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ABSTRACT In future engineered systems for medical applications, a tight real-time integration between
physical and computational processes will be required. That integration is achieved using feedback control
loops which need high quality input data streams. However, hardware platforms can barely provide such
high-quality data sequences (especially if mobile nodes are considered), and mechanisms to improve and
polish physical and biological signals are then necessary. This paper proposes a predictor-corrector algorithm
to improve the quality and precision of data (biological) signals in Internet of Medical Things deployments,
especially if composed of mobile nodes. The proposed algorithm employs an Artificial Intelligence approach
and statistical learning techniques to predict future data samples and correct errors in received information.
Employed mathematical models follow a prediction-correction scheme and are based on complex functions,
Laurent series and the idea of complex envelope. Simulation techniques are used to evaluate the performance
of the proposed solution, showing that it improves the precision of traditional linear interpolation techniques
up to 85%, and cubic splines up to 20%. Processing delay during operation is, for the referred precision,
around 200ms.

INDEX TERMS Data prediction, Internet-of-Medical-Things, statistical learning, artificial intelligence,
Laurent series.

I. INTRODUCTION
Future engineered systems for medical applications are envi-
sioned to be based on tight integrations between compu-
tational and physical processes [13]. This integration is
supported by feedback control loops operating in real-time.
In this scheme, information about physical and biologi-
cal processes is usually captured by geographically sparse
mobile nodes (typically low-cost physical devices), inter-
connected through the Internet of Medical Things (IoMT).
These data and biological signals are, then, injected into
computational processes and employed by control mecha-
nisms to make decisions and actuate (once more) over the
patients and the physical world [14]. In past, critical infras-
tructures, and other similar application scenarios (such as
manufacturing systems), were totally revolutionized by this
new approach [15].
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However, feedback systems are greatly sensible, and
high-quality data are needed to ensure the stability and ade-
quate behavior of these new solutions. This requirement,
nevertheless, is extremely hard to meet using mobile IoMT
nodes because of their operation characteristics. On the one
hand, as mobile elements, sometimes they might not be able
to communicate (in shaded areas, for example). And, on the
other hand, as low-cost devices, they operate using public
frequency bands, where many interferences and noise may
affect the information signals. In summary, data streams
generated by mobile IoMT devices may present bursts of
empty or erroneous samples. These data sequences cannot be
directly employed into real-time feedback control loops, and
data connectors and adapters are, then, necessary.

Although these connectors could be supported by some
network technologies, such as Delay-Tolerant Networks
(DTN) [16], this approach would also prevent the real-time
operation of future systems (as these solutions are typically
based on data storage and accumulation functions). Thus,
innovative technologies to fill gaps in data sequences and
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improve the quality of received samples are needed. Besides,
all these operations must be developed in real-time. Artificial
Intelligence mechanisms meet those requirements.

Therefore, in this paper, it is described a new Artificial
Intelligence algorithm, focused on improving the quality of
data sequences and biological signals generated by mobile
IoMT nodes. The proposed algorithm includes two steps: a
prediction phase and a correction procedure. The prediction
phase operates in two independent domains, amplitude and
frequency, thanks to the concept of complex envelope. Future
samples are predicted to adapt to a complex model based on
unknown holomorphic complex functions and Laurent series.
On the other hand, correction procedure is supported by log-
ical predicates, guaranteeing the global and local coherence
of the information signal.

The rest of the paper is organized as follows. Section II
describes the state of the art on predictive and Artificial
Intelligence solutions for the Internet of Medical Things.
Section III presents the proposed predictor-corrector algo-
rithm, including the conceptual framework for the described
Artificial Intelligence approach. Section IV describes an
experimental validation, based on simulation techniques,
carried out to evaluate the performance of the proposed solu-
tion. Section V presents the obtained experimental results and
Section VI concludes the paper.

II. STATE OF THE ART
Different intelligent applications combining IoMT technolo-
gies andArtificial Intelligence (AI) have been reported during
the last years. In general, all AI mechanism for IoMT appli-
cations may be classified according to three basic criteria [3]:
the type of data to be processed, the processing tasks to be
performed and the use case to be addressed.

Focusing on the first criterion, AI algorithms for IoMT
solutions may be designed to process three different types
of data [3]: stream data, massive data or historical data.
Typical solutions based on historical data are heavy but highly
precise mechanisms, supported by statistical estimators and
specialized on global analyses and long-term behaviors [4].
Algorithms obtaining mean or most probable (common)
parameters [1], dependencies among variables [12], or sets of
all possible values [2] from databases with historical data are
the most usual proposals. Massive data, on the other hand, are
usually processed using hybrid Big Data and AI solutions [5].
Many authors consider this, a particular case of historical data
processing [6], although it presents some specific character-
istics. In general, massive data increase the understanding
of AI solutions about application scenarios, and Big Data
techniques allow an efficient use of these data [7] (although
real-time operation is still a pending challenge [8]). Thus,
more advanced mechanisms have been reported in this area,
such as cognitive decision systems to manage networks [10]
and other critical infrastructures [9], or eHealth platforms
to manage all users’ data [11]. Finally, stream data enable
real-time AI applications, but with much lower reasoning
capacity and shorter time validity than previous solutions.

In that way, these techniques are typically supported by ele-
mental mathematical algorithms such as the Fourier decom-
position [17] or numerical models [18].

The proposed predictor-corrector algorithm in this paper
employs two different types of data: stream data (gener-
ated in real-time by IoT devices), and some historical data,
employed to enrich our models with a greater understanding
about the data sequences. Both sources are balanced to allow
the algorithm both, to operate in real-time and improve its
capabilities. To do that, a new mathematical model based on
Laurent series is proposed.

In respect to the second criterion, AI algorithms for
Internet-of-Medical-Things systems perform five elemen-
tal processing tasks: classification, regression, clustering,
feature extraction, anomaly detection [19]. Classification
algorithms were the first AI mechanism, and typically
are based on decision trees [20], the K-Nearest Neighbor
algorithm [21], Bayesian networks [22] or Support Vector
Machines [23]. All these technologies present a good behav-
ior but require an initial training process (an approach known
as supervised learning). Regression mechanisms try to find
dependencies among observed objects. Depending on the
mathematical dependency being searched, different unknown
parameters must be discovered. Linear regression [24], Sup-
port Vector Regression [25], Neural Networks (which may
be also employed in classification and clustering opera-
tions) [26], and Bagging techniques [27] are some of the
most employed AI method for regression discovery. Cluster-
ing solutions, contrary to classification technologies, cannot
label observed objects but only group them into different
sets sharing relevant characteristics or patterns. Clustering
for IoMT deployments may be based on hierarchical [28]
or scalable [29] techniques, or high dimensionality data [30]
or partitioning algorithms [31]. Feature extraction solutions
analyze data to obtain the relevant (or interesting) character-
istic of the observed data. In the context of IoMT devices,
principal component [32] and canonical correlation [33]
analyses are the most employed approaches, although deep
learning networks [34] are being reported recently. The last
operation, anomaly detection, is the least common, and usu-
ally one-class support vector machines [35] are used when
employed this AI mechanism together with IoMT nodes.

The proposed predictor-corrector algorithm defines a new
approach for AI regression solutions, where dependencies
are represented by Laurent series, describing unknown func-
tions whose characteristic parameters are obtained through
an initial training phase. Besides, during the correction
phase, feature extracted from IoMT nodes and signals will
allow us to remove errors from data samples, so receive
information will maintain the same characteristics along
time.

Finally, different AI mechanisms have been reported
according to the application scenario. Smart traffic scenarios
are probably the most studied application [36], [37]. Smart
health [38] and Smart cities [39] are also common, together
with prediction solutions [17] (typically about weather).
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Sparse works on AI and IoT for smart agriculture [40], [43]
or traffic air control [5] have been also reported.

In this paper, the proposed solution is applicable to every
scenario where a deployment of mobile IoT nodes are
generating stream data sequences, although it is especially
designed for feedback control systems.

III. DATA PREDICTOR-CORRECTOR ALGORITHM
A data predictor-corrector algorithm enables the improve-
ment of the data sequences and biological signals quality by
completing gaps and empty samples with coherent and real-
istic values. Besides, received samples may be corrected to
meet the expected global and local features from information
signals. This section describes the proposed algorithm and AI
framework.

A. OVERVIEW
The proposed algorithm (see Figure 1) includes three basic
steps: signal processing, prediction step and correction step.

FIGURE 1. Global scheme of the proposed predictor-corrector AI
algorithm.

In general, IoMT devices generate pass-band signals which
contain two different and independent information: frequency
information and amplitude information. In order to maximize
the understanding of AI algorithms about signals, a signal

processing step separating both information is considered.
On the other hand, in general, it is considered IoMT deploy-
ments generate a set of N stream data sequences Ex, which in
the most generic case, may present interdependencies among
them (1).

Ex = {xi [n] i = 1, . . . ,N } (1)

These signals are discrete, typical in digital solutions, and
should report a new sample each Ti seconds. Besides, the
IoMT deployment, apart from stream sequences, also gen-
erates a set of observations EO, employed to train AI algo-
rithms. Described AI algorithm in this work is a Machine
Learning (ML) solution, based on supervised learning. The
proposed ML solution is not a standard technique, such as
classifiers, although (as we are seeing) it integrates some
existing technologies, such as decision-making solutions dur-
ing the reconstruction phase. Supervised learning is, actually,
the appropriate solution for this work; as we are solving
regression problems where we have an important a priori
knowledge [48].

Then, after signal processing, two N -dimensional data
sequences are produced. The first one−→xa contains the ampli-
tude information (low-pass signals); and the second one −→xf
the frequency information (numerical series). In parallel, both
sequences feed two identical prediction algorithms supported
by AI learning and Laurent series. In this step, an AI regres-
sion algorithm is running. However, instead of linear or logis-
tic functions (as usual), this regression mechanism considers
unknown functions developed as Laurent series to obtain the
a priori probability distribution. After obtaining density func-
tions P [z, n] describing the probability of each possible value
to be the next sample, a correction phase is performed. Global
and local restrictions are applied to decide if received samples
must be corrected or directly replaced by the predicted ones.
Restrictions are logical predicates about signals that were
previously extracted. Corrected samples, −−→xa−c and

−−→xf−c, are
finally combined to reconstruct the complete sample Ey, using
the concept of complex envelope.

B. SIGNAL PROCESSING: FREQUENCY AND AMPLITUDE
INFORMATION EXTRACTION
The first step in the proposed solution is a signal processing
phase. Figure 2 shows the described algorithm.

Each physical or biological signal xi [n] is, in general,
a pass-band signal. Thus, it may be rewritten as a combination
of two new signals (2) using the complex envelope xa [n] (3)
and the instantaneous carrier frequency xf [n] (4).

xi [n] = Re
{
x ia [n] · e

j·xf [n]·n·Ti
}
=

= xPHi [n] · cos [ωc · n · Ti]− x
Q
i [n] · sin [ωc · n · Ti]

(2)

x ia [n] = xPHi [n]+ j · xQi [n] (3)

x if [n] = ω
i
c[n] (4)
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FIGURE 2. Signal processing phase. Block diagram.

The in-phase signal xPHi [n] and quadrature signal xQi [n]
are baseband signals and may be easily obtained through a
sinusoidal signal generator, a multiplier and a low-pass filter.
In fact, and considering previous definitions (2), the mul-
tiplication of any pass-band signal and a sinusoidal signal
generates both, a baseband signal and a high frequency sig-
nal (5,6). Frequency information to configure the sinusoidal
signal generators will be obtained from frequency informa-
tion extraction module.

xcosi [n] = xi [n] · cos [ωc · n · Ti] =

=
1
2
xPHi [n] · (1+ cos [2ωc · n · Ti])

−
1
2
xQi [n] · sin [2ωc · n · Ti] (5)

xsini [n] = xi [n] · sin [ωc · n · Ti] =

=
1
2
xQi [n] · (−1+ cos [2ωc · n · Ti])

−
1
2
xPHi [n] · sin [2ωc · n · Ti] (6)

Then, to extract the amplitude information from the origi-
nal signal (removing all information about carrier frequency),
it is enough to employ a low-pass filter. As frequency compo-
nents to be removed are far away from the baseband signals,
and amplitude should be extracted without any distortion,
in our proposal we are using a Butterworth filter with a band-
width of B Hertz. This filter presents a wide transition band,
but it is totally flat in the pass band. The digital cut frequency
f icut may be obtained considering the sampling theory (7),
and the transference function (in the Z domain) HK (z) for
every filter of order K (8) may be deducting using the Butter-
worth polynomials BK (z), and calculating finite differences
through the backward procedure (9). In order to compensate
attenuation coefficients in previous steps, Butterworth filter
is designed to amplify the received signals, so G = 2.

f icut = B · Ti

HK (z) =
G

BK (z)
(7)

z =
K∑
j=0

cj ·

( z−1
z ·

1
Ti

2π f icut

)j

cj =
j∑

r=0

cos (r − 1) π
2K

sin
(
r · π2K

) (8)

ẋ [n] = x [n]− x[n− 1] (9)

Finally, the in-phase and quadrature signal can be com-
puted using the convolution operator and the inverse Z trans-
form (10).

xPHi [n] = xcosi [n] ∗ hK [n] =

=

∑
s

xcosi [s] · hK [n-s]

xQi [n] = xsini [n] ∗ hK [n] =

=

∑
s

xsini [s] · hK [n-s]

hK [n] = TZ−1 {HK (z)} (10)

As convolution sum requires an infinite number of sam-
ples; last M1 received samples must be stored in a histori-
cal register. In order to guarantee a good behavior, at least
as many samples as indicated by the filter’s order must be
stored (11).

M1 ≥ K (11)

Previously described algorithm only extracts amplitude
information from received signals. In order to capture also
the frequency information (main or central frequency),
it is employed the Short-Time Fourier Transform (STFT),
XSTFTi [fk , r]. The STFT employs the Fast Fourier Trans-
form (FFT) algorithm to compute the Discrete Fourier Trans-
form in L different discrete frequencies, fk = k

L , each r time
instants (12).

XSTFTi [fk , r] =
M2−1∑
j=0

xi[r + j] · w[j] · e−j·2π ·fk ·j

k = 0, . . . ,L − 1 (12)

All frequencies belong to the range [0, 1], containing all
possible frequencies for discrete signals. The window func-
tion w[n] is considered to have a length ofM2 samples. Thus,
the number of frequencies must fulfill the condition L ≥ M2,
so the obtained STFT represents correctly the data sequence.
Any existing window function could be employed, although
in this case (as we desire the best spectra resolution) we are
employing the rectangular window.

Then, the storage for past signal samples in the signal
processing module can be obtained as M = max {M1,M2}.
Finally, the STFT, in order to preserve the global features
and continuity between different windows,must be calculated
each r time instants, being r = Ṙ.R, besides, must be selected
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so that windows overlap (13).

L ≥ M2 ≥ R (13)

Once obtained the STFT, the frequency information may
be easily obtained detecting the discrete frequency so the
STFT is maximum (14).

x if [n] = ω
i
c [n] = 2π f ik [n] = 2π

ki
L

...

XSTFTi [fk , r] = max
{
XSTFTi

}
(14)

C. ARTIFICIAL INTELLIGENCE PREDICTIVE ALGORITHM
Information signals −→xf and −→xa , obtained from the signal
processing module, are totally independent sequences (with
different characteristics and properties). However, the pro-
posed predictive algorithm in this section is totally agnostic
regarding all these details. Therefore, we are describing the
proposed AI algorithm using a generic signal −→xs . In the
most general case, −→xs is a N-dimensional vector composed
of complex data sequences (15). These sequences take values
from a universe Ui.

−→xs =
−−→
xs [n] =

(
x1s [n] , . . . , x

i
s [n] , . . . , x

N
s [n]

) ...
x is [n] ∈ Ui ⊆ C ∀i, n (15)

These complex sequences contain frequency information
and amplitude information (managed as complex envelopes)
and force us to employ complex functions to operate with
them. Other techniques based on real functions could be
developed, but (then) two main disadvantages should be con-
sidered. First, for each complex envelope two real functions
are defined (3), so the number of functions to be considered
duplicates and the processing delay, algorithm’s spatial and
temporal complexity as well. And, second, sequences xPHi [n]
and xQi [n] in the complex envelope are not independent (as
they refer the same amplitude information), so they cannot
be manipulated separated from each other in a precise man-
ner. Consequently, we are employing complex functions and
Laurent series, instead of real variables and Taylor series.

This vector signal
−−→
xs[n] represents the superposition of N

stochastic processes pi[z, n], which (in general) will not be
independent. z is a variable varying within the corresponding
universe Ui; and n is the temporal variable. About these
stochastic processes, a set EO of No observations (known as
training set) is collected (16).

EO ∈
(
CN
)No

(16)

In this context, we look for a density function
−−−→
ρ[z, n]

estimating the weight (probability) of each point Ez = −→ui ∈
U1 × . . . × UN at each time instant n; i.e. we are trying to
obtain a vector of estimations p̂i[z, n], for the collection of
stochastic processes associated to the signal −→xs (17).

−−−→
ρ[z, n] = (p̂1 [z1, n] , . . . ,p̂i [zi, n] , . . . ,p̂N [zN , n]) (17)

In practice (as infinite measurements are not feasible),
this density function must be computed regarding only the
collected observations (not the entire universe), so obtained
function

−−−−−→
ρO[z, n] is essentially a restriction of

−−−→
ρ[z, n] to set

EO (18).

−−−−−→
ρO[z, n] =

−−−→
ρ[z, n]

∣∣∣
EO

(18)

Thus, we must obtain a density function such that its
restriction to set EO can be easily generalized to the entire
universe U1 × . . .× UN .
In this paper we are considering, at this point, two

assumptions:

• The global density function
−−−→
ρ[z, n] is identical to the

restricted function to set EO (19). Actually, to be an AI
algorithm, the proposed solution must, from observing
set EO, understand the entire phenomenon and be appli-
cable to the global universe. To meet this requirement,
both density functions must be equal.

−−−→
ρ[z, n] =

−−−−−→
ρO[z, n] =

−−−→
ρ[z, n]

∣∣∣
EO

(19)

• The density function
−−−−−→
ρO[z, n] (for each time instant)

may be analytically expressed as a function of the no
past observed events and their d0 first backward finite
differences (20). In total, T = N · (n0 + d0) variables
are considered.

−−−−−→
ρO[z, n] = F

[
Ez,
{
−−−−−→
xs[n− i], i = 1, . . . , no

}
,{

˙−−−−−→
xs[n− i], i = 1, . . . , no − 1

}
, ..,

....︷ ︸︸ ︷
−−−−−→
xs[n− i], i = d0, . . . , no − d0


 (20)

Vector function F [·] is usually supposed to have a certain
form (linear, logistic, etc.), but in our proposal we are assum-
ing this function is totally unknown; we only require from it to
be holomorphic. As a N-dimensional vector function, F [·] is
made of N components fi [·] which must be holomorphic as
well (21).

F [·] = (f1 [·] , . . . ,fi [·] , . . . ,fN [·]) (21)

In these conditions, it is possible to develop this unknown
function as Laurent series [47] in the interior of a
poly-annulus Az (22), as shown at the bottom of the next
page. In fact, each component fi [·] is developed as a different
Laurent series (23), as shown at the bottom of the next page.

Only for clarity, hereinafter all variables
−−−−−→
xs[n− i],

˙−−−−−→
xs[n− i],

etc., are named as ξi being i = 1, . . . ,T .
In these expressions, ∂∗ indicates the frontier of a

domain in a complex space. The center of the annu-
lus Az, as seen, affects the Laurent series. However, simple
mathematical manipulations may remove this effect, pro-
vided the function fi [·] is holomorphic in all points within

109364 VOLUME 8, 2020



B. Bordel et al.: Predictor-Corrector Algorithm Based on Laurent Series for Biological Signals in the IoMT

the Ui (24).

fi
[
zi, Eξ

]
=

=

∑
λ0,...,λT∈Z

bλ0,...,λT · (zi)
λ0 · (ξ1)

λ1 · . . . · (ξT )
λT

(24)

With this expression, Laurent series behave exactly the
same the unknown function fi [·]. Nevertheless, infinite terms
must be considered in the resulting polynomial. Accepting a
certain error ε (25), the Laurent series may be truncated to
the6 terms with lower order (26), both negative and positive
powers (27). This truncated series is employed hereinafter.

ε =
∑

λ0,...,λT /∈Z6
bλ0,...,λT · (zi)

λ0 · (ξ1)
λ1 · . . . · (ξT )

λT

(25)

6 = (2Cmax + 1)T+1 (26)

fi
[
zi, Eξ

]
' f̃i

[
zi, Eξ

]
'

∑
λ0,...,λT∈Z6

bλ0,...,λT · (zi)
λ0 · (ξ1)

λ1 · . . . · (ξT )
λT

Z6 = {−Cmax , . . . , 0, . . . ,Cmax} (27)

Thus, as function fi [·] is unknown and, therefore,
coefficients bλ1,...,λT cannot be analytically calculated,
the described Laurent series presents 6 unknown coeffi-
cients. Considering a training set EO big enough, these coef-
ficients may be obtained using algebraic equation resolution
techniques. This procedure is known as the training phase of
the AI mechanism.
As density functions depend on past events

{
ξ1, .., ξn0

}
(and their finite differences), obtained estimations for
stochastic processes are conditioned to the past observed
events (28). These events, at the same time, are observations
whose probability must be obtained through the proposed
density functions. Final predictive algorithm must address
this recursive problem.

p̂i [zi, n] = g
(
zi; n

∣∣ξ1 = e1, .., ξn0 = en0
)
=

= f̃i
[
zi, Eξ

]
(28)

First, we are considering all points in the universe have the
same probability in the first time instant, n = 0 (29).

Pp̂i [zi, 0] =
1

card {Ui}
∀zi ∈ Ui (29)

Then, using the Bayes theory and the total probability
theorem, it is possible to obtain the probability of each point
in the universe Ui at each time instant (30). This expression
could be expressed also in a non-recursive form, but it is
not necessary as this formula may be easily implemented in
the proposed predictive algorithm, which is finally shown in
Algorithm 1.

Algorithm 1 Predictive Algorithm

Output: Set of reticula
{
Pp̂i [z, n] , i = 1, ..,N

}
Initiate the set of reticula

{
Pp̂i [z, 0] =

1
card{Ui}

, i = 1, ..,N
}

for each time instant n do
Initiate

{
Pp̂i [z, n] = 0, i = 1, ..,N

}
for each reticula Pp̂i do
for each point z ∈ Ui do
for each possible variation (with repetition)
Ev =

(
e1, . . . , en0

)
ej ∈ Ui do

Obtain f̃i
[
z, Ev
]

Calculate B=Pp̂i [e1, n− 1] · . . . · Pp̂i
[
en0 , n− n0

]
Pp̂i [z, n] = Pp̂i [z, n]+ f̃i

[
z, Ev
]
· B

end for
end for

end for
end for

Pp̂i [zi, n] =
∑
∀e1∈Ui

. . .
∑
∀en0∈Ui

g
(
zi; n

∣∣ξ1 = e1, .., ξn0 = en0
)

·

n0∏
j=1

Pp̂i
[
ej, n-j

]
(30)

The proposed algorithm, basically, employs the density
functions based on Laurent series, and the total probability
theorem (30), to update (at each time instant) a reticulum for

Az = A
(
−→z0 ; l0,L0, l1,L1, . . . , lT ,LT

)
=

= A
(
z00; l0,L0

)
× . . .× A

(
zT0 ; lT ,LT

)
A
(
zi0; li,Li

)
=

{
z
... li <

∣∣∣z− zi0∣∣∣ < Li
}

(22)

fi
[
zi, Eξ

]
=

=

∑
λ0,...,λT∈Z

bλ0,...,λT ·
(
zi − z00

)λ0
·

(
ξ1 − z10

)λ1
· . . . ·

(
ξT − zT0

)λT
bλ0,...,λT =

=
1

(2π j)T+1

∫
C

fi [zi, ξ1, . . . , ξi, . . . , ξT ](
zi − z00

)λ0+1
·
(
ξ1 − z10

)λ1+1
· . . . ·

(
ξT − zT0

)λT+1 dziξ1, . . . , ξT
C = ∂∗A ( Ez0;31, . . . , 3T ) ∀li < 3i < Li (23)
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each i-th component in Exs describing the probability of each
point in the universe Ui to be the following observed event.
Figure 3 represents the described reticulum.

FIGURE 3. Reticulum for calculations in the prediction phase.

D. CORRECTION ALGORITHM
After the prediction step, a probability reticulum Pp̂i [z, n] for
each i-th component of both −→xf and −→xa signals is obtained.
Now, before obtaining the final (corrected) N-dimensional
sample

−−−−→
xs−c[n], a correction phase is performed. This phase

considers a set of logical predicates about points in the
universe, the n0 past generated samples and their d0 first
backward finite differences (31).

Eµ = {µ1, . . . , µw}

µi = µi

(
zi, Eψ

)
= β β ∈ {true, false}

Eψ =
{
−−−−−→
y[n− k1], k1 = 1, . . . , no

}
,{

˙−−−−−→
y [n− k2], k2 = 1, . . . , no − 1

}
, ..,

....︷ ︸︸ ︷
−−−−−→
y [n− ki], ki = d0, . . . , no − d0

 (31)

These predicates refer some signals’ and IoT devices char-
acteristics and describe the global and local consistence and
coherence of data sequences. These predicates describe fea-
tures such as themaximumvalue for signals (according to IoT
physical devices), or the signal maximum possible variation
per time unit.

Mathematically, the correction process is the calculation
of a multidimensional stochastic process (32), considering
the points in the universe Ui and the logical predicates.
As both components are independent, this stochastic pro-
cess may be calculated as the multiplication of two different
probabilities (33). Moreover, logical predicates are indepen-
dent among them, so the same reasoning may be applied to

them (34).

Pcp̂i [zi, n] = 5
[
zi, Eµ

(
zi, Eψ

)
; n
]

(32)

5
[
zi, Eµ

(
zi, Eψ

)
; n
]
= Pp̂i [zi, n] · P

[
Eµ
(
zi, Eψ

)
, n
]

(33)

P
[
Eµ
(
zi, Eψ

)
, n
]
=

w∏
j=1

P
[
µi

(
zi, Eψ

)
, n
]

(34)

In this step, logical predicates are considered to fol-
low a Bernoulli distribution (35). This assumption is time
independent.

P
[
µi

(
zi, Eψ

)
, n
]
=

pb if µi
(
zi, Eψ

)
= true

qb if µi
(
zi, Eψ

)
= false

(35)

Thus, the final corrected reticulum Pcp̂i [zi, n] (32) may be
easily obtained evaluating logical predicates for all points
in the universe. In that way, certain points zi may be less
probable because of physical restrictions. The final corrected
sample

−−−−→
xs−c[n] is obtained, for each i-th component, as the

barycenter of the corrected reticulum Pcp̂i [zi, n] (36).

x is−c [n] =

∑
∀zi∈Ui zi · P

c
p̂i [zi, n]∑

∀zi∈Ui P
c
p̂i [zi, n]

(36)

E. RECONSTRUCTION
At this point, two predicted and corrected samples

−−−−→
xf−c[n]

and
−−−−→
xa−c[n] are obtained. In order to reconstruct the final and

global samples it is only necessary to apply the definition of
complex envelope (37).

yip−c [n] = Re
{
x ia−c [n] · e

j·xf−c[n]·n·Ti
}

(37)

At the same time this predicted sample is generated, a phys-
ical sample Ex was received from IoT devices. Then, a decision
must be taken about both samples. The following decision
scheme was implemented (38):
• If xi[n] is an empty sample, the final corrected sample
to be generated and transmitted (to applications, back to
signal processing module, etc.) is yip−c [n].

• If xi[n] belongs to the open ball B(yip−c [n] , δe), i.e.
absolute error in xi[n] compared to expected sample
yip−c [n] is lower than δe units, the final accepted sample
is xi[n].

• If xi[n] belongs to the closed annulusC(yip−c [n] , δe, δE ),
the final sample is the arithmetic average between xi[n]
and yip−c [n].

• Otherwise, the proposed final sample is yip−c [n].

yi[n] =



yip−c [n] if xi [n] is empty
xi [n] if xi [n] ∈ B(yip−c [n] , δe)
xi [n]+ yip−c [n]

2
if xi [n] ∈ C(yip−c [n] , δe, δE )

yip−c [n] otherwise
(38)
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IV. EXPERIMENTAL VALIDATION: A FIRST CASE STUDY
USING SIMULATION TOOLS
In order to validate the proposed AI solution, a simulation
scenario was built. Proposed experiments evaluate the perfor-
mance of the described predictor-corrector algorithm in terms
of accuracy and computational efficiency.

To demonstrate the algorithm effectiveness, we investigate
the precision in predicted samples, comparing the generated
predicted and corrected data with real data obtained from
IoT devices (before occurring any error caused by mobil-
ity, noise, etc.). As data streams are treated as real num-
ber, the traditional Euclidean distance enable us to estimate
that precision measure as a standard relative error. This first
experiment was repeated for different communication signals
(with different entropy values). To show the computational
efficiency of the proposed solution, the converge time during
the training phase, and the calculation delay during operation,
are analyzed. Finally, to evaluate the performance of the
proposed artificial intelligence solution, the confusion matrix
is calculated and discussed.

To perform these studies, a simulation scenario, described
and executed using MATLAB 2017a software, is employed.
All simulations were performed using a Linux architecture
(Linux 16.04 LTS) with the following 604 hardware charac-
teristics: Dell R540 Rack 2U, 96 GB RAM, two processors
Intel Xeon Silver 4114 2.2G, HD 2TBSATA7,2K rpm. Using
MATLAB, three different agents were implemented. Each
one describes the behavior and interfaces of a differentmobile
IoMT device. The first agent model represents a camera for
medical pictures. Generated data (three data streams) repre-
sent the three components (red, blue and green) of pixels.
The second agent represents an ultrasound sensor to detect
masses and create an image of the organs. Generated data
(one stream) represent distances. Finally, the third agent is
a standard fixed body temperature sensor. Only one stream
is represented with digital temperature information. Every
agent may generate signals with different entropy values,
in the range

[
0, 12

]
.

MATLAB precision was established in a fixed manner to
one hundred significative digits. In that way, the numeri-
cal error caused by MATLAB data processing methods was
around 10−100. This value is much lower than any other
variable or expected result, so we can consider negligible
its effect on obtained results. Besides, to avoid MATLAB
algorithms to increase the calculation speed by reducing the
desired precision this functionality was disabled.

The simulation scenario contained the same number of
agents of each type. The number of devices in the simulation
scenario is selected to match realistic applications reported in
the scientific literature [41], [42].

All these agents, once deployed, transmitted their data to
a new agent acting as central server where the proposed
predictor-corrector algorithm is running. This communica-
tion process occurs through a wireless channel where noise,
electromagnetic interferences and temporary displacement

caused by mobility are applied. Both, real data generated by
IoMT nodes, the corrupted data received in the central server
and the final samples predicted and corrected by the proposed
AI solution are collected.

The study was repeated for different numbers of terms
in the Laurent series 6. For each case, simulations where
repeated twelve times, and mean values where extracted as
final result. Table 1 shows the values for the resting parame-
ters in the proposed algorithm.

TABLE 1. Values for parameters in predictor-corrector algorithm during
the validation experiments.

Results are also compared to measures obtained from
traditional prediction solution based on splines and linear
regression.

FIGURE 4. Precision analysis for different numbers of terms in the
Laurent series. Entropy of communication signal: H = 0.25.

V. RESULTS
Figure 4 presents the mean precision for different scenar-
ios, considering numbers of terms in the Laurent series 6.
Equally, when possible, the order of the state-of-the-art mod-
els were also changed in the same way. In this case (Figure 4)
we are considering a signal with an entropy H = 1

4 .
As can be seen, linear regression (whose order is constant

and immutable) shows an also constant error around 85%.
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That’s because a linear function is a very poor method to
relate future samples with previous samples. If this method
wants to be used, another type of variables should be con-
sidered. A slightly improved is shown, but this variation is
caused by the statistical behavior of the stochastic processes.

Resting results show three different areas. For very low
order (up to three), the correction phase of the proposed
algorithm makes our solution to behave notoriously better
than traditional schemes based on splines. However, splines
may obtain a lower error with a lower number of terms in the
metathetical model. Thus, for models with an order around
three, splines present a better behavior. Finally, in the third,
and wider, area our proposal is up to 25% more precise; as
the proposed approach (once an enough number of terms are
included in the Laurent series) is much more effective than
existing schemes. In particular, for series (at least) consider-
ing the first twenty terms, the relative error is reduced below
10%. In order to show the behavior of the proposed solution,
Figure 5 represents the original, received and reconstructed
signals.

FIGURE 5. Comparison among the different steps in the signal processing
and reconstruction process.

On the other hand, for Artificial Intelligence solutions,
a very useful and common instrument to evaluate the per-
formance is the confusion matrix. As, in the proposed mech-
anism, labels are not a discrete set but a continuous range;
in order to make possible the calculation of the confusion
matrix, we are dividing the global range [µi,−µi] in four
quartiles. Table 2 shows the obtained results. As can be
seen, results are coherent with precision analysis in Figure 3.
Models with a lower order present also a lower precision.
For model of first order precision is around 35%. For models
of eighth order, precision is around 70%, and for models of
twentieth order precision goes around 93%. Besides, no sig-
nificant differences are observed in results obtained for the
different quartiles. Thus, the proposed mechanism is quite
stable and homogenous in all its operating range.

TABLE 2. Confusion matrix.

FIGURE 6. Precision analysis for different numbers of terms in the
Laurent series. Entropy of communication signal: H = 0 and H = 0.5.

Figure 6 shows the results of this first experiment when
considering communication signals with entropy values of
H = 0 and H = 1

2 . As can be seen, in this case, the obtained
results are not significant, as the input signal totally condi-
tions the behavior of the global mechanism. Signals with null
entropy are fixed sequences, so they can be predicted with
no error using any simple algorithm (relative error is almost
null). On the other hand, signals with entropy H = 1

2 are
random signals, and no underlying pattern may be detected
or deducted. Thus, relative error is near 100%.

Now, an approach with a lower precision could be accept-
able, if calculation delay and/or converge time were much
lower. Figure 7 shows that analysis. In this case, as the calcu-
lation time is independent from the analyzed communication
signal, we are using a signal with an entropy H = 1

4 .
As can be seen, both, the processing delay and the con-

verge time for the training phase evolves linearly. In fact,
as said in Section III, in respect to the unknown coefficients
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FIGURE 7. Converge time and calculation delay analysis for different
numbers of terms in the Laurent series.

bλ0,...,λT models (both, splines and Laurent series) are lin-
ear equations, so as the number of variables grows linearly,
the number of operations (sums and multiplications) also
grows linearly.

Linear regression models are, once more, almost indepen-
dent from the model order (there is a small variation caused
by a higher number of equations, although the number of
variables is the same). Besides, they are the fastest approaches
(also the simplest ones), requiring only 200 seconds for train-
ing and below 100ms for prediction.

Resting models (splines and proposed Laurent series)
present almost the same behavior. In the worst case, obtaining
a sample requires 200ms, what is an acceptable time for
real-time operation. Thus, as required time for training and
operation is almost the same for both approaches, we can
conclude the proposed approach based on Laurent series is
better, as it presents a lower error.

VI. CONCLUSIONS
In this paper we proposed a new Artificial Intelligence
predictor-corrector algorithm focused on improving the qual-
ity of data sequences and biological signals generated by
mobile IoMT devices. The proposed algorithm includes two
steps: a prediction phase and a correction procedure. The
prediction phase analyzes signals in two domains, amplitude
and frequency, thanks to the concept of complex envelope.
In each domain a complex model based on unknown holo-
morphic complex functions and Laurent series is employed.
On the other hand, correction procedure is supported by log-
ical predicates, guaranteeing the global and local coherence
of the information signal.

An experimental validation, supported by simulation sce-
narios and tools, is also provided. Results show the pro-
posed approach presents a better precision than traditional
approaches based on linear functions or splines.

Future works will integrate more complex decision algo-
rithms in the reconstruction phase, in order to improve the
global precision. In particular, we are investigating solutions
based on Bayesian trees [44] and other specific solutions for
biometric signals [45]. On the other hand, algorithms based
on signal processing technologies for signal reconstruction
are also being evaluated [46]. All these algorithms may be
easily integrated into the proposed schemes, by replacing the
current reconstruction technique for any of these proposals.
Future works will evaluate the performance of these alterna-
tive implementations.
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