
SPECIAL SECTION ON INTELLIGENT LOGISTICS BASED ON BIG DATA

Received May 20, 2020, accepted May 31, 2020, date of publication June 10, 2020, date of current version June 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3001279

Data-Driven Based Tiny-YOLOv3 Method for
Front Vehicle Detection Inducing SPP-Net
XIAOLAN WANG , SHUO WANG, JIAQI CAO, AND YANSONG WANG, (Member, IEEE)
School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Corresponding author: Xiaolan Wang (jlu_wangxiaolan@aliyun.com)

This work was supported in part by the Project of National Natural Science Foundation of China under Grant 51675324 and
Grant 51175320, in part by the Project of Automotive Industry Science and Technology Development Foundation of Shanghai under
Grant 1523, and in part by the Program for Professor of Special Appointment (Eastern Scholar), Shanghai Institutions of Higher Learning,
China.

ABSTRACT In order to solve the problem of low recognition rate and low real-time performance of vehicle
detection in complex road environment, a data-driven forward vehicle detection algorithm based on improved
tiny-YOLOv3 is proposed. Based on tiny-YOLOv3, the context feature information is combined to increase
the two scale detections of tiny-YOLOv3 to three. The spatial pyramid pooling (SPP) module is added to
increase the number of feature channels to improve the network feature extraction ability. According to the
dense arrangement of vehicles on the horizontal axis in the road image ahead, we change the grid size of
tiny-YOLOv3 and increase the number of candidate boxes on the horizontal axis. In addition, combined
with the characteristics of the vehicle size in the road image ahead, K-means clustering method is used to
select the appropriate number and size of target candidate boxes. We obtain the optimal detection model by
multi-scale training of the improved network. The experimental results show that the average accuracy of
the improved algorithm on the KITTI datasets is 91.03%, which is 7.12% higher than that of tiny-YOLOv3.
And the detection speed of improved network is 144 frames/s, which meets the real-time requirements.

INDEX TERMS Data-driven, convolutional neural network, k-means, spatial pyramid pooling, vehicle
detection.

I. INTRODUCTION
Intelligent vehicle will be the inevitable trend of the future
development of automobile industry. With the development
of artificial intelligence, autonomous driving has attracted
extensive attention of researchers [1]. As an important
premise of automatic driving, the perception of the road
environment ahead has become the research focus in the
field of intelligent vehicles. To ensure safe driving, intelligent
vehicles should deeply understand the vehicle behavior
in front of them according to the rich dynamic target
parameters [2]. Accurate and real-time detection of vehicles
in front can be used to determine the automatic driving
path of the vehicle, which is crucial in environmental
perception [3]. Vehicle detection methods mainly include
traditional detection algorithm and deep learning method.

Traditional vehicle detection methods include optical
flow method, background subtraction method, and detection
method based on appearance features. Horn and Schunck [4]
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proposed a determining optical flowmethod to detect moving
objects. However, the target detection based on optical flow
method is easily affected by noise and light source changes,
resulting in poor robustness in different scenes. Background
subtraction algorithm is only suitable for monitoring video
with static background, and it can’t identify vehicles with
static or slow-moving speed [5]. The vehicle detection
method based on appearance featuresmainly detects the edge,
symmetry and color [6]–[8] of the vehicle. For example,
van Leeuwen and Groen [9] proposed a vehicle detection
method based on the characteristics of vehicle shadow and
vehicle symmetry. However, when the moving target is
deformed or the scene perspective changes, the effect of
feature representation will become worse, which will make
the detection effect worse.

The traditional vehicle detection algorithm can be divided
into three steps: Firstly, the region of interest is selected,
and the entire image is scanned through a multi-scale sliding
window [10] according to the position and size characteristics
of the vehicle in the picture. Although it can get more
accurate vehicle position and size, this method requires a
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huge amount of calculation and will produce redundant
marking box because of treating each area indiscriminately.
Secondly, features are extracted from the candidate regions,
and commonly used are manual features such as HOG [11],
har-like [12] and LBP [13]. Due to the influence of target
occlusion, illumination changes, and background interfer-
ence, the artificially designed image features are poorly
robust and it is difficult to express the target features in all
cases. Reference [14] shows that a vehicle detection method
based on HOG feature is proposed, which has 88% detection
accuracy, but it is easy to cause false detection and poor
robustness. Finally, according to ANN neural networks [15],
SVM [16], Adaboost [17], and other methods to classify,
and complete vehicle detection. However, the traditional
vehicle detection method has poor adaptability to the change
of environment and vehicle target, which cannot meet the
requirements of unmanned driving.

With the development of deep learning and GPU, target
detection technology based on deep learning [18]–[20] is
more and more widely used, which has better detection
effect than traditional methods. The basic idea of using
convolutional neural network for vehicle detection is to
analyze the underlying features and corresponding target tags
of images by means of supervised learning. Instead of using
the characteristics of artificial design, a group of network
weights with the minimum loss function are obtained. The
weight of the trained network is loaded into the network, and
the vehicle target in the image is identified by the forward
reasoning of the network. The vehicle detection algorithm
based on convolutional neural network has better robustness.
It can overcome the influence of light change, shadow noise,
and obstacle occlusion, and becomes the research trend of
vehicle detection field. This method can be divided into two
categories, one is based on the two-step method of regional
recommendation. The R-CNN [21] generates candidate
regions by Region recommendation, then uses CNN to extract
features in each candidate region and sends the features to
the SVM. The classifier determines the target category, and
finally R-CNN uses linear ridge regression to adjust the
position of candidate regions. In recent years, this method has
been improved continuously. SPP-net [22], Fast R-CNN [23],
Faster R-CNN [24], Mask R-CNN [25], and other target
detection methods are proposed, which have achieved better
detection results. However, due to the complexity of the
two-step network structure and poor real-time performance,
it is difficult to realize the application [26].

The other type is a one-step approach based on regression
methods. Representatives include YOLO [27], SSD [28]
etc. The YOLO (You Only Look Once) algorithm improves
the accuracy of obtaining local information of image. The
false detection rate of background is reduced and the
detection speed is accelerated. Its lightweight version, tiny-
YOLO [29], has achieved a detection speed of 155 frames/s.
However, the accuracy is relatively low and it is not good at
detecting small objects. To solve the problem of low detection
accuracy and recall rate, Redom and others improve YOLO

by regularization and dimensional clustering, and propose
YOLOv2 [30]. The mAP (mean Average Precision) is 76.8%
on the VOC2007 datasets, and the test speed is 67 frames/s.
In April 2018, the third improved version YOLOv3 [31]
was published, and the mAP on the COCO datasets was
increased from 44.0% to 57.9% of YOLOv2, achieving high
accuracy under the premise of guaranteed speed. At the same
time, due to the deepening of the network and the increase
of the amount of calculation, the requirements of hardware
were higher and higher. For the convenience of deployment,
the corresponding convolutional network is simplified, such
as Mobile-Net [32], tiny-YOLO, and tiny-SSD [33] and so
on. There are fewer convolution layers in these networks. The
detection accuracy is sacrificed to a certain extent, but the
detection speed is faster.

To achieve accurate and real-time detection of front
vehicles in complex environment, the first part of this paper
reviews the research status of vehicle detection methods and
puts forward problems. In the second part, the principle of
the series of YOLO algorithms is described. In the third
part, a vehicle detection algorithm based on improved tiny-
YOLOv3 is proposed. Based on the tiny-YOLOv3 network,
the vehicle in the road image ahead is taken as the target.
To improve the detection ability of small targets, the tiny-
YOLOv3 prediction layer is improved. The detection scale is
increased by combining the low-level and high-level feature
map of context information fusion, and the spatial pyramid
pooling is introduced to increase the number of feature map
channels to retain more target information. At the same
time, to ensure the real-time performance and improve the
detection accuracy to meet the actual needs, the grid size,
the selection of candidate boxes, and network training are
improved. The fourth part we compare the improved tiny-
YOLOv3 with the previous series of YOLO algorithms and
analyze the experimental results, which verifies that the
proposed method has better detection ability.

II. THE PRINCIPLE OF TINY-YOLOV3 ALGORITHM
YOLO is an end-to-end target detection algorithm, which
transforms the problem of target detection into a regression
problem. The classification task and location task are unified
in a network. The location and category probability of
candidate frame are predicted directly, which meets the
real-time requirements.

TheYOLOdetectionmodel is shown in Fig. 1. The original
image is divided into S×S cells after zooming. If the cell
has the center of the object to be detected, the location
information and category information of the object to be
detected are predicted by the cell. Each cell predicts the
conditional probability of categories C, bounding boxes B
and their confidence scores. Each bounding box predicts
information, including coordinates (x, y), width w and height
h of the target and confidence, which are recorded as tx , ty,
tw, th, and obj_conf . The confidence formula is:

obj_conf = Pr (obj)× IOU truth
pred (1)

110228 VOLUME 8, 2020



X. Wang et al.: Data-Driven Based Tiny-YOLOv3 Method for Front Vehicle Detection Inducing SPP-Net

FIGURE 1. The detection model of YOLO.

where IOU truth
pred is the intersection ratio of prediction box

and real value, which is used to judge the accuracy of target
position. Pr (obj) is whether there is a target in the prediction
bounding box corresponding to the cell. If there is no target,
it means 0. If there is one, it means 1. The confidence formula
reflects whether the cell contains the target or not and the
accuracy when the prediction bounding box contains the
object. (cx , cy) is the horizontal and vertical offset of the cell
of the target center to be detected from the upper left corner of
the image. The candidate box has a width of pw, and a height
of ph. The coordinate calculation formula of the inspection
bounding box are as following.

bx = σ (tx)+ cx (2)

by = σ
(
ty
)
+ cy (3)

bw = pwetw (4)

bh = pheth (5)

where tx , ty, tw, and th represent the predicted values of the
center, width and height of the detection box on the candidate
box. σ (•) is the sigmoid activation function, which is used
to limit the center point of the detection box within the
grid. bx , by, bw, and bh are the horizontal, vertical, width
and height of the detection box center. When more than
one bounding box detects the same target, YOLO uses non
maximum suppressionmethod to filter the bounding boxwith
lower threshold to get the best target prediction box.

Although YOLO has faster detection speed than Faster
R-CNN, its detection accuracy is lower. To solve this
problem, YOLOv2 improves the network structure and
replaces the full connection layer in the output with
convolutional layer. YOLOv2 also introduces batch nor-
malization, high-resolution classifier, dimensional clustering,
fine-grained features, multi-scale training, and other meth-
ods. However, there are still shortcomings of poor detection
of small targets. YOLOv3 is based on YOLO and YOLOv2.
Using the idea of deep residual network for reference, a resid-
ual module is built between convolution layers. The jump
connection is set, and a deeper convolution neural network
Darknet-53 is designed. The complete network structure has

106 layers, which has better feature extraction effect and
improves the positioning and classification accuracy of target
detection. Tiny-YOLOv3 is a simplified target detection
algorithm based on the version of YOLOv3, which reduces
the amount of calculation and greatly improves the speed.
At the same time, this method reduces the requirements of
hardware and increases the possibility of application. As
shown in Table 1, the backbone network consists of 7-layer
convolutional and 6-layer pooling.

TABLE 1. Tiny-YOLOv3 backbone network structure.

III. THE PRINCIPLE OF IMPROVED DETECTION
ALGORITHM
A. SPP-NET
SPP-net is a kind of pyramid network, which is connected
to Gaussian pyramid pooling layer after the last convolution
layer. Pyramid pooling layer can transform any size feature
map into fixed size feature vector, then match with full
connection layer. With this method, any size image can be
used as the input of neural network, and a fixed size output
can be generated [34], [35]. SPP-net completes multi-level
feature extraction through spatial pyramid pooling, enhances
the robustness of the network and improves the detection
accuracy and speed. In the same way, SPP-net extracts
characteristic graphs of different sensory field sizes by
pooling layers of different sizes to combine global and sub-
regional information. Furthermore, the number of channels
in the feature graph is widened to provide effective global
context information. Therefore, it has a stronger ability
of detail feature description, and improves the detection
accuracy of different types of targets.

In this paper, two sets of SPP-net spatial pyramid pooling
modules are integrated, and SPP-net is adjusted to introduce
four pooling layers, whose dimensions are 1×1, 2×2, 3×3,
4× 4, and 1× 1, 5× 5, 9× 9, 13× 13. The specific structure
is shown in the Fig. 2.

B. CONSTRUCTION OF FRONT VEHICLE DETECTION
MODEL
Since the size and proportion of the vehicles in the road
image in front are not fixed, it is easy to miss or judge
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FIGURE 2. Adjusted SPP-net structure with dimensions of 1 × 1, 2 × 2,
3 × 3, 4 × 4.

the vehicle as another type of target object when the target
is far away or the vehicles overlap each other. The tiny-
YOLOv3 network is a simplified network for multi-category
target detection. It has achieved good real-time performance
in detecting road vehicles in front, but the number of layers in
the network is small, and it is difficult to extract the vehicle
target features. The position and probability of the target
object are predicted only in the high-level feature map of
two scales, so there are problems such as poor positioning
accuracy for small targets, low target recognition rate of the
vehicle, false detection or repeated detection. In order to
further enhance the detection capability of the target, the tiny-
YOLOv3 network was improved.

In the basic neural network, the amount of feature
information obtained by the target is different at the final
output because the size of the target in the image is different.
Low-level and large-scale feature maps have high resolution
and they can describe more accurate position information, but
less semantic information; high-level feature maps contain
richer semantic information, but the location information
of the target points is sketchy. Therefore, the shallower
convolutional layer can well represent the small-sized target,
and the feature map is representative of the small target’s
position. That is, the large-scale feature map corresponds
to the small target, and the deeper convolution layer has
better features. In short, the convolutional layer features of
different scales are selected according to different target sizes,
and the features of high and low layers are integrated to
obtain more semantic information, so as to predict targets,
which can have better adaptability to targets of different
sizes.

In this paper, based on the tiny-YOLOv3 network, the
low-level features are fused with the high-level features
through the upper sampling. One detection scale is added, and
three feature layers of different scales are used for detection.
At the same time, the spatial pyramid pooling module of
SPP-net is integrated, and the grid size is changed. The
vehicle detection model in complex environment is proposed,
and more suitable candidate frames are allocated to small

target vehicles in the increased scale. We call this network
structure PPt-YOLOv3. The specific network structure of the
model is shown in Fig. 3.

FIGURE 3. The structure of PPt-YOLOv3 network caption.

When the size of the input detection image is 416 × 416,
the characteristic images of 52 × 52 × 128, 26 × 26 × 256,
and 13× 13× 1024 are obtained after a series of convolution
pooling. After that, the feature map of 13 × 13 × 256 is
obtained by one-time convolution, at this time we access it to
SPP-net. In the feature map, four pooling modules of 1 × 1,
5 × 5, 9 × 9, and 13×13 are introduced. The maximum
pooling is used to retain more target texture information in the
corresponding scale feature map as much as possible. Then,
the feature map of 13×13 × 1024 is obtained by splicing.
In order to help the network learn fine-grained features, on the
original tiny-YOLOv3 network structure, the feature maps
of 13 × 13 × 128 and 26×26 × 128 are sampled twice to
obtain the feature maps of 26 × 26×128 and 52×52 × 128.
Combined with the context information the feature maps with
384 and 256 channels are obtained. At this time, the second
SPP-net, and four pooling modules with the dimensions of
1 × 1, 2 × 2, 3 × 3, 4 × 4 are introduced. After pooling,
the characteristic diagram of 52×52 × 1024 is obtained by
splicing. After another convolution calculation, the character-
istic figure of 52×52 × 128 is obtained. The whole network
finally obtains the feature maps of 13× 13, 26×26, 52× 52.
The feature maps of three scales are respectively predicted
and output through a convolutional layer, whose channel
is (5+ 4)× 3 = 27.
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C. GRID SIZE
In the YOLO detection algorithm, the images are divided into
S×S networks, and the horizontal vertical detection weights
are the same. When detecting the vehicles on the road ahead,
it can be found that the vehicle targets are closely arranged
in the horizontal direction and sparsely distributed in the
vertical direction in the image, and the original candidate
frame distribution rules are difficult to apply. To solve this
problem, we change the length width ratio of the network
model input. As shown in Fig. 4, we increase the number
of horizontal grids and the number of candidate frames in
the horizontal direction, and refine the grid to ensure that
the vehicle center falls into the correct Cell. The original
network input image size is 416× 416. In order to avoid the
influence of input image resolution on the network, we select
768 × 384 resolution image as the network input, that is,
the number of meshes is 24 × 12, which can have better
horizontal feature extraction effect. In a word, we improve
the positioning accuracy of the model and further increase
the detection accuracy by changing the grid size.

FIGURE 4. Grid scale.

D. SELECTION OF CANDIDATE BOX AND NETWOEK
TRAINING
In this paper, the detection scale of tiny-YOLOv3 is increased
to three. The feature layers of different scales need to
allocate the corresponding size of candidate frame to play
the advantages and improve the detection ability. Taking
the Mean Intersection over Union (MIOU) as the evaluation
standard, K-means clustering method is used to get the
dimension of the candidate frame for the dimension of the
training set of the vehicle in front. The larger the value of
K is, the more classes are clustered, the more accurate the
classification of candidate box size is. However, the larger the
value of K is, the more the total number of candidate frames
in the network is, which means that the more computation is,
the more complex the model is.

We choose 768× 384 as the model input size, and use the
incremental method to select the K value. The relationship
between MIOU and the value of K is shown in Fig. 5.
As the number of K increases from 1 to 15, the MIOU
increases gradually. When K is greater than 8, the MIOU
value rises slowly and is basically stable. Considering the
amount of computation of the network, and the improved

FIGURE 5. Relationship between the number of cluster centers and the
MIOU.

method of prediction on three scales in the tiny-YOLOv3
network, the clustering result of K=9 is finally adopted. The
dimensions of the 9 candidate boxes are respectively (20, 25),
(35, 39), (66, 46), (50, 71), (92, 81), (141, 116), (99, 173),
(199, 183), and (228, 325). Each cell on each scale predicts
three check boxes with three candidate boxes. In other words,
candidate boxes of size (99, 173), (199, 183), and (228, 325)
are assigned to feature graphs with a sampling resolution
of 13×13 at 32 times, which are used to detect large-size
vehicles. The (50, 71), (92, 81), and (141, 116) size candidate
boxes are allocated to the feature map with 16 times down
sampling resolution of 26 × 26. A candidate boxes of size
(20, 25), (35, 39), and (66, 46) is allocated to the feature map
with 8 times lower sampling resolution of 52 ×52 to detect
the small target vehicle in the distance.

Based on the open source deep learning framework Dark-
net, the improved tiny-YOLOv3 model combines clustering
analysis and multi-scale training methods to train vehicle
detectors. The initial learning rate of the model during
training is set to 0.001. After 25 000 and 35 000 iterations,
the learning rate is multiplied by 0.1. The momentum
coefficient is 0.9, and the weight attenuation coefficient is
0.0010. The maximum number of iterations is 50,000. In the
training, image random adjustment of exposure, saturation,
tone, and other methods to expand the data. In addition,
during the training, the multi-scale training strategy is
adopted to enhance the robustness of images of different
sizes. Each 10 batches of training randomly select new image
sizes for training, so that the model has better detection effect
for images of different sizes.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATA SET
The vehicle detection data in this paper are from the KITTI
datasets. The KITTI datasets contain real-world image data

VOLUME 8, 2020 110231



X. Wang et al.: Data-Driven Based Tiny-YOLOv3 Method for Front Vehicle Detection Inducing SPP-Net

from scenes such as urban, rural, and highways, with up to
15 vehicles and 30 pedestrians per image, as well as varying
degrees of occlusion and truncation images including intense
lighting and blurred images, insufficient lighting, background
noise, etc. According to the actual application scenario,
we process the original 8 types of label information of the
KITTI datasets, and retain the 4 category labels required
for the experiment, namely: Van, Car, Truck, and Tram, and
selects 7481 images in the datasets as experimental data.
According to the experimental requirements, it is marked as
PASCAL VOC2007 data set format, 80% of which are used
as training set and 20% as verification set.

B. EXPERIMENTAL PLATFORM
The experimental platform configuration in this paper is
shown in Table 2.

TABLE 2. The hardware and software configuration of experimental
platform.

C. RESULTS AND ANALYSIS
In order to detect the rapidity, accuracy and robustness of the
algorithm, we adopt four indexes: mean Average Precision
(mAP), recall R, Intersection over union (IOU) and detection
Precision P. The calculation formula of some measurement
indexes are as follows:

P =
TP

TP+ FP
(6)

R =
TP

TP+ FN
(7)

IOU =
A ∩ B
A ∪ B

(8)

where TP means true positive, FN means false negative,
FP means false positive, TN means true negative.

Table 3 shows the experimental results of YOLOv2, tiny-
YOLOv2, tiny-YOLOv3 and PPt-YOLOv3 proposed in this
paper. All of these methods are trained and tested using
the KITTI datasets. It can be seen from the table that the
PPt-YOLOv3 obtains 91.03% mAP, and the precision of the
network is improved by 7.12% comparedwith that of the tiny-
YOLOv3 network, and the speed is reduced by 44 frames/s.
The convolutional layer number of tiny-YOLOv2 and tiny-
YOLOv3 are relatively small, and the vehicle feature
extraction is insufficient. PPt-YOLOv3 network solves this
problem by adding detection layer and spatial pyramid
pooling, so it has excellent expression ability for vehicle

TABLE 3. The test results of different methods on KITTI test set.

features; while ensuring the accuracy, the detection speed is
faster because fewer convolution layers are used.

FIGURE 6. PR curve of different methods on KITTI.

Fig. 6 shows the PR curves of the three methods on the
KITTI, in particular, where the precision is the average of
the four vehicle types. It can be seen from the figure that by
comparing the area under the curve, the method in this paper
obtains the best performance, which shows that the improved
network structure in this paper is effective. In addition,
it can be seen from table 3 that although the speed of PPt-
YOLOv3 is not the highest, the speed 144 frames/s is far
beyond the requirements of real-time detection.

Mean Intersection over union (MIOU) is used as the index
for evaluation to verify the positioning accuracy of PPt-
YOLOv3 network designed in this paper. YOLOv3 network
and tiny-YOLOv3 network are trained as the comparison of
PPt-YOLOv3 network on the data set, and theMIOU is tested
in the test set. The comparison results are shown in Table 4.

The results show that the MIOU of PPt-YOLOv3 is
5.24% higher than that of YOLOv3 and 8.38% higher
than that of tiny-YOLOv3. This shows that on the test
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FIGURE 7. The comparison of detection results of images in KITTI dataset with tiny-YOLOv3 and PPt-YOLOv3. Four pictures on the left were detected with
tiny-YOLOv3, and four pictures on the right were detected with PPt-YOLOv3. A group of horizontal pictures are the same scene.

TABLE 4. The hardware and software configuration of experimental
platform.

set, PPt-YOLOv3 produces a higher overlap rate between
the prediction box and the original tag box, and has a
better accuracy for vehicle positioning. The reason is that
through K-means clustering analysis of data sets to select the
appropriate size of the candidate box and improve the grid
size, we can better improve the positioning accuracy of the
model.

In order to reflect the contribution value of each step
of improvement to the results, on the basis of the above
experiments, several groups of comparative experiments are
carried out to analyze the effect of each step of improvement.

TABLE 5. The Influence of grid size on detection speed and mAP.

In order to study the impact of improving the input size
of the network PPt-YOLOv3 on the average accuracy and
detection speed, this experiment set up three different sizes of
input pictures for test training. As can be seen from Table 5,
increasing the number of horizontal grids and changing
the grid size can improve the detection accuracy. However,
because of the fine mesh division, the number of candidate
boxes increases. At the same time, the amount of calculation
increases, and the detection speed also decreases.
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FIGURE 8. The comparison of detection results of images collected from roads with tiny-YOLOv3 and PPt-YOLOv3. Four pictures on the left were detected
with tiny-YOLOv3, and four pictures on the right were detected with PPt-YOLOv3. A group of horizontal pictures are the same scene.

TABLE 6. The Influence of the number of feature maps on detection
accuracy.

Table 6 shows the effect of the number of feature maps
on the average detection accuracy of the algorithm when
the input size is fixed. For a model of 768 × 384 input,
tiny-YOLO with 2 and 3 feature maps gets 85.41% and
88.08% mAP, respectively, which is much higher than

tiny-YOLOv2 with only 1 feature map (tiny-YOLOv3-3L
means that the detection scale is increased to three, but
SPP-net is not introduced). Based on the 3-layer feature map,
the spatial pyramid pooling module was added, and mAPwas
increased to 91.03%. At the same time, the increase of feature
maps and the addition of the spatial pyramid module have a
certain impact on the detection speed of the model.

In order to test the effectiveness of ppt-yolov3 network
more intuitively, we select the images in the KITTI datasets
and the images collected by the road for detection by two
methods, and select eight groups of images in different
scenes. Fig. 7 (a) shows the detection results of tiny-
YOLOv3 on the test set image, and Fig. 7 (b) shows the
detection results of PPt-YOLOv3 on the test set image. For
the input picture of the first line, tiny-YOLOv3 recognizes
the blocked van incorrectly, while PPt-YOLOv3 recognizes
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correctly and positions the three long-distance vehicles in
the middle of the picture with higher accuracy; for the
picture of the second and third lines, tiny-YOLOv3 repeatedly
detects van and tram and misses the blocked car, while
PPt-YOLOv3 all detects correctly. In the fourth line, PPt-
YOLOv3 recognizes the blocked truck in the distance,
tiny-YOLOv3 does not recognize it, which increases the
security risk. Through the analysis and comparison of the
experimental results, PPt-YOLOv3 detection is better in
the test set.

Fig. 8 (a) shows the detection results of tiny-YOLOv3 on
the real vehicle road acquisition image, and Fig. 8 (b) shows
the detection results of PPt-YOLOv3 on the real vehicle
road acquisition image. For the first group of pictures, PPt-
YOLOv3 detected and recognized the van in the distance,
while tiny-YOLOv3 failed to do so. In the third group
of pictures, tiny-YOLOv3 missed car in the picture; in
the second and fourth group of pictures, tiny-YOLOv3 failed
to detect the blocked car. However, PPt-YOLOv3 was
detected correctly. For the four images collected from the
road, PPt-YOLOv3 can detect the small target and the
occluded target better than tiny-YOLOv3. Based on the above
detection results, two kinds of networks have similar detec-
tion capabilities for the large-scale non occluded vehicles
in the image. For the small-scale vehicles and the occluded
vehicles, tiny-YOLOv3 will have missed detection, wrong
detection and repeated detection. But the PPt-YOLOv3
proposed in this paper can solve the problem well and detect
the vehicle correctly. Therefore, PPt-YOLOv3 has better
detection performance.

V. CONCLUSION
Based on the improved tiny-YOLOv3, we propose a
new method of vehicle detection, PPt-YOLOv3. Com-
pared with the previous series of YOLO algorithms, PPt-
YOLOv3 inducing SPP-net to improve the size of the
receptive domain, which has better performance in accuracy,
recall, handover and merging ratio and mAP. In particular,
it has obvious advantages in mAP, which is 7.12% higher than
the original tiny-YOLOv3. The detection speed is reduced by
44 frames/s, but it still far exceeds the real-time requirement.
This is because PPt-YOLOv3 increases the detection scale
and the number of channels in the feature maps, and changes
the input size of the image, which to some extent increases
the amount of calculation. Considering the needs of the scene
in this paper, in the aspect of vehicle driving in the road
environment, it is more important to accurately identify the
target. Therefore, it is necessary to sacrifice a small amount of
detection speed for the higher detection accuracy. At the same
time, because of the simple network structure, the model size
of this method is only 51.6MB, which is more convenient for
deployment.

PPt-YOLOv3 combines the context features, increases
the detection scale, and introduces SPP-net spatial pyramid
pooling module in the two detection scales. Increasing the
number of feature map channels keeps more target texture

features. The new detection scale of 52× 52 is more suitable
for detecting similar small targets of occluded vehicles,
which is very helpful for the detection of distant vehicles.
In addition, this method increases the number of transverse
grids, refines the grid, and uses K-means clustering method
to automatically generate candidate boxes to enhance the
characterization ability of the feature map. At the same
time, it improves the positioning accuracy of the model, and
improves the accuracy of vehicle detection in front of tiny-
YOLOv3 network, and has real-time detection speed. PPt-
YOLOv3 training is limited by the KITTI data set. Due to
the lack of training samples, the detection effect of vehicles in
different environments needs to be improved. The futurework
should be focused on enhancing the generalization ability of
the model.
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