
Received May 16, 2020, accepted May 22, 2020, date of current version June 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2999161

Sensitivity-Based Change Detection for Dynamic
Constrained Optimization
NOHA HAMZA , RUHUL SARKER , (Member, IEEE), AND DARYL ESSAM
School of Engineering and Information Technology, University of New South Wales at Canberra, Canberra, ACT 2600, Australia

Corresponding author: Noha Hamza (n.hamza@unsw.edu.au)

This work was supported by the Australian Research Council Discovery Projects under Grant DP170102416.

ABSTRACT In dynamic constrained optimization, changes may occur in either the objective function
or constraint functions, or both. However, although research on dynamic optimization has been growing
significantly, it is centered mainly around unconstrained problems. On the other hand, research on dynamic
constrained problems has considered simple extensions of those conducted on unconstrained ones. These
approaches are usually computationally expensive and exhibit slow convergence in changed environments.
To develop an effective algorithm for dynamic constrained problems with changes occurring in only the
constraint’s space, in this research, we propose a sensitive constraint detection mechanism that provides
valuable information for determining the movements of solutions in changing environments. As, by incor-
porating it with a search process, the convergence of an algorithm can be accelerated, it is adopted with a
multi-operator evolutionary type of algorithm which is then tested on a set of constrained dynamic problems.
The experimental results clearly demonstrate the benefits of this proposed approach.

INDEX TERMS Constrained optimization, dynamic optimization, evolutionary algorithms.

I. INTRODUCTION
Dynamic constrained optimization is a popular research topic
in many disciplines, including, but not limited to, computer
science, optimization and engineering [1], [2]. Without a
loss of generality, a dynamic problem can be considered a
series of static problem instances with a time gap between
consecutive ones, that is, it is assumed that each is valid for
a small duration of a time slot. Note that each instance is
considered an environment of the problem. Mathematically,
dynamic constrained optimization problems (DCOPs) with a
single objective can be stated as

min f (x, t)

subject to gk (x, t) ≤ 0, ∀k = 1, 2, . . . ,K

he (x, t) = 0

Lj(t) ≤ xt,j ≤ Uj(t) (1)

where x ∈ S(t) ⊂ RD(t), x = [xt,1, . . . , xt,j, . . . , xt,D(t)]T

is a vector with D-decision variables that changes over
time t , (f , gk , he : R

n
→ R and E ≤ n), gk (x, t) the

kth inequality constraint and he (x, t) the eth equality con-
straint, with each xt,j having has lower and upper limits

The associate editor coordinating the review of this manuscript and

approving it for publication was Victor Hugo Albuquerque .

(Lj(t) and Uj(t), respectively). If the feasible and search
spaces for time t are denoted by F(t) and S(t), respectively,
in which each point that satisfies the upper and lower limits
is denoted by F(t)(⊆ S(t)), a feasible solution for time t is a
point that satisfies all constraints, with the set of all feasible
points defined as:

x ∈ RD(t) : h (x, t) = 0, g(x, t) ≤ 0 (2)

In the literature, Evolutionary Algorithms (EAs) are
well-known for their superior performances for solving
static instances of optimization problems. To solve dynamic
problems, the early trend was to modify the algorithms devel-
oped for static problems to adapt them for dynamic ones.
In these modified algorithms, the main search process is
usually the same as for static problems but is repeatedly
used with changes commonly made in the initial popula-
tions, diversity mechanisms and stopping criteria. However,
these approaches are recognized as computationally expen-
sive, have slow convergence and may become stuck in
local optima. To mitigate these issues, a few methods, such
as memory-based [1], [3], multi-population [4], [5], and
prediction-based [6]–[10], have been proposed. Note that
most of these approaches were developed mainly for uncon-
strained problems in which, assuming a single objective,

103900 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7948-7437
https://orcid.org/0000-0002-1363-2774
https://orcid.org/0000-0003-3886-4309

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

the aim is to optimize the objective function, which changes
from one environment to another, within variable bounds.

In addition to the objective function, in constrained
problems, the constraint functions and their limits may also
change from one environment to another. These problems are
much more challenging than their unconstrained counterparts
as it is necessary to determine the best solution within the
feasible region. Note that this region is usually smaller than
the search space and may have an irregular shape as it is
bounded by complex constraint functions. However, if it is too
small, which is the case when there are equality constraints,
it becomes much more difficult to solve the problem for
which it is known that there is often only a limited time
due to the fast changing nature of a problem’s environment.
To deal with this, common approaches include mechanisms
for repairing and/or tracking the feasible region. However,
some are computationally expensive [11], [12] and/or devel-
oped for only specific types of changes [13] or loss of
diversity [14].

In constrained optimization, it is well known that the
best feasible solution (also known as optimal solution) can
be determined by satisfying only the active constraints.
In other words, the active constraints are sensitive to feasi-
bility and optimality while the inactive ones are redundant.
The active and inactive constraints are also known as binding
(or tight) and non-binding (or loose) constraints, respectively.
In dynamic problems, those that are active in one environment
may either remain active in the next or become inactive. Sim-
ilarly, an inactive one may either remain inactive or become
active. In this case, if the changes in environment t + 1 are
only in inactive constraint (as in environment t) and do not
become active, there is no need to resolve the problem in t+1.
Also, a change in the environment may change the shape and
location feasible region which requires a new mechanism to
converge to the new optimal solution quickly. As the changes
in practical problem instances between environments are usu-
ally not huge, the sensitivity of the constraints and amount
of changes can provide useful information for the design
of an effective algorithm for solving dynamic optimization
problems (DOPs). This is the main motivation for proposing
a new algorithm for solving the practical dynamic constrained
optimization problems.

The key contribution in this paper is the development
of a sensitive constraint detection mechanism that helps to
determine the directions and amount of potential movements
of solutions in the search process when solving constrained
optimization problems under changing environments. In this
paper, we study single-objective constrained dynamic opti-
mization problems with possible changes in their constraints’
boundaries and propose a mechanism for detecting changes
in the feasible region. In the sensitive-constraint detection
mechanism, the sensitivity of each constraint is determined,
based on its slack value given the solution in the current
environment. The number of sensitive constraints in the pre-
vious environment are divided into groups, with the solutions
in each then updated to move towards a new promising

search area based on the slack value of the corresponding
constraint. This process is useful for any changes in either
the constraint’s resources, or their usage rates or both. The
constraint sensitivity is also critical for any changes in the
objective function. To the best of our knowledge, this is
the first such approach proposed. Two different algorithms
incorporate the detection and movement mechanism and to
judge their performances, we solved 13 simulated dynamic
constrained problems, each with 7 environments. The exper-
imental results showed the benefits of these approaches
for obtaining better-quality solutions, feasibility rates and
convergence speeds. A summary of comparisons with a
well-known existing approach revealed the superiority of the
proposed method.

This paper is organized as follows. After this introduction,
section II reviews the related literature on DCOPs and the
existing EAs used to solve them. Then, the details of the
proposed algorithm are presented in section III and the exper-
imental results and analysis in section IV. Finally, section VII
provides the conclusions and suggestions for future work.

II. LITERATURE REVIEW
In the literature, many studies for solving unconstrained
DOPs have been introduced [15], [16] but, to date, few of
DCOPs have been undertaken.

Dynamic constrained techniques can be used to solve
both single- and multi-objective optimization problems [2],
[17], [18].

Most EAs are designed to solve problems in static
rather than dynamic environments. However, some have
been adapted to solve DCOPs with either no or simple
modifications [14], [19].

Singh et al. [19] adapted the infeasibility-driven EA algo-
rithm (IDEA) for solving DCOPs by using a change detection
strategy to handle changes. In this strategy, a random indi-
vidual is selected as a change detector and evaluated at each
generation. If a change is detected, the whole population is
re-evaluated. Based on the results, it was shown to be compet-
itive in comparison with other state-of-the-art algorithms for
two test problems. However, randomly selecting the detector
can affect its detection performance.

In order to introduce diversity when changes occur,
Ameca-Alducin et al. [14] introduced a DE-based algorithm
combined with two variants of differential evolution (DE)
called the dynamic DE combined with variants (DDECV).
It has also been used as a change detection method [20]
with random immigrants (RI) [21] and with the superiority
of feasible points approach [22] as a constraint handling tech-
nique (CHT). However, it cannot maintain sufficient diversity
as infeasible solutions are considered inferior based on the
feasibility rule.

Hasani-Shoreh et al. [23] introduced a framework for a
dynamic benchmark generator with linear constraint changes.
DE was adopted to solve these problems using a change
detection mechanism and different CHTs.

VOLUME 8, 2020 103901

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

In the existing literature, a memory-based approach is
another way of using EAs to solve DCOPs; for instance,
Richter [13] adapted the abstract memory strategy [3] by
proposing twomemory schemes, i.e., blending and censoring,
for storing good individuals and their associated information,
one for constrained and the other unconstrained problems.
The algorithm was tested and the results showed that using
these schemes with a repairing method rather than a penalty
function as a CHT performed well. However, this method is
only applicable to particular types of constrained dynamic
problems (i.e., cyclic ones).

In another paper, Richter and Dietel [24] tested the perfor-
mance of an EA using the above two memory schemes and
another four different strategies on a special type of DCOPs.
In these problems, the objective function and constraints
could change in an asynchronous change pattern. The results
showed that the memory-based methods performed better
than the random ones.

The repairing strategy is another mechanism added to EAs
to solve DCOPS. Pal et al. [25] introduced an offspring one
within a gravitational search algorithm (GSA) [26], called
GSA+ Repair, to improve the objective function. In this
method, an infeasible solution moves towards its closest
feasible solution selected from a reference set of the best
ones found so far, with GSA+Repair outperforming the state-
of-the-art algorithms. However, many feasibility checks are
needed to produce a reference population if the feasible
region is small or determine whether previously feasible indi-
viduals are still feasible every time a change occurs.

Ameca-Alducin et al. [11], [12], improved the DDECV
algorithm by applying a mutant repair method (DDECV +
Repair) to it as a CHT to produce better results without the
need for a reference solution. However, this is computation-
ally expensive when the feasible region is small.

In another paper, Ameca-Alducin et al. [27] evaluated each
element of the DDECV+Repair by solving eight benchmark
test problems [28]. Based on the results, this method was
shown to be competitive in comparison with other state-of-
the-art algorithms considering seven performance metrics.

Existing unconstrained dynamic optimization (DO) strate-
gies with CHTs can be used to solve DCOPs. Lu et al. [29]
proposed a speciation-based algorithm called speciated evo-
lution with a local search (SELS). In it, a speciation method
acts as an exploration promotion mechanism by helping an
EA find multiple optima by comparing similar individuals.
Also, a local search is used to accelerate convergence towards
promising regions. SELS combines some existing DO strate-
gies (i.e., a change detection mechanism and RI [30]) and a
CHT (i.e., a simple feasibility rule) [31]

To demonstrate the effectiveness of using repairing meth-
ods as CHTs to solve DCOPs, a study of different ones [32]
was conducted with DE. Three measures, called the offline
error, success rate and average number of iterations required
to repair infeasible solutions, were used to compare these
approaches, with the gradient repairing method outperform-
ing the others.

One of the mechanisms for overcoming the shortcomings
of combining DO with a CHT to solve DCOPs is the lack of
a method for tracking a moving feasible region. Bu et al. [5]
solved DCOPs with multiple disconnected feasible regions
by adopting the dynamic species-based particle swarm opti-
mization (DSPSO) algorithm [33] along with an ensemble
of different mechanisms to locate and track multiple feasible
regions at the same time while dealing with different types of
dynamics in the constraints. This algorithm always maintains
good diversity during the search process.

In summary, as of the literature, the existing repair methods
that require a feasible reference population are computation-
ally expensive, especially when the feasible region is tiny. The
memory-based approaches suffer from the curse of defining
the optimal size of the memory and suitability for types
of DCOPs. Although prediction approaches showed some
advantages in solving DCOPs, the existing approaches failed
in dealing with problems with large random changes and,
similar to the memory-based approaches, handling problems
with changing environments that did not occur in the past.
Also, existing mechanisms suffer from handling problems
with complex mathematical proprieties, i.e., non-linearity,
dis-joint feasible region and rotation. Further, just combining
static EAs with constraint handling technique to deal with
DCOPs may not be able to track the movement of feasi-
ble regions and the extra fitness evaluations needed by the
dynamic detectors [15], [23], [32].

III. PROPOSED ALGORITHM
In this section, the proposed framework and its components
are discussed.

A. PROPOSED FRAMEWORK
As presented in Algorithm 1, the algorithm starts with an
initial random population (X) of size NP generated within the
search boundary, such as

xi,j = Lj + rand ×
(
Uj − Lj

)
, ∀ j = 1, 2, . . . ,D, (3)

where Lj and Uj are the lower and upper bounds respectively
for decision variable x i,j and rand a random number ∈ [0, 1].

Then, X is evolved using a multi-operator DE (MODE)
framework, as discussed in section III-C until a change
occurs, i.e., t = t+1. Therefore, at the end of the evolutionary
process in the current environment, the best solution (xbest,t)
is recorded.

Through analysis, we have found that some constraints
might be more sensitive to a change than others, that is,
not all changes in a constraint boundary can affect the
optimal solution. As working on sensitive constraints can
have more impact on the optimization process, we propose
a sensitive-constraints detection mechanism being imple-
mented once a dynamic change is detected (Algorithm 2).
In it, the slack value (Slack(gk)) for each constraint
at xbest,t−1 is calculated, as discussed in section III-B
(equation (5)).

103902 VOLUME 8, 2020

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

The gthk constraint is considered active (binding),
if Slackgk = 0, otherwise non-active (non-binding). There-
fore, to determine which constraint is more sensitive than
the others, all are ranked in ascending order based on their
slack values. Note that this sensitive constraint detection
mechanism is flexible and can be integrated with any other
meta-heuristic.

Then, the new population in the new environment is con-
sidered the solutions obtained at the end of the evolutionary
process at t − 1, with the following changes:
• to avoid losing information about good solutions
obtained at t−1, the worst 0 solutions are replaced with
the best 0 ones.

• the best P = (Percent% × NP) ≥ 0 individuals are
updated, as discussed in Algorithm 3, that is, P indi-
viduals are first divided into n sub-groups of equal size
(subNP1 , subNP2 , . . . , subNPn), where n is the number of
sensitive constraints detected above and Percent a value
∈ [0, 1]. Subsequently, for each sensitive constraint,
if there is a change in the right-hand side value, each
individual in the corresponding sub-group is expected
to move towards the new promising feasible area as:

xi,j,ζ = xi,j,ζ +1j × |Slack(gk)|,

∀i=1, . . . , subNPζ , ζ =1, . . . , n, j=1, . . . ,D

(4)

where 1j is a random value (≤ 1), and Slack(gk) is
calculated based on equation (5).

Once the new population is created, the evolutionary opti-
mizer evolves all solutions until a new change in the envi-
ronment is detected. The same steps are carried out until all
environments are optimized.

Algorithm 1 Proposed Algorithm
t ← 1 (current environment);
tmax ← total number of environments;
FES ← 0 current fitness evaluation;
FESmax ← total number of fitness evaluations;
initialization while t ≤ tmax do

while FES ≤ FESmax do
run MODE;

end
record xbest,t ;
if change detected then

t ← t + 1; // next environment
Detect sensitive constraints (Algorithm 2);
Update selected individuals (Algorithm 3);
FES ← 0

end
end

B. CHANGE DETECTION
In DO, it is crucial to detect when and by how much a
change occurs. In this paper, to detect if a change occurs in

Algorithm 2 Sensitive-Constraints Detection Mechanism
xbest,t ← best individual at t − 1;
gk ← the k th inequality constraint;
s← sensitive constraint;
n← number of sensitive constraints;
foreach gk do

Calculate Slack(gk) (equation 5);
end
Rank constraints in ascending order;
foreach gk do

if rank (gk) == 1 then
sn← gk ;
n = n+ 1;

end
end

Algorithm 3 Proposed Move
n← number of sensitive constraints
s← sensitive constraint;
if n ≥ 1 then

Select P = percent × NP individuals;
Divide P into equal n subgroups of equal size,
subNP1 . . . subNPn ;
foreach sn do

if change in RHSgk then
foreach xi,j ∈ subNP1 do

Update xi,j using equation (4);
end

end
end

end

each RHSgk , the best individual is used to calculate the total
value of each constraint at t . Any gk (xt) 6= gk (xt−1) ,∀i =
1, 2, . . . ,K (also known as, RHSgk ,t − RHSgk,t−1) means a
change occurred. Subsequently, the amount of change for any
gk , also called slack, is calculated as

Slack(gk)=gk (xbest,t)− gk (xbest,t−1), ∀k=1, 2, . . . ,K ,

(5)

This change detection makes the proposed algorithm suffi-
ciently flexible to deal with DCOPs in which the number and
frequency of changes are not fixed.

C. OPTIMIZER: MULTI-OPERATOR DE
The optimization algorithm used in this paper is based on the
MODE one (hereafter called MODE) presented in [34]. In it,
a random set of populations of size NP is generated within
the search boundaries and then randomly divided into nps
sub-populations of equal size, each of which is evolved using
a different DE mutation operator, namely, rand-to-p best or
current-to-p best.
A binomial crossover and selection mechanism are used

to finalize the set of solutions that should survive to the
next generation. Then, an improvement measure index, which

VOLUME 8, 2020 103903

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

reflects the capability of each operator to generate better
solutions, is calculated and measured based on two criteria:
(1) the quality of solutions; and (2) diversity of solutions/the
population, with the size of each sub-population updated in
the following generation.

MODE also uses:
• an information-sharing mechanism in which, at the end
of every generation, solutions in all nps sub-populations
are collected and randomly re-divided into nps sub-
populations, with their sizes dynamically updated based
on the abovementioned improvement measure index;

• a self-adaptive technique for updating the F and Cr
parameters which considers the improvement rates of
the raw fitness values and/or total constraint violations;
and

• three rules for selecting the solutions that should survive
to the next generation, that is, (1) for 2 feasible candi-
dates, the one with a lower fitness value, (2) a feasible
solution is always considered better than an infeasible
one and (3) for two infeasible points, the one with a
smaller sum of constraint violations.

For more details about MODE, readers are referred to [34].
To sum up, the difference between the current MODE and
that proposed in [34] is the introduction of the sensitive
constraint detectionmechanism aswell as theway individuals
are updated after every change.

D. TIME COMPLEXITY
This sub-section aims to discuss the time complexity of the
proposed framework.
• Time complexity for the sensitive constraint detection
mechanism: the calculation of the slack is O(K) where
K is the number of constraints. Ranking(sorting) con-
straints will be O(Klog(K)), given the merge sort used.
The last part of this framework is O(K). Consequently,
the big-oh will be 2O(K) + O(Klog(K)). By remov-
ing constants and focusing only on the dominant term,
the time complexity of this detection mechanism will be
Klog(K).

• Time complexity for the proposed move, assume the
worst scenario where all constraints are sensitive,
the time complexity will be O(P ∗ D).
As the second part is equal to the time complexity of gen-
erating new random solutions using any other initializa-
tion method, the extra complexity added to the proposed
framework is that of the detection mechanism, that is,
O(Klog(K)). This, in turn, makes the time complexity
of the overall framework equal to the time complexity
of the optimizer itself plus O(Klog(K)). Recall that the
proposed framework is flexible and can be adapted with
any optimizer.

IV. EXPERIMENTAL RESULTS
In this section, the proposed algorithm is tested and analyzed
by solving the set of benchmark problems introduced in the
CEC2006 special session on COPs [35]. These problems

possess different mathematical properties, such as the objec-
tive function and/or constraints being either linear or non-
linear, the constraints either equality or inequality ones,
the objective function either unimodal, such as G02 or
multi-modal and the feasible space possibly being very tiny
with the search one.
Although these are static problems, they can be trans-

formed into dynamic ones by applying dynamic rules to their
parameters, as discussed in section section IV-A.More details
of this concept can be found in [36].
13 test problems with only inequality constraints were

adopted, i.e., G01, G02, G04, G06, G07, G08, G09, G10, G12,
G16, G18, G19 and G24.

A. CHANGE CONSTRAINT BOUNDARY
A random type of change was proposed and applied on the
constraint boundary of the inequality constraints as follows.
Given the general static form of the problem

min f (x)

subject to gk (x) ≤ bk , ∀k = 1, 2, . . . ,K

he (x) = 0 (6)

where bk is the boundary of the inequality constraint gk ,
(bk = 0). This problem was modified to one with a fixed
objective function and dynamic constraints by adapting the
boundary of each constraint as:

gk (xt) ≤ bk (t), ∀k = 1, 2, . . . ,K

with the random change

bk (t) = rand, ∀k = 1, 2, . . . ,K (7)

where rand is a random number ∈ [−1, 1] [37]. Based on
this, the constraint boundary was represented by a matrix of
size (k, t) which determined how the dynamic constraint for
each benchmark problem changed over time.

B. EXPERIMENTAL SETTINGS
For each benchmark problem, 25 independent runs were
performed. In each, there were seven time periods (tmax)
with the frequency of change (FEchange) set to 500, 1000 and
1500 fitness evaluations (FEs). All the algorithms were coded
using Matlab.

C. PARAMETER SETTINGS
The parameters were set to a population size (NP) of 100,
Percent = 0.5, that is P = 50 individuals, 0 = 5 and
1 ∈ [0, 0.1]. For MODE, the settings were the same as those
reported in [34].

D. PERFORMANCE MEASURES
We used the average fitness value and average feasibility ratio
(FR) obtained from all the runs in each environment as per-
formance measures. Note that, if all the compared algorithms
could not obtain feasible solutions, the average sum of the
constraint violations was considered a measure of the quality

103904 VOLUME 8, 2020

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

FIGURE 1. Movements of solutions using proposed algorithm.

TABLE 1. Summary of comparisons MODE(proposed), MODE and MODE(re-initialization).

of solutions. A non-parametric statistical significance test,
namely, the Wilcoxon Signed Rank Test [38], was also used.
With a 5% significance level, a null hypothesis assumed that
there was no significant difference between the results for two
samples while the alternative hypothesis assumed that there
was. Based on the test results/rankings, we assigned one of
three signs (+,−, and≈) to the comparison of any two algo-
rithms (a significant difference in the average fitness values
is shown in the ’Decision’ column), where ‘+’ means that
the first algorithm was significantly better than the second,
‘−’ means that it was significantly worse, and ‘≈’ sign that
there was no significant difference between them.

E. ANALYSIS
In this section, the benefits of the proposed approach and its
components are discussed and analyzed.

1) BENEFITS OF PROPOSED APPROACH
This subsection aims to show the benefits of the proposed
framework. To do this, three variants of the MODE algorithm
were run, that is: (1) using the proposed approach; (2) con-
sidering the entire population before a change as an initial
set of solutions in the new environment: and (3) re-initialize
the entire population after every change. Detailed results are
shown in the supplementary documents in Appendices A-1 to
A-3, with summaries of comparisons in Table 1.
This table clearly demonstrates the superiority of MODE

using the proposed approach over the other two versions

given its capability to obtain better solutions for the majority
of dynamic environments and statistically significantly out-
performs them.

The main reason for this good behavior is the detection
of the sensitive constraints that helps to identify the new
feasible space for concentrating the search process. We have
demonstrated in our experimental study that the proposed
approach is able to obtain better results more quickly in the
majority of tested environments, as illustrated in Fig. 1 using
G06 as an example. Firstly, at time t = 0, it evolved the
solutions until the end of the first time period and, based
on the best solutions found so far, the second constraint
was defined as the sensitive one. Secondly, at time t = 1,
a change in the boundary of the second constraint was applied
which affected the size of the feasible region. Subsequently,
the proposed approachwas implementedwhich, in turn, could
help current solutions move in the direction of feasibility.

Regarding the average FRs, Table 2 shows that the pro-
posed approach could obtain higher rates of feasible solutions
at different change frequencies (FEchange = 500, 1000, 1500)
than the other two versions.

Also, the effects of the proposed approach at differ-
ent change frequencies (FEchange = 500, 1000, 1500) are
presented in Fig. 2. Firstly, when FEchange = 500,
the proposed approach helped MODE to converge towards
feasibility faster and obtain a better solution than MODE
alone. While re-initializing the population could not obtain
any feasible solution. Secondly, when FEchange = 1000,

VOLUME 8, 2020 103905

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

TABLE 2. Average feasibility rate (FR%) for MODE(proposed), MODE and
MODE(re-initialization).

although the proposed approach and MODE began to con-
verge towards feasibility in the same environment, the former
started with a better solution with no feasible solution for
MODE
(re-initialization), no feasible solution was found. Finally,
when FEchange = 1500, MODE was able to obtain a feasible
solution in the first environment. Once there was a change
to the second environment, the proposed approach was able
to obtain better solutions than MODE. Moreover, although
the re-initialized population approach was able to converge to
feasibility, this was at a later stage in the evolutionary process
but still before the next change.

To conclude, due to its ability to move to the changed
feasible space quickly and concentrate search in that space
for the optimal solution, the proposed approach was able to
outcompete other approaches, especially in quickly changing
environments.

2) EFFECT OF STEP SIZE (1)
As previously discussed, 1 is a small real-value that con-
trols how far each decision variable may move towards a
new change and was set to a random value in the range
∈ [0, 0.1] in the above mentioned algorithm. The reason for
applying different values to each decision variable was to
maintain diversity. However, to analyze this effect, a MODE
(proposed), as analyzed above, was compared against a
MODE (proposed) with a fixed value of1, i.e.,1j = 0.1∀j =
1, 2, . . . ,D. The detailed results are shown in the supplemen-
tary documents in Appendices B-1 to B-2.

The summary of comparisons shown in Table 3 indi-
cates that using 1j ∈ [0, 0.1] was better than setting it as
1j = 0.1 when FEchange = 500 or 1000 FEs whereas
it was quite similar when FEchange = 1500. Statistically,
1j ∈ [0, 0.1] is better than 1j = 0.1 in the case when the
frequency of change is 1000 FEs.

For further consideration different values of 1j were ana-
lyzed, that is, the algorithm was run with: (1) 1j ∈ [0, 0.25];
(2) 1j ∈ [0, 0.5]; (3) 1j ∈ [0, 0.75]; and (4) 1j ∈ [0, 1.0].
All versions were compared against the variant with 1j ∈

[0, 0.1], the results presented in Table 3.
For FEchange = 500 and 1000, no single value of 1j was

the best, that is, each variant performed well in some prob-
lems andworse in others while the variant with1j ∈ [0, 0.25]
did better than that with 1j ∈ [0, 0.1]. For FEchange = 1500,
it is noted that the variant with 1j ∈ [0, 0.1] was better than
the others with different values of 1j.

FIGURE 2. Convergence plots for MODE(proposed), MODE and
MODE(re-initialization).

To clarify the results, we used a Friedman test to rank
all the variants at different FEchange values, as summarized
in Table 4. It is clear that using 1j ∈ [0, 0.1] was the best
when changes were more frequent while 1j ∈ [0, 0.25] was
the best when changes occurred every 1000 and 1500 FEs.

In summary, the version with 1j ∈ [0, 0.25] was selected
as it had the best overall ranking. Remember that using a

103906 VOLUME 8, 2020

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

TABLE 3. MODE with proposed approach and different 1.

TABLE 4. Friedman rankings for proposed algorithm with different values
of 1.

TABLE 5. Average feasiblity rates (FR%) for proposed algorithm with
different values of 1.

different value for each j enhances the performance due to
the diversity it adds to the algorithm.

Table 5 shows that the variants with 1j ∈ [0, 0.1] and
1j ∈ [0, 0.25] had high rates of feasible solutions for
FEchange = 500. However,1j values of [0, 0.5] were the best
for FEchange = 1000 and, 1500, respectively. Based on the
overall FR, the variant with 1j ∈ [0, 0.25] was selected. The
effects of the proposed approach with different values of 1j
are presented in Fig. 3 in which it is clear that the performance
of 1j ∈ [0, 0.25] was the best of all the values.

3) EFFECT OF P
As previously discussed, Pwas initially set to 0.5NP. We ana-
lyzed its effect by changing its value to 0.25NP, 0.75NP and
NP with all these versions using 1j ∈ [0, 0.25] which was
found to be the best. Subsequently, all these variants were
compared with that with the setting of 0.5NP. Details of
their fitness values are provided in Appendices D-1 to D-3 in
the supplementary material and a summary of comparisons
in Table 6. These results show that there was no single value
of NP that was best for all test problems which is consistent
with the No Free Lunch Theorem. Overall, it was found that
there was a bias towards setting P to 0.5NP when FEchange =
1000 and 1500 while setting it to 0.25NP and NPwas slightly
more preferable when FEchange 500.

FIGURE 3. Convergence plots for Proposed algorithm with different
values of 1.

TABLE 6. Effect of P .

The Friedman rankings shown in Table 7 demonstrate that
the variant with P set to a value of NP was the best when
FEchange = 500, while that with a P value of 0.5NP was the
best for FEchange = 1000. However, when FEchange = 1500,
setting P to a value of 0.25NP was the best.

Table 8 shows the value of P = 0.5NP had the highest FR
for FEchange < 1500 while using fewer solutions to which to
apply the move,i.e., 0.1NP for FEchange = 1500 was better.

VOLUME 8, 2020 103907

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

TABLE 7. Friedman ranking for proposed algorithm with different values
of P .

TABLE 8. Average feasiblity rates (FR%) for proposed algorithm with
different values of P .

FIGURE 4. Convergence plots for proposed algorithm with different
values of P .

Also, it is clear in Fig. 4 that the value of P = 0.5NP was
better than all the others in terms of convergence.

In summary, given the superiority of using 0.5NP to obtain
higher FRs, which is a major aspect of constrained optimiza-
tion and its good Friedman ranking, this P value was con-
sidered the best. Remember that if the environment changes
slowly, updating a smaller number of solutions may also work
fine, as the optimization algorithm will have enough time to
improve its solutions.

4) EFFECT OF 0
Given the values of P = 0.5NP and NP = 100, 0 was
analyzed by changing its value to 1, 5, 10, 25 and 50, noting
that 0 ≤ P. Detailed fitness results are provided in the
supplementary documents in Appendices E-1 to E-3.

The summary of comparisons shown in Table 9 indicates
that setting the value of 0 to 5 rather than 1 was better for all
frequencies of change but setting it to > 5 was preferable as,
statistically, all these variants outperformed that with 0 = 5
for all frequencies of change.

TABLE 9. Effect of 0.

TABLE 10. Friedman rankings for proposed algorithm with different
values of 0.

TABLE 11. Average feasiblity rates (FR%) for proposed algorithm with
different values of 0.

TABLE 12. Effect of selecting P .

Based on the overall Friedman rankings shown in Table 10
setting 0 at a value of 50 was the best variant for all frequen-
cies of change.

Also the average FRs presented in Table 11 show that the
variant with 0 = 50 had the highest rate of feasible solutions
for FEchange = 500 while setting the value of 0 to 10 and
1 was the best when FEchange = 1000 and 1500, respectively.
Overall, as no single value of0was the best, it was considered
that there was a bias towards setting it to 10 based on the
average results and overall FRs.

5) EFFECT OF SELECTING P
Given the value of 0 = 10 found above, the way of
selecting P individuals was analyzed by choosing them ran-
domly. Detailed fitness values are reported in Appendices F-1
to F-3 in the supplementary material, with a summary of
comparisons shown in Table 12. These results indicate that
selecting P randomly was better than selecting it based on
its fitness when there were more frequent changes (i.e.,
FEchange = 500) while selecting the best one was preferable
when FEchange = 1000 and 1500. However, statistically,
no significant difference was found.

103908 VOLUME 8, 2020

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

TABLE 13. Average feasibility rates (FR%) for proposed algorithm with
different selections of P .

TABLE 14. Average running time, in seconds, for MODE variants
in seconds with different FEchange.

Also, the average FRs presented in Table 13 show that
selecting P individuals randomly enabled a high rate of
feasibility when FEchange = 500, while selecting the
best individuals brought more benefits to overall FR when
FEchange = 1000 and 1500.

In summary, based on the average results and overall FRs,
selecting the best P individuals was considered optimum.

F. RUNNING TIME
In this section, we compare the running time of MODE,
MODE with re-initialization and MODE with the proposed
components. The algorithms were run on a PC with a
3.10 GHz Core (TM) i7 processor, 72GB RAM and Win-
dows 10. As the optimal solutions of the majority of the
environments are not known, the algorithms were run up to
themaximum number of fitness evaluations (FEchange = 500,
1000 and 1500).

Given the calculation of the the big-Oh discussed in
section III-D, we did not expect significant extra running
time, which was consistent with the time (in seconds)
reported in Table 14. From that Table, it is clear that the
proposed components were computationally efficient, as no
significant additional time was required for all variants over
all FEchange. Note that the algorithm that produces better
quality solutions with similar running time is also considered
as the better performed approach.

V. TESTING PROPOSED APPROACH WITH OTHER EAs
The performance of the proposed approach using 4
algorithms, (1) DE1 (rand-to-p best) (2) DE2 (current-
to-p best) (3) multi-parent crossover GA (MPC-GA) [39]
and (4) success-history based parameter adaptation DE
(SHADE) [40] were compared. DE1 and DE2 used the
same parameter settings as in [34] and SHADE and
MPC-GA the same ones as those reported in corre-
sponding papers, with all the algorithms having a NP of
100 solutions.

Three variants of each algorithm were run, that is, with and
without the proposed approach, and re-initializing the popu-
lation after every change. Similar to the analysis discussed

in the previous sections, all the versions were evaluated with
FEchange = 500, 1000 and 1500 FEs. Detailed results are
shown in Appendices G-1 to J-3 and a summary of compar-
isons in Tables 15 to 17.

From the tables, it is clear that all the algorithms using
the proposed approach dominated both those without it and
those with a re-initialization mechanism for all FEchange val-
ues. This was confirmed by the statistical tests carried out,
that is, all the algorithms using the proposed approach were
statistically superior to the other versions.

The FR presented in Table 18 reveal that using the pro-
posed approach enabled the algorithms to obtain a higher
rates of feasible solutions compared with those of the
others.

VI. COMPARISONS WITH OTHER EXISTING ALGORITHMS
FOR DCOPs
The proposed algorithm was compared with two existing
algorithms, known as dynamic constrained optimization DE
(DyCODE) [41] and clustering particle swarm optimizer
(CPSO) [42] 1. It was run with the same parameters settings
as those reported in its corresponding paper with NP = 100
solutions and FEchange = 500, 1000 and 1500. Detailed
results are shown in Appendices K-1 to K-3. To be consistent
with the comparison technique used in [41], all algorithms
were compared based on (1) the modified offline error for
DCOPs (offline error for short), and (2) the normalized score.
The former was calculated as:

e =
1
tmax

tmax∑
t=1

(x∗t − xbest,t)

where xbest,t represents the best solution (feasible or infeasi-
ble) found so far by an algorithm in the current t environment,
x∗t the global optimal solution in that environment and tmax
the total number of environments.

while the normalized score was calculated as:

Snorm(I) =
1
G

G∑
j=1

|emax(j)− e(I , j)|
|emax(j)− emin(j)|

, I = 1, 2, . . . ,N

where G is the number of test problems, N is the number
of compared algorithms, e(I , j) the modified offline error of
algorithm I in problem j, and emax(j) and emin(j) are the largest
and smallest offline errors, respectively. The value of the
normalized score for each algorithm varied between zero and
one, with the algorithm having the highest score having the
best performance.

The average offline error results presented in Table 19
show that the proposed algorithm performed better than
DyCODE for all the test problems with a quick change
frequency (i.e., 500 FFEs). This was also true for the other
change frequencies, except for only 1 and 2 problems at
FEchange = 1000 and FEchange = 1500, respectively.

The comparison between the proposed algorithm and
CPSO revealed that the proposed approach outperformed

1the source code of both algorithms was provided by the authors of [41]

VOLUME 8, 2020 103909

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

TABLE 15. summary of comparisons between different variants of DE1, DE2, MPC-GA and SHADE with FEchange = 500.

TABLE 16. summary of comparisons between different variants of DE1, DE2, MPC-GA and SHADE with FEchange = 1000.

TABLE 17. Summary of comparisons summary between different variants of DE1, DE2, MPC-GA and SHADE with FEchange = 1500.

TABLE 18. Average feasiblity rate (FR%) for different variants of DE1,
DE2, MPC-GA and SHADE.

CPSO for all the problems with FEchange = 500, except
G01 and G02. We think that the diversity mechanism and the
local search of CPSO played a role in its superiority for those

two problems only, especially when multi-modality exists
(G02). For all the problems with FEchange = 1000 and 1500,
the proposed algorithm dominates CPSO.

Also, it was noted that CPSO works better than DyCODE
for problems with FEchange = 500, but was worse for
FEchange = 1000 and 1500.

As expected, due to its ability to obtain better results,
the normalized scores, shown in Table 20, clearly demon-
strate the superiority of the proposed approach for all change
frequencies.

In addition to the above-mentioned comparison criteria,
the average FRs obtained by each algorithm are reported
in Table 21. The results clearly demonstrate that the proposed
algorithm could attain high rates of feasibility for all change
frequencies.

TABLE 19. Average offline errors obtained by proposed approach, DyCODE and CPSO with different dynamic change rates.

103910 VOLUME 8, 2020

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

TABLE 20. normalized score of proposed algorithm, DyCODE and CPSO at
different change frequencies.

TABLE 21. Average feasibility rate (FR%) obtained by proposed approach,
DyCODE and CPSO with different dynamic change rates.

VII. CONCLUSION AND FUTURE WORK
This paper introduced a new sensitivity-based direction of
movement approach for solving DCOPs, with their sensi-
tivity values calculated based on the slack value of each
constraint. By utilizing this information, in every new envi-
ronment, the solutions obtained by an optimization algorithm
in the previous environment were divided into a number of
sub-groups depending on the number of sensitive constraints.
Subsequently, the solutions in each sub-group were updated
to move towards a new promising search area based on the
slack value of its corresponding constraint.

The algorithm was incorporated in several optimization
algorithms and tested on 13 simulated dynamic constrained
problems, each of which had 7 dynamic changes which
occurred every 500, 1000 and 1500 FEs. The results revealed
that EAs with the proposed approach were superior to
both those without it and re-initialization methods. Also,
the proposed algorithm significantly outperformed another
state-of-the-art algorithm.

Different components (P, 0 and 1) of the algorithm were
analyzed. It was concluded that: (1) applying a proposed
move on the best 50% of the population led to better results;
(2) the distance each decision variable may move was recom-
mended to be up to 25% of the change in the constraint on the
right-hand side; and (3) keeping information from previous
environments helped the algorithm obtain better solutions.

It is worthwhile to mention here that we noticed that if a
change in the environment happens quickly (i.e., if sufficient
fitness evaluations are not permitted), the detection of a sen-
sitive constraint may not be accurate. A possible general rem-
edy for this drawback, may be to develop another mechanism
that would be able to detect the correct sensitive constraints
quickly or decide the search based on the evaluation of a
subset of the constraints.

For possible future work, the proposed algorithm should
be tested for different types of changes including bigger
changes. Also, including dynamic changes in the range of
variable as well as objective function would be worth inves-
tigating. Another important future task is to incorporate
changes in the objective function and then test the algo-
rithm. In that case, information about the quality of the move

(in both the constraint and objective function spaces) could
possibly be used in the proposed method.

ACKNOWLEDGMENT
The authors would like to thank Prof. Yong Wang for kindly
providing the source code of DyCODE and CPSO [41].

REFERENCES
[1] J. Branke, ‘‘Memory enhanced evolutionary algorithms for changing opti-

mization problems,’’ in Proc. Congr. Evol. Comput. (CEC), vol. 3, 1999,
pp. 1875–1882.

[2] R. Azzouz, S. Bechikh, L. B. Said, and W. Trabelsi, ‘‘Handling time-
varying constraints and objectives in dynamic evolutionary multi-objective
optimization,’’ Swarm Evol. Comput., vol. 39, pp. 222–248, Apr. 2018.

[3] H. Richter and S. Yang, ‘‘Memory based on abstraction for dynamic
fitness functions,’’ in Proc. Workshops Appl. Evol. Comput. Berlin,
Germany: Springer, 2008, pp. 596–605.

[4] J. Branke, T. Kaußler, C. Smidt, and H. Schmeck, ‘‘A multi-population
approach to dynamic optimization problems,’’ in Evolutionary Design and
Manufacture. London, U.K.: Springer, 2000, pp. 299–307.

[5] C. Bu,W. Luo, and L. Yue, ‘‘Continuous dynamic constrained optimization
with ensemble of locating and tracking feasible regions strategies,’’ IEEE
Trans. Evol. Comput., vol. 21, no. 1, pp. 14–33, Feb. 2017.

[6] A. Ahrari, S. Elsayed, R. Sarker, and D. Essam, ‘‘A new prediction
approach for dynamic multiobjective optimization,’’ in Proc. IEEE Congr.
Evol. Comput. (CEC), Jun. 2019, pp. 2269–2276.

[7] Y. Diao, C. Li, S. Zeng, M. Mavrovouniotis, and S. Yang, ‘‘Memory-based
multi-population genetic learning for dynamic shortest path problems,’’ in
Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp. 2277–2284.

[8] D. Gong, B. Xu, Y. Zhang, Y. Guo, and S. Yang, ‘‘A similarity-based
cooperative co-evolutionary algorithm for dynamic interval multiobjec-
tive optimization problems,’’ IEEE Trans. Evol. Comput., vol. 24, no. 1,
pp. 142–156, Feb. 2020.

[9] M. Rong, D. Gong, Y. Zhang, Y. Jin, and W. Pedrycz, ‘‘Multidirectional
prediction approach for dynamic multiobjective optimization problems,’’
IEEE Trans. Cybern., vol. 49, no. 9, pp. 3362–3374, Sep. 2019.

[10] B. Xu, Y. Zhang, D.Gong, Y.Guo, andM.Rong, ‘‘Environment sensitivity-
based cooperative co-evolutionary algorithms for dynamic multi-objective
optimization,’’ IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 15, no. 6,
pp. 1877–1890, Nov. 2018.

[11] M.-Y. Ameca-Alducin, E. Mezura-Montes, and N. Cruz-Ramírez,
‘‘A repair method for differential evolution with combined variants to
solve dynamic constrained optimization problems,’’ in Proc. Genet. Evol.
Comput. Conf. (GECCO), 2015, pp. 241–248.

[12] M.-Y. Ameca-Alducin, E. Mezura-Montes, and N. Cruz-Ramírez, ‘‘Dif-
ferential evolution with a repair method to solve dynamic constrained
optimization problems,’’ in Proc. Companion Publication Genet. Evol.
Comput. Conf. (GECCO Companion), 2015, pp. 1169–1172.

[13] H. Richter, ‘‘Memory design for constrained dynamic optimization prob-
lems,’’ in Proc. Eur. Conf. Appl. Evol. Comput. Berlin, Germany: Springer,
2010, pp. 552–561.

[14] M.-Y. Ameca-Alducin, E. Mezura-Montes, and N. Cruz-Ramirez, ‘‘Differ-
ential evolution with combined variants for dynamic constrained optimiza-
tion,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2014, pp. 975–982.

[15] T. T. Nguyen, S. Yang, and J. Branke, ‘‘Evolutionary dynamic optimiza-
tion: A survey of the state of the art,’’ Swarm Evol. Comput., vol. 6,
pp. 1–24, Oct. 2012.

[16] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang,
‘‘An adaptive multipopulation framework for locating and tracking mul-
tiple optima,’’ IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 590–605,
Aug. 2016.

[17] S. Jiang and S. Yang, ‘‘Evolutionary dynamic multiobjective optimization:
Benchmarks and algorithm comparisons,’’ IEEE Trans. Cybern., vol. 47,
no. 1, pp. 198–211, Jan. 2017.

[18] S. B. Gee, K. C. Tan, and H. A. Abbass, ‘‘A benchmark test suite for
dynamic evolutionary multiobjective optimization,’’ IEEE Trans. Cybern.,
vol. 47, no. 2, pp. 461–472, Feb. 2017.

[19] H. K. Singh, A. Isaacs, T. T. Nguyen, T. Ray, and X. Yao, ‘‘Performance of
infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic
single objective optimization problems,’’ in Proc. IEEE Congr. Evol. Com-
put., May 2009, pp. 3127–3134.

VOLUME 8, 2020 103911

N. Hamza et al.: Sensitivity-Based Change Detection for Dynamic Constrained Optimization

[20] H. Richter, ‘‘Detecting change in dynamic fitness landscapes,’’ in Proc.
IEEE Congr. Evol. Comput., May 2009, pp. 1613–1620.

[21] S. Yang, ‘‘Memory-based immigrants for genetic algorithms in dynamic
environments,’’ in Proc. Conf. Genet. Evol. Comput. (GECCO), 2005,
pp. 1115–1122.

[22] K. Deb, ‘‘An efficient constraint handling method for genetic algorithms,’’
Comput. Methods Appl. Mech. Eng., vol. 186, nos. 2–4, pp. 311–338,
Jun. 2000.

[23] M. Hasani-Shoreh, M.-Y. Ameca-Alducin, W. Blaikie, F. Neumann, and
M. Schoenauer, ‘‘On the behaviour of differential evolution for prob-
lems with dynamic linear constraints,’’ 2019, arXiv:1905.04099. [Online].
Available: http://arxiv.org/abs/1905.04099

[24] H. Richter and F. Dietel, ‘‘Solving dynamic constrained optimization
problems with asynchronous change pattern,’’ in Proc. Eur. Conf. Appl.
Evol. Comput. Berlin, Germany: Springer, 2011, pp. 334–343.

[25] K. Pal, C. Saha, S. Das, and C. A. C. Coello, ‘‘Dynamic constrained
optimization with offspring repair based gravitational search algorithm,’’
in Proc. IEEE Congr. Evol. Comput., Jun. 2013, pp. 2414–2421.

[26] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, ‘‘GSA: A gravitational
search algorithm,’’ J. Inf. Sci., vol. 179, no. 13, pp. 2232–2248, 2009.

[27] M.-Y. Ameca-Alducin, E. Mezura-Montes, and N. Cruz-Ramírez,
‘‘Dynamic differential evolution with combined variants and a repair
method to solve dynamic constrained optimization problems: An empirical
study,’’ Soft Comput., vol. 22, no. 2, pp. 541–570, 2018.

[28] T. T. Nguyen and X. Yao, ‘‘Continuous dynamic constrained
optimization—The challenges,’’ IEEE Trans. Evol. Comput., vol. 16,
no. 6, pp. 769–786, Dec. 2012.

[29] X. Lu, K. Tang, and X. Yao, ‘‘Speciated evolutionary algorithm for
dynamic constrained optimisation,’’ in Proc. Int. Conf. Parallel Problem
Solving Nature. Cham, Switzerland: Springer, 2016, pp. 203–213.

[30] J. J. Grefenstette, ‘‘Genetic algorithms for changing environments,’’ in
Proc. PPSN, vol. 2, 1992, pp. 137–144.

[31] E. Mezura-Montes, C. A. C. Coello, and E. I. Tun-Morales, ‘‘Simple
feasibility rules and differential evolution for constrained optimization,’’
in Proc. Mexican Int. Conf. Artif. Intell. Berlin, Germany: Springer, 2004,
pp. 707–716.

[32] M.-Y. Ameca-Alducin,M.Hasani-Shoreh, and F. Neumann, ‘‘On the use of
repair methods in differential evolution for dynamic constrained optimiza-
tion,’’ inProc. Int. Conf. Appl. Evol. Comput.Cham, Switzerland: Springer,
2018, pp. 832–847.

[33] D. Parrott and X. Li, ‘‘Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,’’ IEEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 440–458, Aug. 2006.

[34] S. Elsayed, R. Sarker, and C. A. C. Coello, ‘‘Enhanced multi-operator
differential evolution for constrained optimization,’’ in Proc. IEEE Congr.
Evol. Comput. (CEC), Jul. 2016, pp. 4191–4198.

[35] J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Suganthan,
C. A. C. Coello, and K. Deb, ‘‘Problem definitions and evaluation criteria
for the CEC 2006 special session on constrained real-parameter optimiza-
tion,’’ J. Appl. Mech., vol. 41, no. 8, pp. 8–31, 2006.

[36] T. T. Nguyen, ‘‘A proposed real-valued dynamic constrained benchmark
set,’’ School Comput. Sci., Univ. Birmingham, Tech. Rep., 2008.

[37] C. Li, S. Yang, T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H. Beyer,
and P. Suganthan, ‘‘Benchmark generator for CEC 2009 competition
on dynamic optimization,’’ Univ. Leicester, Leicester, U.K., Univ.
Birmingham, Birmingham, U.K., Nanyang Technol. Univ., Singapore,
Tech. Rep., 2008.

[38] G. Corder andD. Foreman, ‘‘Nonparametric statistics: An introduction,’’ in
Nonparametric Statistics for Non-Statisticians: A Step-By-Step Approach.
Hoboken, NJ, USA: Wiley, 2009, pp. 101–111.

[39] S. M. Elsayed, R. A. Sarker, and D. L. Essam, ‘‘GA with a new multi-
parent crossover for solving IEEE-CEC2011 competition problems,’’ in
Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2011, pp. 1034–1040.

[40] R. Tanabe and A. Fukunaga, ‘‘Success-history based parameter adaptation
for differential evolution,’’ in Proc. IEEE Congr. Evol. Comput., Jun. 2013,
pp. 71–78.

[41] Y. Wang, J. Yu, S. Yang, S. Jiang, and S. Zhao, ‘‘Evolutionary dynamic
constrained optimization: Test suite construction and algorithm compar-
isons,’’ Swarm Evol. Comput., vol. 50, Nov. 2019, Art. no. 100559.

[42] S. Yang and C. Li, ‘‘A clustering particle swarm optimizer for locating and
tracking multiple optima in dynamic environments,’’ IEEE Trans. Evol.
Comput., vol. 14, no. 6, pp. 959–974, Dec. 2010.

NOHA HAMZA received the M.Sc. and Ph.D.
degrees in computer science from the University of
New SouthWales (UNSW) at Canberra, Australia,
in 2012 and 2016, respectively. She is currently a
Research Associate with the School of Engineer-
ing and Information Technology (SEIT), UNSW
at Canberra. Her research interest includes the
areas of evolutionary algorithms and constrained
optimization.

RUHUL SARKER (Member, IEEE) received the
Ph.D. degree from Dalhousie University, Halifax,
Canada, in 1992. He is currently a Professor with
the School of Engineering and Information Tech-
nology and the Director of the Faculty Postgradu-
ate Research, University of New South Wales at
Canberra, ACT, Australia. He is the lead author
of the book Optimization Modelling: A Practical
Approach (CRC Press, 2007) and published over
300 refereed paper in international journals, edited

books, and conference proceedings. His current research interests include
evolutionary optimization and applied operations research. He is currently
an Associate Editor ofMemetic Computing journal, the Journal of Industrial
and Management Optimization, and Flexible Service and Manufacturing
Journal.

DARYL ESSAM received the B.Sc. degree from
the University of New England, Portland, ME,
in 1990, and the Ph.D. degree from the Univer-
sity of New South Wales at Canberra, Australia,
in 2000. He was an Associate Lecturer with
the University of New England, Portland, ME,
in 1991 and has been with the University of New
South Wales at Canberra, since 1994, where he is
currently a Senior Lecturer. His research interest
includes genetic algorithms, with a focus on both

genetic programming and multiobjective optimization. He was a Finance
Chair of the IEEE CEC 2003 and a Proceedings Co-Chair for WCCI 2012.

103912 VOLUME 8, 2020

