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ABSTRACT Work-related musculoskeletal disorders (WRMSDs) are a serious worldwide health concern,
that can result in the worker’s permanent disability and an economic burden of up to 2% of the Gross
Domestic Product (GDP). This paper presents the design and development of an innovative smart garment
for real-time ergonomic risk assessment. It aims to empower operators with posture awareness and provide
objective data to ergonomists. The system is based on inertial sensors and implements a biofeedback strategy
that uses haptic stimulus to warn the user about hazard postures, enabling more ergonomic postures. To allow
an easy data analysis, a graphical interface was developed in MATLAB. This framework was validated
with 5 subjects, in a simulated scenario with 5 tasks that included a collaborative robot arm. The results
showed that providing real-time biofeedback to the subject improves posture awareness, and has a significant
impact on reducing the ergonomic risk, with reductions of up to 39.8% of the time spent in hazard postures.
The wearable technology and developed methodologies are a promising tool to complement the ergonomist
diagnoses of hazard tasks and workspaces and to reduce the risk of musculoskeletal disorders.

INDEX TERMS Ergonomic risk assessment, biofeedback, inertial measurement units, wearables design,
WRMSDs.

I. INTRODUCTION
The industry is moving towards the 4th revolution, seeking
for the smart, skilled, and healthy operator 4.0 [1]. How-
ever, work-relatedmusculoskeletal disorders are still a central
problem for public health, as it represents the major ele-
ment in occupational diseases, namely in Europe [2]. Thus,
it stands as one of the main priorities of the European Agency
for 2013-2020, with associated costs of up to 2% of the Gross
Domestic Product [3]. Additionally, severe WRMSDs can
result in permanent disability and, consequently, preclude the
workers’ return to their work and/or limit their daily lives [4].
Higher reported injuries occur at the back, shoulders, and
neck. In fact, the low back pain prevalence was esteemed at
25.7%, among the US workers, costing around $635 billion,
annually, in the USA [5]. Regarding the Portuguese working
population, about 30.7% manifest backache [6]. One of the
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major risk contributors to the high number of WRMSDs is
sustaining an awkward body posture, while performing a
given task, which consists of a deviation from the natural
neutral position, namely excessive bending and twisting.

To reduce the exposure of workers to hazardous envi-
ronments and tasks, ergonomists and engineers have been
putting their efforts into developing risk assessment meth-
ods for quantification of the risk of WRMSDs. These tools
can be divided into self-reports, observational methods, and
direct/instrument-based methods [7]. Self-reports collect risk
exposure data from the worker, through interviews and ques-
tionnaires. However, despite the direct and initially inexpen-
sive application, it relies on the worker’s perception, which
is, usually, imprecise and subjective. Observational meth-
ods evaluate the workplace risk exposure by observation on
the field or by replaying videos and can be divided into
simpler and advanced. The simpler ones consist of paper
sheets that guide the ergonomist during the ergonomic assess-
ment. A non-exhaustive list includes the Ovako Working

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 107583

https://orcid.org/0000-0002-8097-5507
https://orcid.org/0000-0002-0672-2894
https://orcid.org/0000-0003-0023-7203
https://orcid.org/0000-0001-6926-7983


S. M. Cerqueira et al.: Smart Vest for Real-Time Postural Biofeedback and Ergonomic Risk Assessment

Posture-Analysis System (OWAS), the Occupational Repet-
itive Actions (OCRA), the Rapid Upper Limb Assess-
ment (RULA), the Rapid Entire Body Assessment (REBA),
the NIOSH lifting equation and the Postural Ergonomic Risk
Assessment (PERA) [7]. Despite being affordable and non-
invasive, these tools highly rely on the ergonomist expertise
when evaluating parameters such as the worker’s joint angle,
which diminishes the objectiveness, precision, and repeata-
bility of the methods. For instance, a difference of 10◦ in the
worker’s posture is hardly noticed by the ergonomist, when
observed in real-time. The advanced methods, in turn, use
dedicated software for analysis of the video-records captured
during the workers’ shift. Even though the results are more
precise, the costs are substantially higher, time-consuming,
and require highly specialized staff [7].

Instrument-based methods, in turn, can provide, in real-
time, accurate, and objective measurements. Thus, the time
required for an ergonomic assessment is reduced and dynamic
tasks can be assessed. As the measuring devices should cause
the minimum disturbance and restriction of the worker’s
mobility, in the last years, researchers have been focusing
their efforts on ergonomic assessment using motion capture
technology, namely, depth cameras, such as the Microsoft
Kinect, and wearable devices such as inertial measure-
ment unit (IMUS) [8]. IMUs are becoming a very popu-
lar choice [9]–[16], due to their capability of capturing 3D
movements, their small size, and lightweight, which allow the
integration on wearables. Further, these methods do not suffer
from drawbacks present in camera-based methods, such as
the possibility of occlusion and environmental restrictions
like light conditions.

Usually, workers are unaware of their posture and also tend
to forget good postural practises in order to meet the con-
straints of time. Biofeedback is a self-regulation technique
that can tackle this problem, through the use of meaning-
ful cues to provide postural awareness to the worker [17].
In 2013, Vignais et al. developed a promising system, com-
posed of 2 goniometers synchronized with 7 Colibri IMUs.
The system performed ergonomic risk assessment, in real-
time, based on the RULA method. The computed risk scores
were fed to the user using an augmented reality headset
and auditory warnings, addressing visual and auditory feed-
back [14]. Owalia et al. also explored the potential of pro-
viding postural biofeedback to the user and developed the
PostureCoach aiming caregiver’s training. The system instru-
mented two IMUs placed at the mid-thoracic level and in the
sacrum to measure the flexion angle of the lumbar spine and
provide an auditory warning when the pre-set thresholds were
exceeded [15]. Both studies’ results evidenced an improve-
ment in the workers’ posture and risk awareness, derived
from the implemented feedback strategies. Notwithstanding,
these types of feedback technologies present some draw-
backs. For example, auditory signals can be muffled by the
often-noisy industrial environments, or in the case of using
earphones the user is more likely to ignore external warning
signals associated with his safety. As for visual feedback,

the use of augmented virtual goggles and headsets can be
uncomfortable, cause eye fatigue, and may limit the worker’s
field of view. In turn, haptic feedback is a common practice
in rehabilitation devices [18], and would not require visual
attention nor limit the auditory capacity of the user to detect,
identify, and localize environmental cues.

This paper presents a non-intrusive system that aims
at real-time upper body posture monitorization, ergonomic
assessment, and improvement of risk and posture awareness.
The work is based on the hypothesis that predicting unhealthy
body postures and providing immediate biofeedback to work-
ers will lead to healthier, safer working habits and consequent
reduction of medical expenses for musculoskeletal-system
related injuries. To achieve this end, we developed a smart
garment combining the potentialities of IMUs and hap-
tic interfaces, as sensing and biofeedback technology. The
thresholds used for the development of the biofeedback strat-
egy were primarily based on the RULA tool and comple-
mented with LUBA. A graphical interface was developed
to allow a fast and easy to use ergonomic risk assessment
of the tasks and/or workspace. This approach was tested
with 5 subjects. Results indicate the impact of the proposed
biofeedback strategy and overall system on the user, and show
that the haptic biofeedback provides postural awareness and
entails a change and correction of posture.

II. SMART VEST DESIGN
The smart garment was developed with two users in mind:
(i) the worker, who needs a practical and simple solution,
capable of distinguishing awkward postures and provide pos-
ture awareness, and (ii) the ergonomist, who requires objec-
tive and accurate data, presented in an intuitive way.

A. SYSTEM REQUIREMENTS
One of the main concerns, when designing a smart garment,
is to satisfy usability requirements, as a system with low
usability will be rapidly abandoned by the user. It is of utmost
importance to guarantee a steady fixation of the IMU sensors
and haptic vibrators in the right position, even during abrupt
movements [18]. Moreover, the wearable fitting should be
tight, but without compromising the user’s comfort. Other
aspects have to be considered, such as weight, comfort, easy
donning and doffing, and the wearable’s sensation/feeling
on the user, i.e., if the system feels weird and external to
the user and he cannot abstract from it. In fact, the human
body perceives an aura around the body of 0 to 12.7 cm off
the body, known in proxemics as intimate space, and forms
should remain within this area to be perceived as part of the
body [19]. Additionally, the system shall not restrict the user
movement nor jeopardize his normal working behavior.

Most human movements occur within the range of 0.5 to
3.5 Hz. The developed system should ensure the required
feasibility, without excessive energy consumption, and assure
at least an 8-hour work shift. A form of feedback/warn shall
be provided to the worker, in real-time and on-site. The
user’s data must be available to the ergonomist and enable
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FIGURE 1. Back, side and interior view of the developed system and its graphical user interface (GUI).

offline risk assessments. Also, a user-friendly interface must
be granted.

B. SENSOR PLACEMENT
1) IMU PLACEMENT
Regarding the positioning of the IMUs on the Human body,
there is no standard established protocol and each author
proposes different locations for the sensors.

The spine is divided into 3 main regions: cervical, thoracic,
and lumbar. Many models have been proposed to study its
movement, dividing it into 8-line segments [20], 4-line seg-
ment [21], 2-line segments [22], and one segment. Withal,
more segments mean more sensors, which, in turn, means
a bulkier and heavier system, which affects the wearability
of the system and raises its complexity. Regarding wearable
designing, the focus is using the minimum number of sensors,
without compromising the system’s performance. In observa-
tional ergonomic assessment methods, the back’s movement
analysis is based on a one segment model. This reflects on
instrument-based methods. For instance, [14] monitored the
backwith one IMU placed on the chest, [10] placed the sensor
on the upper back, and [15] used 2 IMUs at the mid-thoracic
level and sacrum.

The shoulder complex is the joint with the largest mobility
range and is frequently simplified and treated as a 3 DOF
spherical joint. Thus, only 1 IMU is required to monitor this
segment, which is typically placed in the upper arm [23]. The
neck, in turn, is usually monitored by placing a sensor in the
forehead, or vertebrae C4. However, a sensor in the cervical

region could affect the user comfort, while in the forehead
would not be aesthetical pleasing for the user.

Thus, in this work, 4 sensors were used and placed on
T4 (point where the outward curvature of the back is well
pronounced), on each upper arm and back of the head, due
to usability issues. Fig. 1 shows an overview of the proposed
solution. Each sensor is protected by a 3D-printed case. The
sensors’ modules are attached to a skinny fitted shirt using
Velcro straps. The total weight of this first prototype, elec-
tronics, and shirt, is 740 g.

2) HAPTIC MOTORS PLACEMENT
We hypothesize that biofeedback should provide straight-
forward information about the body part that is prone to
ergonomic risk. Therefore, the developed system embodies
4 haptic motors, stitched to the smart garment on both upper
arms, cervical and lumbar region, giving haptic cues on the
arms, neck, and back, respectively. This approach minimizes
cognitive effort from the user since it provides local biofeed-
back. The vibration frequency is within the 80 and 250 Hz
range, as the human cerebral cortex is capable of discrimi-
nating frequencies within this range.

III. SYSTEM DEVELOPMENT
A. HARDWARE ARCHITECTURE
The system is composed of 4 MPU-9250 IMUs (Invensense,
USA), a highly available and widely used sensor due to its
low cost and reliability. It combines a 3-axis accelerometer, a
3-axis gyroscope, and a 3-axis magnetometer. For this work,
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FIGURE 2. Illustration of the movements and signal convention.

only the accelerometer and gyroscope data were acquired,
with a full range scale of ±4g and ± 2000 ◦/s, respectively.
All sensors were interfaced with a high-performance micro-
controller, the STM32F4 Discovery, via I2C, and sampled at
100 Hz. The inertial data is stored in an OTG USB driver,
with reduced dimensions. 4 coin-style ERM motors (Preci-
sion MicrodrivesTM, London) were used as haptic motors,
vibrating at approximately 200 Hz, and with a vibration
strength of 2.2 g. Each motor is controlled by a DRV2605L
haptic driver (Adafruit). The system is powered by a power
bank, with a 6.9 mm thickness and a capacity of 3000 mAh,
providing a maximum autonomy of around 12h.

B. SOFTWARE FOR DATA PROCESSING
IMUs are affected by sensor bias errors. Therefore, it is
necessary to calibrate these sensors before data acquisition.
Each IMUs’ accelerometer was calibrated by the 6-position
method, an easy and fast method [24]. The IMUs’ gyroscope
was calibrated following an initialization routine, during
which the user must stand still for 10 seconds. The angular
velocities acquired during this time are averaged and used
to calculate an offset, which is removed from the following
samples to be acquired.

After the calibration stage, the Euler angles are computed
using a Kalman filter to fuse the inertial data from the
accelerometer and gyroscope, providing the joint’s orien-
tation in the sagittal and coronal plane. Movements were
defined following the movement signal convention depicted
in Fig. 2.

The system’s angle estimation was validated using the
UR3, a collaborative robot arm from Universal Robots [25].
The sensor was placed in the robot end-effector oriented
at 0◦. The robot end-effector was rotated by 45◦, at an
angular velocity of 90◦/s, await 2 seconds, and repeated
these movements until reaching 360◦. Then, the movement
was reversed until reaching the initial position. Results were
assessed through the Root Mean Squared Error (RMSE) and
listed in Table 1. As observed, the obtained RMSE is between
2.57◦ and 4.95◦, corresponding to an error between 1.43%

TABLE 1. RMSE of the angle estimation of each sensor.

and 2.5%, in relation to the full angle range. These results
are comparable with other wearable technologies as demon-
strated in [18].

C. ERGONOMIC RISK ASSESSMENT TOOL
Upper body posture can be assessed by a set of angles from
various body segments. However, the simultaneous analysis
of all angles can be a complex and discouraging task, even
for professionals. Discretizing the angle values acquired by
the sensors is a simple procedure that can ease the analysis.
Therefore, it was implemented a finite statemachine (Table 2)
to analyze posture and monitor the ergonomic risk level,
where each sample is converted from an analog angular value
to a state. To calculate the ergonomic risk level, we used the
angles’ ranges specified by the RULA index [26], one of the
most cited methods in the literature, as thresholds. However,
RULA only specifies angles in the sagittal plane, paying
little attention to the movements in the coronal plane. The
LUBA method [27], in turn, scores all the movements, in all
the planes, in an angle range. However, according to [28],
RULA is generally more appropriate for the assessment of
WRMSDs. Consequently, the signal was discretized using
the thresholds set by RULA and complemented with LUBA
regarding the coronal plane. Fig.2 illustrates the movements
and corresponding measured angle representation. To each
state, a risk level was assigned - Low (LR), Medium (MR),
Medium-High (MHR), and High (HR) - along with a time
interval that establishes the maximum period of time that a
position can be held in that angle range. These times inter-
vals were defined as 1, 5, and 10s for HR, MHR, and MR
states, respectively. The used thresholds are all referent to a
neutral posture, which is set user-dependent, and given by the
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TABLE 2. Finite state-machine based on RULA and LUBA methods.

alignment of the spine with the extremities, namely, ears and
shoulders aligned, and shoulder blades retracted [29]. Con-
sequently, after dressing and calibrating the system, angles
are reset. The user is asked to stand with his back straight,
arms parallel to his trunk, look forward, and hold that position
for 10 s, in order to average the angle of each body part and
withdraw those values from future measurements.

D. ERGONOMIC RISK ASSESSMENT TOOL
After performing the angle reset, the system calculates
the ergonomic risk. If the recommended time is exceeded,
a vibrotactile signal will be given on the risky body segment.
The 4 vibrating motors can be activated at the same time (if
the awkward posture results from the combination of more
than one body part) or one at a time (if just one element
is positioned in a hazardous posture). Consequently, local
biofeedback is provided to the user, requiring low cognitive
effort to acknowledge his posture. For biofeedback purposes,
any movement with a duration lower than 1 second is not
considered, as it can result from a sporadic movement with
no analysis interest.

E. GRAPHICAL USER INTERFACE
To provide an easy access to the data stored in the OTG USB
driver and an intuitive stats visualization to the ergonomist,
a GUI was created using MATLAB R©with two purposes: a
Posture State analysis, which consists on a time-analysis,
where the user can observe the sequence of posture states
of each body part and combine the states to estimate an
upper-body posture; a Risk Percentage assessment, which
provides an overview of the ergonomic risk exposure of each
body part in a pie plot. This strategy aims at a rapid task

FIGURE 3. Tasks scenarios.

analysis, specially designed for a first ergonomic diagnosis of
the task or workspace and/or postural improvement checks.

IV. EXPERIMENTS
A. SUBJECTS
For a proof-of-concept, 5 individuals, 1 female and 4 males,
participated in this study. The participants’ age, height, and
body mass were 24 ± 1.1 years, 1.75 ± 0.07 m, and
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FIGURE 4. Average time percentage of each body part spent in each risk level execution of all 5 tasks, without biofeedback (w/o) and with
biofeedback (w/).

73.5 ± 6.5 kg, respectively. All participants signed a written
consent to participate in the studies to be presented.

B. EXPERIMENTAL PROTOCOL
The experimental scenario (Fig. 3) comprises 5 tasks, selected
to be as general as possible, that contain different working
postures, not only industrial but also of other professions such
as hairdressers, when trimming hair, for example. The tasks
are performed sequentially, the first task followed by the sec-
ond one, and then repeated without a resting break. In the first
4 tasks, the participant has to drive two screws into the robot
end-effector. The robot moves along 4 positions at different
heights as soon as the participants finish to screw the screws:

around the neck level (task 1), chest level (task 3), waist level
(task 2), and hip level (task 4), considering a subject with
1.75 m. The 5th task involves the manual handling of a box
(mass = 1 kg), where the participant lifts the box and places
it at the top of the cabinet. All the necessary equipment was
provided to the subjects, along with a chair that can be used
to help reach a more comfortable working position, either to
sit or to step on it.

Each trial was performed 4 times: 2 trials without biofeed-
back, to evaluate the natural response of the subject; and 2
with biofeedback to understand how the subject reacts to
the stimulus. At the beginning of the trial, after putting on
the smart vest, the tasks’ instruction and necessary tools
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FIGURE 5. Execution of task 4 with biofeedback. At top: time-segments of
the angular values (red line) and posture states (blue dashed line) of the
Neck in Sagittal plane and Right Arm in Coronal plane. At bottom: video
samples of the identified moments, related by color.

(screws and chair), were given to the participants. They were
explained that the system assesses their kinematics and, dur-
ing the last 2 trials, they receive vibrotactile biofeedback
when their posture was considered incorrect. No other infor-
mation was provided regarding posture, namely what would
be considered a good posture or how to correct it. Also,
no advice concerning the use of the chair was given. All
participants’ trials were filmed for posterior analysis. At the
end of the trials, questionnaires with 9 questions trying to
assess the system’s usability (Fig. 7) were handed out to the
subjects to be answered anonymously. The questions were
chosen considering the guidelines of System Usability Scale
(SUS) [30].

V. RESULTS
Aiming to understand if and how providing biofeedback to
the user entails a change in his behavior, a comparative anal-
ysis of the subject’s behavior, with and without biofeedback,
was conducted.

Fig.4 depicts the average time percentage of each body
segment spent at each ergonomic risk levels, without and
with biofeedback, of all subjects, for tasks 1-5. Overall,
a reduction of the higher risk levels was observed when using
biofeedback. Regarding the neck, subjects reduced the time
spent in HR level in 36.6%, 43.6%, 45%, and 26% during
tasks 2-5, respectively. For the trunk, these reductions were
of 1.8%, 22.4%, 39.8%, 28.6% and 4.6% for tasks 1-5. The
arms, in turn, did not present HR level during all 5 tasks
execution, with or without biofeedback. Notwithstanding,
the MHR level was only reduced in task 1, by a percentage
of 14.1% (left arm) and 17.4% (right arm), and in task 5 by
a percentage of 7.4% for the left arm and 6.5% for the right
arm. In tasks 2-4, theMHR level of the arms increased 27.2%,
15.7%, and 21.6% for the left arm and 18.3%, 8.4%, and 7.8%
for the right arm, respectively.

Fig. 5 presents time segments acquired during the execu-
tion of the first trial of task 4, with biofeedback. A video of

FIGURE 6. Ergonomic risk level percentage for task 4 without and with
biofeedback, as presented in Figure 5, respectively.

this trial is available online.1 Fig. 6 presents the Risk Percent-
age assessment of the same trial, with the same subject.

The average time for the execution of the overall trial for
the 5 participants, was slightly longer for the experiments
with biofeedback (M = 343,.98 ± 47.27 s) than for the ones
without biofeedback (M = 263.98 ± 46.47 s).
Fig. 7 depicts the results of the user’s appreciation ques-

tionnaire. All participants strongly agreed on the system’s
easy understanding of the functioning (Q2), no-restriction of
the movements (Q4), posture awareness (Q7), the usefulness
of the system (Q8), and overall satisfaction (Q9). Also, all
participants agreed on the practicality and easy don-doff
(Q1), the comfort of the system (Q5), and the vibration
intensity suitability to be noticed by the user (Q3). Most of
the participants (N = 4) agreed on the biofeedback clarity
(Q6). In the comment section, the subject that disagreed with
Q6 specified that he was able to understand which body part
was poorly positioned, but he could not understand exactly
how to correct it, so he tried by trial and error.

VI. DISCUSSION
From the results presented, we can infer that providing
biofeedback to the user entails a change in his posture
and can have a positive impact on the reduction of the
task’s ergonomic risk. The results demonstrated that the most
exposed body part in the assignments is the neck followed by
the trunk. These results were expected because the robot’s
end-effector was, in tasks 2-4, below the eye level of the
participants.

Consequently, since the participant has low visibility,
he tends to flex his neck, a position with a high ergonomic risk
level. For each inch the head leans forward from the neutral
position, its weight on the neck increases 4.5 kg [29]. Even
though the neck and trunk had a considerable reduction in
the HR ergonomic risk level, the exposure of the arms in the
trials with biofeedback was slightly higher for tasks 2-4. This
is explained by the fact that most of the participants reached

1https://drive.google.com/file/d/1hyL2_qbKNxghLjdd5giQbNbOzbNG
mY58/view?usp=sharingGmY58
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FIGURE 7. User’s appreciation questionnaire answers.

for the chair when they were warned by the smart vest of their
posture incorrectness. However, the height of the chair was
not adequately adjusted to the task’s needs.

Fig. 5 allows a better understanding of the changes in
behavior ensued by the biofeedback. As observed, at first the
participant emulates the past task execution, with the neck
flexed (represented at light yellow, panel (a), at t = [4, 9] s).
When he receives the haptic cue regarding his posture, at
t ∼ 10 s, the user lifts his head, as highlighted in light blue,
panel (b), maintaining a neutral posture. However, with the
head lifted, the user has poor visibility. As consequence,
he lowers his head to gain visibility (highlighted at light
yellow, panel (c), at t = [10, 15] s), which results in a new
warning from the system, concerning the HR level of his neck
posture. His response is to pull the chair available next to him,
sit and continue the task.

Notwithstanding, the subject still lifts his right arm (rep-
resented at light orange, panel (d) at t = [16, 24] s) which,
again, generates a warning that makes him correct the posture
of the arm to a more neutral one successfully reducing the
risk (represented at the light green in panel (at t = [25, 30]s).
Observing the correspondent risk percentage assessment,
depicted in Fig.6, the subject shows a reduction of 39% the
neck’s HR, 40% of the trunk’s MHR, and 15% of the right
arm’sMHR. However, theMHR risk of the left arm increased
due to the fact that the end-effector was positioned a little too
high, and the chair height was not adequately adjusted.

Concerning the total time of the task execution, results
show that performing the same task with biofeedback takes
more time than when performing without biofeedback.
On average, the time difference was of 80 seconds, cor-
responding to an increase of 30%. However, it is believed
that with training, as the user gains more conscience of his
posture and good ergonomic practices, this difference would
be reduced.

Regarding the results from the user’s appreciation ques-
tionnaires, the answers demonstrate that the system does
not restrict movements nor conditionate the normal work-
ing behavior of the user. Also, even though wearability

improvements should be considered, the smart garment
was considered comfortable. The findings suggest that the
biofeedback is intuitive but requires training to maximize the
user performance and help the user to gain posture conscious-
ness. Notwithstanding, a new validation protocol should be
conducted to understand the learning curve of the user regard-
ing posture awareness and understand if the biofeedback
strategy needs to be improved.Moreover, the system had high
acceptance and satisfaction between the participants, and the
feasibility of the vibrotactile biofeedback was demonstrated.

One of the main advantages is the valuable information
added to the ergonomist analysis. For example, the risk per-
centage analysis presented on the graphical interface allows
a rapid overview of the task and could be a useful tool
to first diagnose tasks and/or workspaces that need deeper
analysis and possible redesigns. For example, this tool could
be used for the assessment of a task and/or workplace with
the monitorization of the operators that perform the same
task in the same workspace. If the results are discrepant
between subjects, this is indicative that the workers’ posture
needs correction and training. If, however, all the operators’
results present high-risk levels, then task/workspace requires
a deeper analysis. Along with the provided local risk level
scores, it could be used as a complementary tool for the
diagnose of hazard tasks and/or workspaces and help in the
redesign. Additionally, this tool can help to prevent the occur-
rence of WRMSDs, as the users have shown to gain posture
awareness, which is often forgotten by the workers to comply
with the demanding working pace. Moreover, this system
could be used in the training of new collaborators, in order
to avoid bad postural habits and maximize productivity.

VII. CONCLUSION AND FUTURE WORK
This work presents a smart garment for online ergonomic
assessment and posture biofeedback. The system combines
the RULA and LUBA thresholds for ergonomic risk calcula-
tion of four body parts, in both sagittal and coronal planes,
during task execution. The system also provides intuitive and
localized biofeedback, that is activated when the reference
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angles values are exceeded for more time than the one rec-
ommended. The system was tested with 5 subjects, that per-
formed 5 tasks, with and without biofeedback, to understand
the impact of the technology. The results evidenced an overall
reduction of the time percentage spent in a high ergonomic
risk level when executing the tasks with biofeedback. The
smart garment, along with its interface, suggested being a
promising tool to complement the ergonomist diagnosis of
hazard tasks and workspaces.

Future work should address validation in a real industrial
context, performing more operational tasks, with a consider-
able number and wide age range of operators, to perceive the
acceptance of the product between the workers and start an
iteration process, where aspects such as aesthetics, wearabil-
ity, and comfort can be improved. Experimental tests must
be conducted to evaluate the usability of the GUI interface,
although the consultation of an ergonomist received excellent
feedback. Also, it is intended to explore the use of artificial
intelligence algorithms for ergonomic risk assessment, study
the influence of continuous haptic biofeedback on the user,
with the intensity proportional to the risk level, and add
two more IMUs in the back to allow the implementation
of a 2-segment model for the spine monitoring. Being this
prototype the first iteration of the system, improvements
in the hardware and wearability should be conducted and
technologies such as conductive thread and flexible PCBs
should be tested in order to reduce dimensions and embed the
sensing technology into the garment, improving issues such
as weight, proxemics, fit and fixation, and aesthetics.
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