input fuzzy PI uncertainty esti-
mator for online estimation of lumped uncertainty vec-
tor included hydrodynamic added mass and linear/
quadratic drag coefficients rather than depend on the
bounds of uncertainties.

• Development of an equivalent control law using an
ADALINE NN to estimate unknown nonlinear system
function and also reject ocean disturbances.

• The problem of the chattering effect eliminated and also
breaks the restricting conditions on pitch angle move-
ment in diving motion.

• The stability and error converge of the closed-loop track-
ing control system were guaranteed by means of Lya-
punov stability criterion without any assumptions on the
bounds of perturbations.

• The proposed diving autopilot has a simple con-
trol structure and design method; therefore, it can
be used for practical implementation with a low-cost
microprocessor.

Simulation results confirm that the proposed controller per-
forms remarkably well in terms of robustness, tracking error
convergence, and disturbance attenuation. The tracking per-
formance has been verified through quantitative analysis.
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