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ABSTRACT To obtain optimal probability density functions (PDFs) or cumulative density functions (CDFs)
of the event coordinates from the microseismic or acoustic emission sources, the normal information
diffusion (NID) method based on the ‘‘3σ ’’ truncated interval is introduced. Six sets of different data of
the event coordinates from the locating sources are used to illustrate the goodness-of-fit of the NID method,
log-logistic (3P) method, lognormal method, and normal method. The results show that the Kolmogorov-
Smirnov (K-S) and chi-square test values of the NID distributions (NIDDs) are always less than those of the
log-logistic (3P) distributions (LLD3s), lognormal distributions (LNDs), and normal distributions (NDs);
the cumulative probability values of the NIDDs are equal to 1, while those of the LLD3s, LNDs, and NDs
are less than 1; the curves of the NIDDs have multimodal feature and can reflect the fluctuation of the event
coordinates’ data. The conclusion can be drawn that the NIDDs are the optimal PDFs or CDFs of the event
coordinates from the microseismic or acoustic emission sources. In the locating methods of the microseismic
or acoustic emission sources, it is suggested that the NID method can be further used to improve the locating
accuracy.

INDEX TERMS Probability distribution, normal information diffusion distribution, log-logistic (3P) distri-
bution, Kolmogorov-Smirnov test, chi-square test, microseismic or acoustic emission sources.

I. INTRODUCTION
Microseismic monitoring technology is one of the most
effective means to monitor and analyze the stability of large-
scale rock mass, slope, and tunnelling [1]–[7]. At present,
there is a lack of in-depth study on the basic problems of
microseismic monitoring technology; especially the key and
difficult problems of the location of microseismic sources are
not well solved. So far, there aremore than tenmajor position-
ing methods, including geometric methods, physical methods
and mathematical methods [8]–[13]. In studying that how to
determine the event coordinate position of a microseismic
source or an acoustic emission source, Dong et al. [11]–[13]
proposed the three-dimensional analytical solutions for an
unknown velocity system and probability density function
(TDAS-UVS-PDF)method. In the TDAS-UVS-PDFmethod,
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the probability density function was selected from among the
log-logistic, log-logistic (3P), logistic, and normal distribu-
tions. Dong considered that the optimal probability distribu-
tion was the log-logistic (3P) distribution (LLD3) based on
hypothesis testing [12], [13]. There were three issues when
using the above distributions to fit these analytical solutions.
(1) It was presupposed that the analytical solutions could fit
certain kinds of known distributions, and hypothesis testing
was performed on these finite distributions, which caused
the obtained optimal probability distribution to be very lim-
ited [14]–[16]; (2) When the amount of data in a set of analyt-
ical solutions was small, the sample had a large dispersion or
volatility and the unimodal distributions could not well reflect
the dispersion or volatility; (3) The limited sample data were
distributed in a finite interval, and the distribution intervals
of the above distributions were often infinite or semi-infinite
intervals. Obviously, when using the above distributions to
fit these analytical solutions, the problem of mismatched
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intervals objectively exists. Considering the above three
issues, it is doubtful whether the LLD3 is the optimal
probability distribution of the event coordinates from the
microseismic or acoustic emission sources when using the
TDAS-UVS-PDF method. Therefore, this paper focuses on
these three issues to obtain the optimal probability distribu-
tions of analytical solutions from microseismic or acoustic
emission sources.

In recent years, the kernel density estimation method has
been rapidly developed [17] and has been widely used in the
field of natural disaster risk analysis [18]–[20]. In addition,
this method has also been applied in other fields and has
had great effects [21]–[23]. The normal information diffu-
sion (NID) method is a kind of kernel density estimation
method. Its greatest advantage is the ability to make full
use of the information of the data itself. The NID distri-
bution (NIDD) is a linear combination of limited normal
distributions, and its distribution parameters can be directly
obtained using the observed data. We tried to apply the
NID method to the probability density function inference
of analytical solutions. To efficiently solve the problem of
mismatched intervals, the truncated interval considering the
‘‘3σ ’’ statistical theory was applied in this work.
The aim of this study was to obtain the optimal probabil-

ity distributions of analytical solutions by investigating the
goodness-of-fit of the NIDD, LLD3, LND, and ND meth-
ods using six sets of analytical solutions. The remainder of
this paper is organized as follows. First, the concepts of the
NIDD, LLD3, LND, and ND are briefly introduced. Next,
the performances of the NIDD, LLD3, LND, and ND are
evaluated based on the Kolmogorov-Smirnov (K-S) and chi-
square tests, cumulative probability value, probability density
function (PDF) curve, and cumulative density function (CDF)
curve. Finally, several conclusions are drawn from the results
of this study.

II. NID DISTRIBUTION, LOG-LOGISTIC (3P)
DISTRIBUTION, LOGNORMAL DISTRIBUTION, AND
NORMAL DISTRIBUTION
A. NID DISTRIBUTION (NIDD)
The probability density function of the NID distribution is
described as

f (x) =
1

nh
√
2π

n∑
i=1

[
exp

(
−
(x − xi)2

2h2

)]
, L ≤ x ≤ R

(1)

where n is the sample size, xi (i = 1, 2, . . . . . . , n) is the
observed value of the sample, h is the window width of a
standard normal distribution, and L andR are the left endpoint
and right endpoint of a given interval, respectively.

Based on the principle of choosing the nearest value,
the window width h can be given as

h = γ (xmax − xmin)
/
(n− 1) (2)

where xmax and xmin are the maximum and minimum values
of the sample, respectively; γ is related to the sample size n.

When n is equal to or greater than 17, the corresponding value
of γ is 1.420693101 [24]. The basic principles of the NID
method were developed by Huang et al. [25].

B. LOG-LOGISTIC (3P) DISTRIBUTION (LLD3)
The PDF and CDF of the log-logistic (3P) distribution are
described as
f (x) =
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⋂
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where α is the shape parameter to determine the shape of
distribution function which can change the properties of dis-
tribution function; β is the scale parameter to determines the
scale of the distribution function in its interval. The change
of β only compresses or expands the range of distribution
function, but does not change its basic shape; and γ is the
location parameter to determine the position of the distribu-
tion function in the horizontal ordinate.

C. LOGNORMAL DISTRIBUTION (LND)
The PDF and CDF of the lognormal distribution is described
as
f (x) =
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where µ is the location parameter, the same meaning as
above; σ is the scale parameter, the same meaning as above;
and 8 is the Laplace Integral.

D. NORMAL DISTRIBUTION (ND)
The PDF and CDF of the normal distribution is described as
f (x)=
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(5)

where µ is the location parameter, the same meaning as
above; σ is the scale parameter, the same meaning as above;
and 8 is the Laplace Integral.

III. APPLICATIONS ON INFERRING THE OPTIMAL PDFS
OF THREE-DIMENSIONAL ANALYTICAL SOLUTIONS
FROM THE LOCATING SOURCES
To demonstrate the fitting advantages of the NID, LLD3,
LND, and NDmethods for approximating the PDFs or CDFs,
six sets of analytical solutions from the locating sources
were used as examples for illustration purposes. The K-S
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TABLE 1. The observed data [13].
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TABLE 1. (Continued.) The observed data [13].

and chi-square test values and cumulative probability value
were calculated. Meanwhile, the PDF and CDF curves were
drawn to intuitively illustrate the fitting abilities of the above
methods.

A. STATISTICAL ANALYSIS OF OBSERVED DATA
Six sets of observed data of analytical solutions, as shown
in Table 1, are chosen as examples to test the abovemen-
tioned aim. These data are acquired from the blasting test-
ing in Dongguashan copper mine and have been properly
calculated and processed. The specific content can be found
elsewhere [13]. The basic information from the observed data
is sequentially numbered in Table 2. Table 2 shows eight
parts, including the sample number, sample size, minimum
value, maximum value, mean value, standard deviation value,
skewness value, interval endpoint values. The sizes of each
set of analytical solutions are 84.

In order to eliminate invalid data in the original data,
the ‘‘3σ ’’ statistical theory is used as truncation method.
According to the requirements of the ‘‘3σ ’’ statistical theory,
the mean values, standard deviation values, and skewness
values of the six sets of analytical solutions were calculated.

Further, the values of the left and right endpoints were also
calculated. The calculation results of the above statistical
characteristics are listed in Table 2.

B. COMPARISON OF THE K-S TEST VALUES AND THE
CHI-SQUARE TEST VALUES
TheK-S test method is used to determine whether the hypoth-
esized distribution is acceptable and to choose the best one
when two or more distributions are concurrently acceptable.
Here, the K-S test principle is not described in detail, and its
specific content can be found in Hubert W. Lilliefors’ work
[26]. In this study, the resulting K-S test values for the six sets
of analytical solutions are calculated at the 5% significance
level and are listed in Table 3. Table 3 includes the resulting
K-S test values for the NIDDs, LLD3s, LNDs, NDs and the
critical K-S values. The NIDDs pass the test of critical values
and the K-S test values of the NIDDs were always less than
those of the LLD3s, LNDs, and NDs. Because the smaller the
K-S test values, the better the fit, the above analysis clearly
indicates that the NIDDs have a better fitting ability than the
LLD3s, LNDs, and NDs.
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TABLE 2. Statistical characteristics of the observed data.

TABLE 3. Results of the K-S test values.

TABLE 4. Results of the CHI-SQUARE test values.

To avoid the contingency of the K-S test results, this paper
also selected the chi-square method for testing. The resulting
chi-square test values for the six sets of analytical solutions
were also calculated at the 5% significance level, as listed
in Table 4. Table 4 includes the resulting chi-square test
values of the NIDDs, LLD3s, LNDs, NDs and the critical
chi-square values. The NIDDs, the LLD3s, LNDs, and NDs
all passed the testing of critical values. For the chi-square test
result of each event coordinate, the chi-square test values of
the NIDDs were always less than those of the LLD3s, LNDs,
and NDs. For example, the ratio of the chi-square test value
of the LLD3 to that of the NIDD is up to 21 times in the
event No.2-X. Similar to the evaluation criteria for the K-S
test value, the smaller the chi-square test value, the better the
fit will be. The same conclusion can be reached that the fitting
advantage of the NIDDs is more prominent than those of the
LLD3s, LNDs, and NDs.

C. COMPARISON OF THE CUMULATIVE
PROBABILITY VALUES
The cumulative probability value is an important index that
reflects the fit of a probability distribution on a truncated

integral interval. Only when the cumulative probability value
is equal to 1 can the function satisfy the basic properties of
a probability density function. The cumulative probability
values of the NIDDs, LLD3s, LNDs, and NDs for the six
sets of analytical solutions are shown in Table 5. It can be
clearly seen that the cumulative probability values of the
NIDDs are always equal to 1.0000. However, those of the
LLD3s, LNDs, and NDs are less than 1.0000. The resultant
cumulative probability values show that the NIDDs are better
than the LLDs on the truncated interval.

The F(L)s and F(R)s of the NIDDs, LLD3s, LNDs, and
NDs for the six sets of analytical solutions are also calcu-
lated and listed in Table 5. Because the interval is truncated,
the values of the left endpoints of the intervals are not exactly
equal to 0 and those of the right endpoints of the intervals are
not exactly equal to 1.0000. However, the F(L)s and F(R)s
of the NIDDs are always equal to 0 and 1.0000, respectively.
In the analysis of the cumulative probability value, the fitting
effects of the NIDDs are better than those of the LLD3s.

D. COMPARISON OF THE PDF AND CDF CURVES
To intuitively show the fitting abilities of the NIDDs, LLD3s,
LNDs, and NDs, the comparative PDF curves of the observed
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TABLE 5. Results of the cumulative probability values.

FIGURE 1. Comparative PDF curves of the observed data.

data for the six sets of analytical solutions are plotted in Fig. 1.
Event No.1-X was taken as an example to analyze the fit-
ting advantages of the NIDDs. From the histogram of event
No.1-X, it is observed that there is a fluctuation in the

observed data. The PDF curves of the LLD3, LND, and ND
are unimodal, representing that the curve gradually increases
at first and then decreases. Obviously, such a curve cannot
well describe the fluctuation of the histogram. However,
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FIGURE 2. Comparative CDF curves of the observed data.

the PDF curve of the NIDD is multimodal and it is almost
consistent with the change trend in the histogram. Therefore,
the PDF curve of the NIDD can better reflect the fluctuation
of the histogram than that of the LLD3. The analysis results
of the others are similar to those of event No.1-X.

In the PDF curves, the histogram would be affected by the
amount of interval groups and it caused that the histogram
was not unique. Then to better demonstrate the fitting abilities
of the NIDDs, the CDF curves of the NIDDs, LLD3s, LNDs,
NDs, and the staircase-like empirical distributions (EDs) are
plotted as Fig. 2. For these events’ coordinates, no gap was
observed in the NIDDswith the EDs in the CDF curves. How-
ever, there is a clear gap for the LLD3s, LNDs, and NDs with
the EDs. In conclusion, compared with the LLD3s, LNDs,
and NDs, the NIDDs can better fit or approximate the EDs.

IV. CONCLUSIONS
This paper introduces the NID method based on the ‘‘3σ ’’
truncated interval to infer the optimal PDFs among analytical
solutions from the locating sources of sensor networks. Six
sets of analytical solutions were used to illustrate the fitting
advantages of the NIDDs compared with the LLD3s, LNDs,
and NDs. Several conclusions were drawn.

(1) The normal information diffusion distribution (NIDD),
which is based on the truncated interval considering the
‘‘3σ ’’ statistical theory, was introduced in this study. In this
truncated interval, the cumulative probability values of the
NIDDs are always equal to 1.0000. However, those of the
LLD3s, LNDs, andNDs are less than but very close to 1.0000.
The calculated K-S and chi-square test values show that the
K-S and chi-square test values of the NIDDs are less than
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those of the LLD3s, LNDs, and NDs. From the perspective
of hypothesis testing and the cumulative probability value,
it is proved that the fitting abilities of the NIDDs are better
than those of the LLD3s, LNDs, and NDs.

(2) The PDF and CDF curves of the NIDDs, LLD3s,
LNDs, and NDs are drawn to intuitively illustrate the fitting
effects. The PDF curves of the NIDDs are multimodal, which
indicates that the NIDDs can better describe the fluctuation
of the histogram compared with the LLD3s, LNDs, and NDs.
Additionally, the CDF curve coincidences of the NIDDs and
EDs are higher than those of the LLD3s, LNDs, and NDs.

(3) The NIDDs are the optimal PDFs or CDFs of the event
coordinates. We suggest that the NID method can be further
used to improve the locating accuracy in locating methods of
the microseismic or acoustic emission sources.
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