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ABSTRACT In the textile and apparel industry, it remains a challenging task to evaluate the fabric
smoothness appearance objectively. In existing studies, with computer vision technology, researchers use
the hand-crafted image features and deep convolutional neural network (CNN) based image features to
describe the fabric smoothness appearance. This paper presents an image classification framework to
evaluate the fabric smoothness appearance degree. The framework contains a feature fusion module to
fuse the hand-crafted and CNN features to take both advantages of them. The framework uses the multi-
scale spatial masking model and a pre-trained CNN to extract hand-crafted and CNN features of fabric
images respectively. In addition, a mislabeled sample filtering module is set in the framework, which helps
to avoid the negative impact of mislabeled samples in training. In the experiments, the proposed framework
achieves 85.2%, 96.1%, and 100% average evaluation accuracies under errors of 0 degree, 0.5 degree, and
1 degree respectively. The experiments on the feature fusion and mislabeled sample filtering verified their
effectiveness in improving the evaluation accuracies and the label noise robustness. The proposed method
outperforms the state-of-the-art methods for fabric smoothness assessment. Promisingly, this paper can
provide novel research ideas for image-based fabric smoothness assessment and other similar tasks.

INDEX TERMS Fabric smoothness, textile testing, convolutional neural network, feature fusion, mislabeled

sample filtering.

I. INTRODUCTION

Fabric smoothness after laundering is treated as a vital char-
acteristic of the fabric to evaluate the tendency for the fabric
to wrinkle, which quantizes the wrinkles on the fabric after
being subjected to laundering procedures, has a bearing on
‘ease-of-care’ related properties (durable press, easy-care,
minimum-iron, after wash appearance, etc.) in the textile
and garment industry [1]. In the current industry applica-
tion, the smoothness of fabric samples after laundering is
mainly evaluated subjectively by trained testers, according
to the similarity of the fabric sample and the appearance
of the smoothness replicas in six grades (provided by the
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standards [2], [3] as shown in Figure 1). However, the subjec-
tive testing is easily disturbed by the test environmental fac-
tors and the testers’ physiological and psychological states,
and has the disadvantages of low accuracy, poor stability,
high cost, and poor reproducibility [4]. With the increasing
labor costs and the continuous improvement of production
efficiency and quality requirements of the textile industry,
subjective method terns to be difficult to meet the needs
of practical applications. Therefore, it has become a great
demand for the textile industry to propose an objective, sta-
ble, accurate and efficient method for evaluating the fabric
smoothness appearance. In recent years, researchers in the
field uses machine vision technology to establish subjective
evaluation methods. In these studies, fabric smoothness eval-
uation is defined as image classification task. Their studies
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generally include three main steps: fabric appearance data
acquisition, smoothness features extraction, and smoothness
degree classification.

In terms of fabric appearance data acquisition, the existing
methods can be divided into two categories, namely 2D meth-
ods and 3D methods. The 2D methods [5]-[12] use an indus-
trial camera or a scanner to collect the fabric images within
shadow caused by wrinkles on the fabric surface. 3D methods
utilize techniques as laser triangulation [13]-[17], photo-
metric stereo vision [18], [19] and binocular stereo-vision
[20]-[23] to reconstruct the fabric surface. For the 3D meth-
ods have better adaptability to the image acquisition environ-
ment and fabric color patterns, they attracted more attention
in recent years. However, the 3D methods have the disadvan-
tages of low efficiency, high cost, high calibration complexity,
and unreliable accuracy. Our previous research [24] built
and optimized a fabric 2D image acquisition platform. The
possibility and effectiveness of the objective evaluation for
the smoothness appearance of fabric without color pattern on
the basis of 2D fabric images was demonstrated. In addition,
to extend the variety adaptability of 2D methods, another
study [25] has proposed a decoloration method for images of
multi-color fabrics, which can eliminate the color pattern in
the fabric images while preserve the wrinkles information in
images. Therefore, the task of fabric smoothness appearance
evaluation after image acquisition can be divided into two
main steps, i.e. multi-color fabric image decoloration and
monochrome fabric smoothness appearance evaluation. This
paper is mainly focus on the second step of the main task.

In terms of feature extraction, a lot of hand-crafted features
for 2D images are proposed in early years, which are con-
structed by edge and shade area [5], grey level distribution [6],
gray level co-occurrence matrix (GLCM) [7], [8], discrete
Fourier transform (FFT) [11], or wavelet decomposition [12].
For 3D methods, features are extracted based on the frac-
tal dimension [20], depth pixel distribution [26], shape and
distribution of wrinkles [15], [21], [27] of the 3D images.
These hand-crafted features are lack of the description of
human vision. However, the fabric smoothness appearance
valuation task is closely related to human visual perception.
A recent study for 3D image feature extraction [4] proposes to
use the dense-sift features encoded by linear spatial pyramid
matching using sparse coding(ScSPM), which simulates the
sparse structure of human visual system (HVS) [28]. For the
2D methods, our previous study [29] established a multi-
scale spatial masking model to extract hand-crafted features
for fabric smoothness appearance, which models the spatial
masking effect of the HVS.

Differing from the hand-crafted features constructed by
human, convolutional neural networks (CNNs) can extract
image features by self-driven learning, which are built with
reference to the hierarchical information processing structure
of the HVS [30]. CNNs have been widely used in differ-
ent computer vision tasks and achieved a superior perfor-
mance. Our previous study [31] explored the application
of the deep CNN models in the evaluation of the fabric
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smoothness appearance. It was proved that the features
extracted by the CNN model have great ability to describe the
fabric smoothness appearance. With the various image fea-
tures, different classification models have been applied, e.g.
neural network [7], [14], support vector machine [4], [12],
logistic regression [27], and CNN. However, it has not yet
reached the requirements for industrial application, and the
prediction performance of existing methods need to be further
improved.

The subjective evaluation of the fabric smoothness appear-
ance is a response of the HVS to optical stimuli, which
includes quantitative feedback on the strength of the visual
stimulus, and the prediction of the possibility of wrinkle
recovery according to the human experience. This process
involves the bottom-up visual perception patterns in the HVS,
which are spontaneously constructed with simple visual stim-
uli such as brightness, contrast, edge, and shape. It also
involves the top-down prior knowledge of the tester, such as
the prediction of the wrinkle recovery trend, the classification
of smoothness appearance level and other highly abstract
visual perception patterns.

According to the feature extraction mechanism, most hand-
crafted features consider the bottom-up perception only,
while the CNN features contain the top-down knowledge in
their task-driven training. Combining the two can describe
the fabric smoothness appearance evaluation process more
comprehensively. As the research basis, our previous studies
have proposed a set of effective hand-crafted feature [29]
and demonstrated the superiority of the CNN features [31]
for fabric smoothness assessment. The experimental pre-
diction results from these two types of features showed a
certain complementarity in the sample distribution, which
supports our viewpoints. Therefore, this study aims at com-
bining the benefit of both and further improve the per-
formance of the objective fabric smoothness appearance
evaluation.

The idea of fusing CNN features and hand-crafted fea-
tures to improve model performance is widely used in
the field of existing computer vision, such as breast can-
cer detection [32], industrial superheat identification [33],
ship classification [34], vehicle detection [35], person re-
identification [36], osteoporosis diagnoses [37], lung nod-
ule classification [38]. In the textile industry, fabric defect
detection is the only task for which researchers have used the
feature fusion idea [39]. According to their implementation,
the feature fusion frameworks can be categorized into three
types, i.e. feature level fusion [32]-[34] with simple concate-
nation of features; fusion by ensemble [35] with combining
multiple classifiers trained by hand-crafted and CNN features
in respective; joint level fusion [39] with combining different
features in the CNN framework. In general, the feature level
fusion fails to consider the difference of the dimension and
range between the features, which may result in an unbal-
anced combination. The ensemble method always facing with
the difficulty of training classifiers with the large dimen-
sional CNN features. As result, considering the joint fusion,
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FIGURE 1. AATCC smoothness appearance replicas.

we established a feature fusion module with learnt parameters
to fuse the information from hand-crafted and CNN features
in a self-adjusted way.

On the other hand, in the manual fabric smoothness appear-
ance assessment, caused by the individual physical, psycho-
logical and environmental factors of human testers, the sam-
ples’ label can be incorrect. Samples with wrong labels in
the training data set may mislead the training progress and
decrease the model performance. Differing from the nominal
classification task, the label of fabric smoothness appearance
assessment task is ordinal. In this study, we discuss the issue
with the consideration of the ordinal label attribute of the task,
and propose a training strategy to eliminate the mislabeled
samples in training.

In this paper, to further improve the performance of
2D-image-based objective fabric smoothness assessment
methods, an image classification framework with a multi-
level feature fusion module and a mislabeled sample filtering
module is proposed. The feature fusion module fuses a set
of hand-crafted features extracted by the multi-scale spatial
masking model and a set of CNN features extracted by a pre-
trained CNN model. The hand-crafted features have richer
local information representing the bottom-up perception of
HVS. It complements the abstract top-down information
from the CNN features to describe the fabric smoothness
in a comprehensive way. In addition, the mislabeled sam-
ple filtering module trained with the hand-crafted features
help avoid the negative impact of the mislabeled samples in
training.

The main contribution of the study can be summarized as
follows:

1. The multi-level feature fusion module in the proposed
image classification framework can take the advantages of
both hand-crafted and CNN features when evaluating the
fabric smoothness appearance. It is the first study in this
task that explore the idea that combining features at different
levels.

2. We propose a mislabeled sample filtering module in the
framework, which helps mitigate the impact of mislabeled
samples in training for image classification tasks with sub-
jectively labeled and sequence tags.

3. The experimental results of the proposed framework in
the fabric smoothness assessment task are superior to existing
methods, and the proposed framework and modules can be
easily extended to other tasks.
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Il. RELATED WORKS

A. IMAGE ACQUISITION

According to the different data acquisition technologies used,
the computer-vision-based methods proposed in the exist-
ing research can be divided into two categories, namely 2D
methods and 3D methods. The 2D methods [5]-[12] usu-
ally use an industrial camera or a scanner to collect the
fabric surface data, whose data format is a gray-level 2D
digital image. The 2D image expresses the fabric smooth-
ness information as the shadow caused by wrinkles on the
sample surface, which is an indirect expression progress
with a high environmental dependence. In addition, if the
fabric sample has color texture, the color texture will be
mixed with the smoothness information in the image space
and difficult to be distinguished in the subsequent feature
extraction process. This limits the adaptability of the 2D
method in the objective assessment of fabric smoothness
appearance.

Hence, more researchers have recently tended to use 3D
methods. Technologies such as laser triangulation [13]-[17],
photometric stereo method [18], [19] and binocular stereo-
vision [20]-[23] are used in existing studies, to obtain the
smoothness information of the fabric as the reconstructed
surface depth map. Compared with the 2D methods, 3D
methods are kinds of direct expression of the sample’s sur-
face, which can effectively avoid the disadvantages of the 2D
method. However, the 3D methods have the disadvantages
of low efficiency, high cost, high calibration complexity, and
unreliable accuracy.

In our previous studies [24], [29], [31], we put forward the
following point: although the observation of the 2D method
is indirect, they can still provide sufficient information for
the smoothness evaluation of the fabric. we have established
a 2D fabric image acquisition system and optimized the
illumination environment for fabric smoothness information
extraction [24], and the view was verified by the experi-
ments in the studies. Additionally, to improve the multi-
color fabric adaptability of the 2D method, we have proposed
a decoloration method for multi-color fabric images in the
previous study [25]. In this study, we further explore the
improvement of the 2D method, and the fabric image data set
is the same as our previous studies captured by the proposed
system.

B. HAND-CRAFTED FEATURES

Researchers in the field have proposed different features to
express the fabric smoothness. Depending on the data format,
the features are listed below.

(1) Features from 2D images:

Edge area; shade area [5]; variation of the grey
level intensity [6]; angular second moment, contrast,
correlation, entropy of the gray level co-occurrence
matrix (GLCM) [7], [8]; gray-scale range around the
edges [9], [10]; FFT subtotal in a specific frequency
range [11]; orientation, hardness, density, and contrast
of wavelet coefficients [12].
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(2) Features from 3D depth maps:

Length, surface area, volume under the surface, mean
principle curvatures, mean max twist of every sub-
block of the depth map [13]; arithmetic average rough-
ness, root mean square roughness, 10-point height,
bearing surface ratio, wrinkle sharpness, wrinkle den-
sity [14], [22]; fractal dimension [20]; maximum
amplitude, sharpness, density, maximum amplitude
of the first derivative of the cross profile of the
edges [15], [21]; mean, mean deviation, and standard
deviation of the height values in every row [26]; wrin-
kling density, wrinkling hardness, tip-angle, wrinkling
roughness [27]; dense-SIFT feature with sparse cod-
ing [4].

In our previous study, we extract the image features by
a visual masking model [29] for human visual system. The
experiment in the study proved that this feature has a strong
ability to characterize the smoothness appearance of the 2D
fabric images.

C. CNN FEATURES

In recent year, CNN models have been widely used in dif-
ferent tasks in computer vision and reached the state-of-the-
art performance [30]. During the training progress, the CNN
models can extract the features from the input images with
high-level and abstract information. However, the training of
CNN heavily depends on the amount of training data to avoid
overfitting. In our recent study [31], we have built a compact
CNN model for the fabric smoothness assessment task with
small sample size, and demonstrated that the CNN features
can express the human perceptual prediction of the tendency
of wrinkles to recover to some extent.

Another way to mitigate the overfitting of CNN training
on small size data sets is using the transfer learning [40], [41]
with a pretrained CNN model. However, in our experiment,
the pre-trained deep CNNs did not show superior perfor-
mance. The reason may be that the CNN features extracted
by the pre-trained deep CNNs lose too much low-level infor-
mation. In this paper, we will try to improve the performance
of the pre-trained CNNs with the fusion of hand-crafted
features.

D. FUSION OF HAND-CRAFTED FEATURES AND CNN
FEATURES

Due to different feature construction methods, hand-crafted
features and CNN features have some differences in describ-
ing the problem. To take advantages of both, researchers has
paid attention to the fusion of them. For image classification,
the studies can be categorized into feature level fusion, fusion
by ensemble and joint level fusion.

For feature level fusion, the hand-crafted features and
CNN features are directly combined by concatenation, then
reduced and utilized to train the classifier [32]-[34]. In [38],
for lung nodule classification, a set of hand-crafted features
and the CNN feature are fused by the cascade method. The
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cascaded feature is then processed by the principal com-
ponent analysis (PCA) method and used to train a cost-
sensitive random forest model. In [37], for osteoporosis
diagnoses, researchers propose encoded features combined
with the CNN features. After the feature selection by a
minimum-redundancy maximum-relevance (mRMR) algo-
rithm, the fusion features are used to train an SVM classifier.
However, direct concatenation does not consider the different
dimensions and scales of the features.

For fusion by ensemble, multiple classifiers are trained
with the hand-crafted features and CNN features and then
combined into an ensemble [35]. Some studies in this cat-
egory also take the feature level fusion into consideration
by using an additional classifier trained with the fusion fea-
tures. For examples, in a study for intelligent human action
recognition [42], the histogram of oriented gradients (HoG)
is utilized as the hand-crafted feature and fused with the
CNN feature by a feature level fusion method with fea-
ture reduction selection. And the multi-class support vector
machine (SVM) is used as the classifier. Classifiers map the
features into the problem solution space, which help avoid the
disadvantages of the feature level fusion. However, the train-
ing process of multiple classifiers is time-consuming. And it
is difficult to train a traditional classification model with the
large-dimensional CNN features.

Joint level fusion frameworks combine the hand-crafted
feature and the CNN feature in the constructed module in the
whole CNN framework, and output the prediction result com-
prehensively [36]. The classification is then given by a soft-
max layer. In [39], for fabric defect detection, the researchers
proposes a defect probability map as the hand-crafted fea-
tures, which is fused in the convolutional level of the CNN.
This is the only example of the hand-crafted and CNN feature
fusion work in textile research at present.

In summary, the joint level fusion can achieve the feature
fusion in one comprehensive CNN model, avoiding multi-
step model training. In addition, joint level fusion can fuse
the features in different scales without normalization, making
better global optimization. Therefore, in this paper, the joint
level fusion is adopted. And the other two categories of
feature fusion frameworks are discussed in the experiment.

E. SMOOTHNESS DEGREE CLASSIFICATION

To the aspect of smoothness appearance degree classification,
minimum distance algorithm [11], fuzzy priority similarity
comparison method [8], neural network [7], [14], logistic
regression [27], and support vector machine (SVM) [4], [12]
have been widely used. These models are generally trained
with hand-crafted features of the input images, and perform
differently in different feature domains. Differing from the
traditional classification models, the CNN models can be
directly trained with the raw image data and output the
result [30]. In this paper, a CNN classifier is established
which is trained with CNN features from transfer learning
and hand-crafted feature from spatial masking model.
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FIGURE 2. A flowchart of the proposed image classification framework with multi-level feature fusion and mislabeled sample filtering; where ff“LP ()
represents the multilayer perceptron (MLP) whose integer subscript sequence indicates the feature dimension of each layer; w” ¢ R8 and w¢ € R8 are

the weight vectors for every connection.

F. OBJECTIVE METHODS FOR FABRIC WRINKLE
EVALUATION

In addition to the fabric smoothness appearance evaluation
method reviewed above, there are many other objective meth-
ods for the evaluation of the fabric wrinkle property. By the
measuring object, the methods can be divided into direct
methods and indirect method. The direct methods measure
the wrinkle on the sample surface while the indirect methods
measure the other indicators of the fabric and mapping it to
wrinkle properties.

For direct methods, in [6], a wrinkling generation device
is established. Differing from the standard sample prepara-
tion method, it generates wrinkling on fabric by a motor
driven cylinder creux automatically. In addition, instead of
testing the fabric smoothness appearance on fabric sample,
researchers propose a series of wearing simulation devices
to generate samples with similar wrinkles in actual wear-
ing [43], [44]. Then the smoothness appearance of the sam-
plesis also evaluated by image analysis algorithms. In another
study [45], the proposed method can evaluate the smooth-
ness appearance for real garment. In addition, image-based
wrinkle recovery angle are also used to evaluate the wrinkle
properties of fabrics [46], [47]. Differing from the random
wrinkle generation method (standard laundering), it uses a
quantitative wrinkle sample preparation method, and mea-
sures the wrinkle recovery angle to evaluate the wrinkle
property of fabrics.

In addition, there is a series of methods that does not
measure the wrinkles on the sample surface, namely indi-
rect measurement. These methods evaluate the fabric wrin-
kle property by measuring the fabric weave parameters,
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mechanical properties [48], in-situ characterization [49], and
shape retention properties [50] of the fabric sample and
mapping to the smoothness appearance degree or wrinkle
recovery angle.

The fabric smoothness appearance evaluation studied in
this article is parallel to the above methods. They are all used
to evaluate the wrinkle property of fabrics. But at present
they cannot replace each other. Moreover, at present, only two
methods, i.e. the evaluation of the wrinkle recovery and fabric
smoothness appearance after laundering, are included in the
relevant standards, which are commonly used in the industry.

Ill. PROPOSED IMAGE CLASSIFICATION FRAMEWORK

In this paper, an image classification framework is established
to solve the fabric smoothness assessment task. As given
in Figure 2, the framework has a multi-level feature fusion
module which fuses the hand-crafted and CNN features, and
contains a mislabeled sample filtering module to reduce the
participation of mislabeled samples in training.

A. HAND-CRAFTED FEATURES

The smoothness appearance of fabrics is a subjective con-
cept, which is mainly concerned by the perception of the
human vision under a specific environment. A feature set
named multi-scale spatial masking feature (MS-SMF) [29] is
proposed with the consideration of the relationship between
the HVS characteristics and the fabric smoothness appear-
ance in images. As it was verified that the MS-SMF has a
superior ability to describe the fabric smoothness appearance
than other hand-crafted features used in previous studies, the
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MS-SMF is used as the hand-crafted features used in the
proposed image classification framework.

Let I denotes an input fabric image, the MS-SMF extrac-
tion can be expressed as

vt =My, ()

where V" € R? is the MS-SMF of dimension d; f™(.)
represents the MS-SMF extraction. The operation of f(-)
includes three main steps, i.e. difference-of-Gaussian (DoG)
scale space decomposition, spatial masking effect maps cal-
culation, and feature extraction in different scales. They are
detailed as follows.

1) DOG SCALE SPACE DECOMPOSITION

In MS-SMF extraction, the input image / is decomposed
into the DoG scale space to model the multi-scale perception
ability of the human testers. the Gaussian scale space can
be generated from a series of low-pass filtering and down-
sampling, and expressed as a sequence of images D =

{l, I, ..., INg} formulated as follow [51], [52]:
I, = Gq”o 1, (2)
where n = 1,2, ..., N, is the sequence number; Iy = I;

G410 is a Gaussian kernel with the scale ¢"o (variation of
Gaussian); o is a constant basic scale factor; * is the con-
volution operator; g is a constant multiplicative factor which
determines the interval of the decomposition; N, is the scale
parameter which determines the number of images in the
decomposition result. The DoG scale space can be expressed
as a sequence of images D~ = {10_,11_,12_,...,1@_1}
calculated from the difference between every two consecutive
images in the Gaussian scale space as follow [53]:

I =1, — I, 3)

wheren =0,1,2,...,N; — 1.

2) SPATIAL MASKING MAP CALCULATION
In the HVS, spatial masking effect refers to the phenomenon
that a visible stimulus (target) turns to undetectable due to
the presence of another (masking) [54]. In fabric smoothness
appearance perception, a more wrinkled fabric surface can
causes a stronger spatial masking effect [29]. For every scale
n e {0,1,2,...,N,}, the spatial masking map M calcula-
tion is detailed in follows. For the operation is the same to
every scale, the sequential variable z is omitted.

Step 1: Pattern Complexity Calculation

The pattern complexity of a pixel x” € X? is described
as the gradient direction irregularity in the local region R(x?)
centered on x”. For a scale n, with the scale images I, I;+1
and I, the orientation 6 (the subscript n is omitted) for each
pixel x” € XP can be formulated as follow:

0 1
0 (xP) S (arctanG(V);xp) + arctan G‘I’ (XP)) , @
G, (xP) G, (xP)
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where G(v) (xP) and G2 (xP) are the vertical horizontal gradient
of the image I, at pixel x”; x” is the coordinate space of I,;
and Gé (xP) and G}l (x?) are the vertical horizontal gradient
of the image calculated from 7,4 1.

The pattern complexity C, for a pixel x” € X7 is calculated
as the sparsity of the orientation histogram for the local region
R(xP) centered on xP:

Cp () = [|[H (17 7). ®)

where H (¢ | xP, T) is the histogram of 6 in the local region
R(xP); T is the histogram interval, which is selected as 12°
according to the subjective masking experiments [55]; 7 is the
coordinate value of the histogram; |-|| denotes the Ly norm
computing on ¢ for the pixel x”, which counts the number of
non-zero elements in H.

Step 2: Luminance Contract Calculation

The luminance contrast C; can be expressed by the local
gradient strength of a Gaussian image, which is calculated as
the magnitude of the DoG image I, that is:

, (6

where x” € X? represents the image coordinates.

Step 3: Pattern Masking Effect Calculation

As an important component in spatial masking effect,
the pattern masking effect is firstly computed. Based on
the subjective experiment about the visual gain control and
pattern masking, the pattern masking effect M), is modeled
as [55], [56]

Ci (x") = |1, (")

aIC,'fz

My = fi (C1) - f (Cp) =logy (1 +Cy) - -3
C2 +a3

(N
where aj is a constant of proportion indicating the output gain
of the visual stimuli in human visual system; a; is an expo-
nential parameter representing the excitatory of human visual
neurons; and a3 is a small constant to avoid the zero denom-
inator, which helps describe the strength of pattern masking
effect when the pattern complexity is zero. In the subjective
test [55], [56], pattern masking strengths (expressed as the
contrast gain of human testers) caused by different visual
input pattern are recorded. The parameters in the model are
then obtained by the fitting method as a; = 0.8, a, = 2.7,
and a3 = 0.1.

Step 4: Contract Masking Effect Calculation

As another important component in spatial masking effect,
the constrast masking effect M, in the MS-SMF is modeled.
In perceptual studies, the spatial masking caused by the lumi-
nance contrast should be expressed by a nonlinear transducer
for luminance contrast [57], [58]:

2.4

a .
M. =0.115. ———, ®)

Ct + B2
where o is a constant of proportion; and S is the posi-
tively accelerating and compressive regions of the nonlinear-
ity. In subjective experiments, the luminance masking effect
strength is evaluated by the just noticeable difference (JND)
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in images perceived by human testers. By fitting the model
with the JND in different luminance contrasts, the parameters
are setas ¢ = 16 and g = 26.

Step 5: spatial masking effect formulation

The spatial masking model in MS-SMF takes both the
contrast masking and pattern masking into account. For the
stronger one in the two types of masking effects plays a
dominant role in some in general, the combination of contrast
masking and pattern masking is calculated by a maximum
function to express spatial masking effect M;.

Ms(xp)zmax{Mp(x),MC(x )} 9)

As the sequential variable n € {0,1,2,...,N,—}1 is
omitted in the above model expressions, the M should have a
Sequence superscript n. Thus M is the spatial masking map
for the fabric image in n™ scale.

3) MULTI-SCALE SPATIAL MASKING FEATURE

As results, the sequence {M?, M, ..., MY~} can describe
the spatial masking effect in different scales. Therefore,
the feature vector v is express as follow:

V= {pr (M}, iy)}, (10)

where n € {0,1,...,N, — 1}; pr (M, p) is the percentile
calculation function which returns the p™ percentile of the
data set M; and i, € {60, 70, 80, 90} is the percentiles used
in feature extraction. In the experiment in this study, for the
scale length N, is set as 35, the feature dimension is 140 for
one fabric image. As we use two images captured under
orthogonal position angles of the light source for one fabric
sample, the dimension of a fabric sample is 280.

B. CNN FEATURES
In the recent research on image classification, the deep CNN
models have shown excellent performance. It is believed that
the deeper CNN model may extract more abstract image fea-
tures, which have better capabilities to describe the abstract
contents in images than the traditional hand-crafted fea-
tures. The fabric smoothness appearance is a subject con-
cept abstracted by the human vision, which includes the
prediction of the possibility of fabric wrinkle recovery and
some aesthetic perception. The CNN models may be able to
extract such abstract features. Therefore, CNN features are
used in the proposed image classification framework as a
complement to the hand-crafted features.

Let I denotes an input fabric image, consider a CNN
classification model W (I; ®) = g(f¢ (I; ®F) ; ©8), the CNN
features extraction can be expressed as

Ve =f¢(1; 0, (11)

where f€(-) is the calculation before the last fully connected
layer of the CNN W (/; ®) with parameters ®¢; v € R rep-
resents the CNN features of dimension g; © is the parameters
of the CNN model; and g(-) is the last activation and output
layer of the CNN with the parameters ©8.
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Input Image 224x224
Conv 11x11 s4, 96 / ReLU
Max Pool 3x3 s2
Conv 5x5 s1, 256 / ReLU
Max Pool 3x3 s2
Conv 3x3 s1, 384 / ReLU
Conv 3x3 s1, 384 / ReLU
Conv 3x3 s1, 256 / ReLU
Max Pool 3x3 s2

FC 4096 / ReLU

FC 4096

FIGURE 3. CNN model structure used in the experiment, where Conv
represents convolutional layers; ReLU represents the rectified linear unit
activation function; Max Pool represents max pooling layers; FC
represents fully-connected layers.

In the proposed image classification framework, differ-
ent CNN classification models that is the state-of-the-art
can be used. To satisfy the small data size of the fabric
smoothness appearance evaluation task, the models are pre-
trained with the Imagenet [59] data. Take the AlexNet [60]
as a well performed example, the model W (/; ®) is trained
with the Imagenet and the dimension ¢ of the features v¢
is 4096. As given in Figure 3, the AlexNet model is con-
structed by five convolutional layers, three max pooling lay-
ers, and three fully-connected layers. The input image is
resized into 224 x 224 pixel. For the convolutional lay-
ers (Conv), the parameters provided in Figure 3 includes
the kernel size, step size, channel number, and activation
function. For fully-connected layers (FC), the parameters
include neuron number and activation function. In addition
to the application example of AlexNet, the performance of
features extracted by different CNN models were tested in our
experiment.

C. SAMPLE FILTERING

As the label of the samples in fabric smoothness appearance
assessment are evaluated by human testers, there must be
noises in the labels. Intuitively, in the fabric smoothness
assessment task, the wrong label is more likely to be close
to the correct label, that is, SA-1 sample is more likely to
be wrongly rated as SA-2 instead of SA-5. Based on this
characteristic of the problem, in this paper, we propose to use
anominal classification model to be the label-error estimator,
and filter the samples with large error.

For a training set § = (x;,y; =y; + Ay,-)g\;l with label
noise Ay. The trained classification model r can be viewed
as a ground truth estimator. And the estimated output can be
used to estimate the noise for the samples in the testing set
T = (xi, §i = it Ay)iL, as

Ay = |r (x;) =il (12)

wherei =1, 2, 3, ..., M; risthe classification model trained
with S. In the experiment in this paper, x is the hand-crafted
feature v and the samples with Ay greater than 0.5 degree
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are filtered out in the framework. A multi-class SVM model
is used as the classification model.

D. FEATURE FUSION AND CLASSIFICATION

Figure 2 shows the structure of the proposed image classi-
fication framework. The framework is constructed by three
main modules, i.e. hand-crafted feature extractor f*, CNN
feature extractor £, and feature fusion module /*. As an input
image I, the hand-crafted features v € R and the CNN
features v¢ € R? are extracted according to Equation (1) and
(11) respectively. The hand-crafted features describe more
information about the intensity of visual stimuli caused by
the wrinkles. And the CNN features contain more abstract
description about the aesthetic perception and the wrinkle
recovery prediction of human vision. In the expectation of
the development of the feature fusion module, these features
may constitute a complementary structure.

As these two categories of features are not distributed on
the same scale, it is unreasonable to directly concatenate them
and use them for classification, which may cause the unbal-
anced contributions of them. Therefore, in the feature fusion
module, the features are mapped to the solution space of K
dimension by a multilayer perceptron (MLP), respectively,
where K is the number of categories of the task target. The
pre-mapping of the features into the same space can help to
fuse them in a same scale.

For the CNN features v¢, due to its strong information
abstraction ability, we use a single layer MLP to map it to
the problem solution space. That is

Zc __ rMLP (vc

= fMLP (v, @), (13)

where z¢ € RX is the mapping result vector in the problem
solution space; f(%g‘P : R? — RX is the function of the sin-
gle layer MLP with g-dimensional input and K -dimensional
output; ®™! is the parameters of the MLP fq’t”LP ; and the
activation function in MLP is the ReL.U function.

While for the hand-crafted features v, considering the low
dimension and abstraction of it, we use a two-layer MLP to
map it, that is

= (" eM), (14)
where 7" € RX is the mapping result vector in the problem
solution space; fp"’;LP R? — RX is the function of the two-
layer MLP with p-dimensional input and K -dimensional out-
put, and p-dimensional middle layer; ®"2 is the parameters
of the MLP M LP ; and the activation function in MLP is the
ReLU functlon

Finally, as the hand-crafted and CNN features are both
mapped into the problem solution space, the outputs z” and
z¢ could contain a certain correlation between the prediction
results. As a result, we fused them by an element-weighted
linear layer. As shown in figure 2, in the element-weighted
linear layer, each element in the output of this layer is linearly
contributed by the weighted corresponding element with the
same index in the two inputs, which can be formulated as
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__________________ * Filter samples with large error
* Train high-level branch
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FIGURE 4. Training process illustration of the proposed image
classification framework with mislabeled sample filtering.

follow:

—fb ( out) (15)

where p°* is classification probability activated by a SoftMax
function f*(-), and

out ;

= wi'z + wizf, (16)
where i=1,2,3,...K is the vector index in the vectors;
w" € RX and weRX are the weights for every connection;
7% eRK is the linear output of the element weighted layer.
In our experiment, the dimension p of the hand-crafted fea-
tures V" is 280; the dimension g of the CNN features v is
defined by the CNN model in use (4096 for AlexNet); and
the dimension K of problem solution space is 8 for our fabric
smoothness dataset.

E. MODEL TRAINING

An illustration of the training progress of the proposed frame-
work is shown in Figure 4. The framework firstly conducts an
error estimation progress. In this progress, the training set is
split into m folds, then every fold is treated as the estimation
fold in turn, while the others are used as training fold. The
estimation model is trained on the training folds and predicts
the label-errors of the estimation folds in turn.

Based on the estimation of the label-errors of all the sam-
ples in the training set, the framework filters the samples with
large error. In the experiment, the samples with estimated
label-error greater than 0.5 degree are filtered. Then, on the
training set after filtering, the framework trains the hand-
crafted and CNN modules in an alternating way.

Although the proposed label-error estimator may have
some mistakes, in our experiment, the filter can mitigate
the influence of wrong label samples in training to some
extents. In addition, since the pre-trained CNN and the
hand-crafted feature extractors have certain unsupervised
properties, the framework can be trained on small datasets

properly.

IV. EXPERIMENT

A. IMAGE ACQUISITION AND PREPROCESSING

As introduced in our previous study [29], an image acquisi-
tion system was established. It has ability to capture images
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TABLE 1. Fabric samples information and the sample number in different smoothness appearances.

Fabric Sample Size
Sample .
Weave Fiber content SA-1 SA-1.5 SA-2 SA-2.5 SA-3 SA-3.5 SA-4 SA-5
number
1 Plain 100% C 25 13 15 15 7 7 10 6
2 Plain 65% T 35% C 2 1 3 4 7 25 25 29
3 Twill 100% C 18 12 13 15 9 11 12 4
4 Twill 65% T 35% C 3 2 1 4 6 24 23 34
Total 48 28 32 38 29 67 70 73
CCD Camera
Strip LED
Light Source
Rotating Arm

FIGURE 5. The fabric image acquisition system.

of the fabric samples under different image acquisition envi-
ronments (as illustrated in Figure 5). And the image acqui-
sition environment was optimized. It was demonstrated that
two images with two orthogonal light source position angles
contains sufficient fabric smoothness appearance information
for a fabric sample. Image data of a fabric sample is illustrated
in the first row of Figure 6.

For there is general brightness unevenness in fabric images
captured by the system, we have proposed an image pre-
processing algorithm to adjust it. Denote the original fab-
ric image is I,, the preprocessing can be expressed as
follow:

I =Io/1f, 17

where Iy is the two-dimensional binomial fitting of I,.
As given in the second row of Figure 6, the unevenness has
been eliminated. The effectiveness of the preprocessing has
been verified in our previous study [31].

B. EXPERIMENT SETUP

The experiments in this study were conducted on a personal
computer with Intel(R) Core(TM) 17-4790 CPU(3.6 GHz)
and 16GB RAM and GPU of Nvidia(R) GTX 1080Ti. All
the algorithms were implemented by MATLAB and Python
under the Windows 10 and Linux operating system. The SVM
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FIGURE 6. Fabric images with different light source position angles:
(a) 0°, (b) 90° and their preprocessing results: (c), (d).

was implemented by the LIBSVM [61]. The deep learning
algorithms were implemented by the PyTorch [62].

C. MATERIALS

The fabric image data set used in this study is the same as our
previous studies [24], [29], [31] within 385 fabric samples,
including four varieties of fabrics in different weave struc-
tures and fiber compositions. According to the AATCC stan-
dard [2], the fabric samples were cut into 380 mm x 380 mm,
then laundered in different modes to generate diverse fab-
ric smoothness appearances. The smoothness degree of the
samples was evaluated by the subjective method. The detail
information of the fabric samples is given in table 1. In our
experiment, the characteristics of white fabrics reveal quite
negligible effect in the fabric images.

D. DATA AUGMENTATION

For the performance of CNN models are heavily relies on the
data set size, we used two data augmentation methods. Firstly,
the illumination brightness was extended into three levels in
image acquisition, which expanded the data set size three
times. Secondly, the fabric images (with brightness extended)
in data set were noised, rotated, and flipped randomly
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FIGURE 7. Fabric image data augmentation examples: illumination
augmentation (a), (b), (c); and noising (d), rotating (e), flipping (f) on (a).

before training, which expanded the data set size four
times. Thus, the final image data set size was expanded by
twelve times to 4620. A data augmentation example is given
in Figure 7.

E. TRAINING DETAIL

In the experiments in this research, we applied mini-batch
Adam optimizer [63] to train the CNN models. The batch
size was128 and the epoch amount was 100. We set the
learning rate decayed by 10 by every 25 epochs. The best
learning rate and weight decay are optimized by grid search in
[3x107%,3% 1073, 3x1072]. The performance of the CNN
models was evaluated by 10-fold cross validation. In this
process, the data set was divided into 10 folds. And then they
were used as testing folds and the reset as training folds in
loop.

The training folds were augmented before model training.
Thus, the training sample size was 4104 and the testing
sample size was 39 in average for each loop. Due to the
small sample size, it is difficult to control the sampling bias,
which may cause the test results difficult to evaluate the
generalization of the model. Therefore, we did not set up a
separate test set.

F. EVALUATION INDICES

The target of the fabric smoothness appearance assess-
ment task is the different smoothness degrees in sequence.
When evaluate the performance of the assessment methods,
the closer the prediction is to the label means the better
the model performs. As a result, in our study, classification
accuracies under errors of 0 degree, 0.5 degree, and 1 degree
are calculated, namely acc0, acc0.5, and accl respectively.
The classification accuracy under a specific error & can be
formulized as the percentage of samples whose prediction
error is not larger than e. Therefore, for a testing set T =
(x;, yi)?i 1» the acc0, acc0.5, and accl for a predictor r can be
calculated as follow:

1 M
accQ = 1\_421'=1h(|r(xi) —vil,0), (18)
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FIGURE 8. The testing accuracy of the classifiers trained with
hand-crafted features, CNN features, and the proposed fusion features.

1 M
acc05 =+ Do hre) =il 0.5, (19

1 M
acel = =23 0 h(r @) =yl 1), (20)
where £(-) is a discriminant function as

Aoy ={ ©=° 1)
0 &g>¢
Compared with the commonly used prediction accuracy,
the accuracies under different errors can better evaluate the
performance of the methods on such problems with different
error tolerances.

V. RESULT AND DISCUSSION

A. VERIFICATION OF COMPLEMENTARITY BETWEEN
FEATURES

In this study, the proposed image classification frame-
work fuses the hand-crafted features and the CNN features.
To explain the motivation and demonstrate the effectiveness
of the fusion features, in this experiment, the hand-crafted
features, the CNN features, and the fusion features were used
to train the proposed image classification framework respec-
tively. The testing accuracies (accO) on different smoothness
appearance degrees of them are given in Figure 8. The model
trained with the hand-crafted features resulted higher accura-
cies on the samples in SA-1, SA-2, SA-2.5, and SA-3, while
the CNN feature showed better adaptability on the samples
in SA-1.5, SA-3.5, SA-4, and SA-5. This experimental phe-
nomenon shows that these two types of features have a certain
difference in the ability to describe the fabric smoothness
appearance. It is an inspiration for the research work in this
article.

On the other hand, by combining these two types of fea-
tures, the fusion features showed the complementary use of
the above two features in the experiment. It can be observed
from Figure 8 that, in most smoothness appearance degrees,
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TABLE 2. The comparison results of different methods.

Method acc0 (%) acc0.5 (%) accl (%) Parameters Operation time (s)
Edge Features+kNN [9, 10] 76.9 95.6 99.74 - 0.1178
GLCM+BP [7] 68.9 92.2 99.74 - 0.0121
GLCM+SVM [8] 77.4 933 100 - 0.0136
Wavelet+SVM [12] 722 90.9 99.48 - 0.0243
Fourier [11]+SVM 79.2 94.6 100 - 0.0269
MS-SMF +SVM [29] 82.6 95.8 100 - 1.0916
Shape features + SVM [27] 79.5 95.1 100 - 0.2670
ScSPM+SVM [4] 69.9 90.1 99.74 - 2.1051
AlexNet [60] 76.3+1.30 91.1+0.76 99.74 6.1 x 107 0.0459
ResNet18 [64] 79.6+2.31 92.9+1.98 100 1.2 x 107 0.1180
ResNet34 [64] 79.9+2.40 92.1+2.30 100 2.2 x 107 0.2187
Inception v3 [65] 80.0+1.64 90.9+1.78 99.56 2.7 x 107 0.3569
VGGNet [66] 77.8+1.98 92.4+2.41 100 1.4 x 108 0.7738
c¢CNN [31] 84.0+1.00 95.4+1.48 100 4.3 x 10° 0.0312
The proposed framework 85.2+0.92 96.1+0.37 100 6.1 x 107 1.1350

the testing accuracy of model trained with the fusion fea-
tures was higher than the other two, or close to the bet-
ter of the other two. The only exception is the results in
SA-1.5, where the proposed feature fusion framework only
reached the middle value (53.6%) of the others (46.9% and
64.3%). In fact, the general performance of all the models on
SA-1.5 was undesirable. The reason may be that the sample
size at this level is smaller than others (as can be seen in
Table 1), resulting in insufficient model training.

B. COMPARISON RESULTS

In the 2D-image-based objective fabric smoothness appear-
ance assessment field, different methods have been pro-
posed with different image features and classification models.
In this experiment, we compared the proposed framework
with the existing different methods on the same data set.
On the other hand, in the studies of 3D methods, researchers
have adopted more advanced techniques in feature extraction.
For example, Ouyang [27] defined a set of shape features
(wrinkling density, wrinkling hardness, tip-angle, wrinkling
roughness), and Xu er al. [4] used the dense-sift feature
encoded by linear spatial pyramid matching using sparse cod-
ing(ScSPM). These features were transferred into 2D fabric
images and tested in this experiment.

In addition, for the CNN models have been widely used
in different image classification tasks, we discussed the per-
formance of a series of CNN models on fabric smooth-
ness appearance assessment, i.e. AlexNet [60], GooglLeNet:
Inception V3 [65], ResNet [64], and VGGNet [66]. The main
purpose of this experiment is to verify the effectiveness and
superiority of the proposed method. Because the results of
each training of the CNN models have a certain randomness,
the CNN model was trained and tested three times, and the
results were recorded as the average value and standard devia-
tion of the accuracies, i.e. acc0, acc(.5, and acc1. The average
accuracies reveal the general performance of the models on
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the data set, and the standard deviations of the accuracies
describe their training stability.

The comparison results are given in Table 2. In com-
parison, the proposed framework achieves the best average
values of accO and acc0.5, which are 85.2% and 96.1%,
respectively. Compared with methods in fabric smoothness
evaluation, the proposed framework further improves the
evaluation performance. Compared with the general CNN
methods for image classification, the proposed framework
shows better adaptability in this particular task. In addi-
tion, the image samples for the standard replicas are pre-
dicted correctly by the proposed framework, which means
the trained framework learned an effective distribution. Gen-
erally, the comparison experiment demonstrates the superior
effectiveness to fabric smoothness evaluation of the proposed
framework.

The standard variation (std) of the classification accuracies
in Table 2 shows the training stability of the CNN models.
As can be seen, the proposed method has the lowest acc0-std
and acc0.5-std compared with the other CNN models. These
results mean that the proposed method has the best stability
in different CNN models. A possible reason is that the hand-
crafted features and pre-trained CNN model are both unsu-
pervised in the framework, which makes the training more
stable.

In addition, for the accls that less than but very close to
100%, because only a very small number of samples are
mis-predicted, the standard deviation of the them is always
lower than 0.01. These too low standard deviations are not
only difficult to be written into the table, but also lose the
significance of expressing training stability. In addition, from
the perspective of accl only, for most models have reached
an accl of 100%, it already reveals the undesirable training
stability performance of the models with accl lower than
100%. Thus, the accl is a sufficient indicator even without
standard deviation of it.
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TABLE 3. Accuracy loss of different methods under varying illumination
intensity.

Method acc0-loss (%)

Edge Features+kNN [9, 10] 7.27
GLCM+SVM [8] 2.08
Fourier [11[+SVM 1.30
Wavelet+SVM [12] 2.60
Masking Model+SVM [29] 1.04

CNN 1.89+0.92

The proposed method 1.69+0.63

In terms of computational efficiency, the proposed frame-
work performs not so well. However, this does not affect
the practical application of the framework. For the fabric
smoothness assessment is not a strong time-dependent task,
the relatively low computation efficiency of the model does
not affect its application in the industry.

In summary, the performance of the proposed framework
in this experiment can well meet the needs of industrial
applications.

C. MODEL ADAPTABILITY TO IMAGE ACQUISITION
ENVIRONMENT

In instrumental application, the image acquisition environ-
ment may change in different situations. The environment
adaptability of the method determines the ability of the
trained model to expand its application. In actual application,
most attributes of the image acquisition environment can be
setup stably by a well-set image acquisition system, such as
camera parameters, light source position, and sample posi-
tion. The only uncertainty is illumination intensity.

In this experiment, we test the illumination intensity adapt-
ability of the proposed method comparing with different
previous methods. The accO loss caused by changes in light
intensity was used as the evaluation index. The lower the
acc0 loss, the better the model’s adaptability to lighting inten-
sity.

Table 3 shows the experimental results. Compared with
other methods, the average accO loss of the proposed method
is not the lowest, being 1.70%. But compared with the best
performing method in [29], the accO loss of the proposed
method is only 0.66% higher than it, which is still at an
acceptable level. From the perspective of standard deviation,
the proposed framework shows a better performance on aver-
age accuracy and deviation than the CNN model. This ver-
ifies that the fusion of hand-crafted feature can improve the
model’s adaptability to the illumination intensity and training
stability to a certain extent.

D. MODEL ADAPTABILITY TO FABRIC VARIETY

Since we separate the fabric image decoloration task from the
smoothness evaluation, this study does not discuss the effect
of the color texture to the smoothness evaluation of the fabric.
Besides the color texture, the visual texture produced by the
fabric structure, namely structural texture, may produce noise
in the images for smoothness appearance assessment. In this
experiment, models were tested on the different varieties of
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FIGURE 9. Distribution of the prediction accuracy (acc1) of models on
different fabric varieties, where Model 1 is the SVM model trained with
the hand-crafted features; Model 2 is the CNN model; Model 3 is the
proposed image classification framework.

fabric samples to discuss the effect of structural texture on the
evaluation of fabric smoothness appearance.

In Figure 9, the model 1 is the SVM model trained with
the hand-crafted features; model 2 is the CNN model; and
model 3 is the proposed image classification framework. And
the four varieties of fabric correspond to the four fabrics
introduced in table 1, which have different fabric structures.
It can be observed that the testing accuracy of the models does
not show a significant difference on different varieties, which
proves the variety adaptability of such 2D-image-based meth-
ods. This is consistent with the fact that the structural texture
is difficult to be visually observed in our fabric images (as can
be seen from the fabric images in Figure 6 and 7). The reason
may be that the image resolution we used is relatively to low
(lower than 20 pixels per inch) to capture the structural texture
on the fabric surface. However, the varieties in our data set is
too few to fully prove this conclusion. The fabric image data
set needs to be extended in our further study.

E. EFFECTIVENESS OF FEATURE FUSION AND SAMPLE
FILTERING

It is expected that the introduction of hand-crafted features
with unsupervised attributes will improve the training stabil-
ity of the model, and the fusion of CNN features and hand-
crafted features will result in a complementary effect and
improve the overall accuracies in test. In addition, the mis-
labeled sample filtering is expected to improve the general
performance of the model.

In this experiment, to evaluate the effectiveness of the
sample filtering module and the multi-level feature fusion
module, we performed a set of ablation experiment on the
proposed image classification framework. In the experiment,
pre-trained AlexNet [60], ResNet18 and ResNet34 [64] were
tested as basic CNN models. For every basic CNN model,
the performance of the model was tested with the hand-
crafted feature fusion (hcf) and the mislabeled sample fil-
ter (msf) conducted in turn.

The test results are shown in Table 4. For each basic
model, the best results obtained in the ablation experiment are
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TABLE 4. Ablation experiment results for hand-crafted feature fusion and
mislabeled sample filtering.

Method acc0 (%) acc0.5 (%) accl (%)

AlexNet 76.3£1.30 91.1+0.76 99.73
AlexNet-+hef 84.4+0.56 95.9+0.24 100
AlexNet+hcf+msf 85.2+0.92 96.1+0.37 100
ResNet18 79.6+2.31 92.9+1.98 100
ResNetl8+hcf 82.8+0.40 94.7+0.30 100
ResNet18+hcf+msf 83.9+0.26 96.1+0.52 100
ResNet34 79.9+2.40 92.1+2.30 100
ResNet34+hcf 83.3+0.40 96.0+0.15 100
ResNet34+hcf+msf 84.0+0.79 95.8+0.45 100

hcf: fusion with hand-crafted features;
msf: mislabeled sample filtering.

shown in bold in the table. From the perspective of accuracy
and stability, the implementation of the hand-crafted feature
fusion effectively improves the performance of the CNN
models. Such test results verify the expectations presented
in this paper that the fused hand-crafted features and CNN
features result in a complementary effect in the proposed
image classification framework.

In addition, from the perspective of accuracy, it can be
observed that, in general, the test accuracies of the models
increase with the implementation of the mislabeled sample
filter (msf). The only exception is that the implementation of
msf on ResNet34 reduces the acc0.5 of the model by 0.18%.
However, the experimental results show that the implemen-
tation of msf widely improves the standard deviations of
the model training results. This means that the implementa-
tion of msf has a certain negative effect on the stability of
model training. The main reason could be that the filtering
process reduces the training sample size, which makes the
training more difficult. However, this stability weakening is
relatively low and acceptable in application, and this problem
is excepted to be mitigated by expanding the training sample
size.

F. MODEL ADAPTABILITY TO LABEL NOISE
The proposed image classification framework contains a
mislabeled sample filtering module, which is established to
mitigate the negative effect of label noise in training process.
To further verify the effectiveness and noise adaptability of
this module, we added quantitative label noises to the training
data set, and then discuss the testing performance of the
framework with or without the mislabeled sample filtering
module. The noise z was randomly added to a certain propor-
tion (namely noise rate, y) of sample labels in the training set.
The noised sample label was randomly changed to one of its
adjacent labels (simulating the actual subjective evaluation).
In the experiment, y was valued in 0%, 5%, 10%, 15%, 20%}
and every model was trained three times with 10-fold cross
validation. The average testing results are given in Figure 10.
Figure 10 (a) illustrates the trend of accO of the framework
with or without msf in different noise rates. As the noise
rate increases, the accO for both types of frameworks shows
a decreasing trend. And the accO of framework with msf is
always the higher, except when y reaches 20%. This result
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FIGURE 10. Testing prediction accuracies of the proposed framework
with mislabeled sample filtering (msf) and framework without msf on
different noise rates: (a) acco, (b) acc0.5.

is consistent with our expectation, that is, the msf module
can effectively reduce the interference of label noise on the
model performance, but when the noise rate is too high, the
effectiveness of the msf module may be reduced.

On the other hand, as in Figure 10 (b), the acc0.5 of the
framework with msf is very stable to the increasing of noise
rate. And the acc0.5 of framework without msf does not show
the same trend, which decreases with the increase of noise
rate. This result reveals that although the msf module can-
not completely preven the model performance degradation
caused by the label noise, it can effectively control the error
within a small range.

G. DISCUSSION ON FEATURE FUSION FRAMEWORK
In the experiment described earlier, we compared the
proposed framework with a series of methods for fabric
smoothness appearance evaluation and some general image
classification models, which demonstrates the its superior
performance in the task. As the proposed framework with the
fusion of hand-crafted and CNN features, in this experiment,
we compared it with other feature fusion frameworks to
further verify its structural superiority.

As introduced in section II, for hand-crafted and CNN fea-
tures, the feature fusion frameworks mainly include the fol-
lowing categories: feature level fusion [32]-[34], [37], [38],
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TABLE 5. The comparison results of different feature fusion frameworks.

Feature fusion framework acc0 (%) acc0.5 (%) accl (%)
Hand-crafted feature only 82.6 95.8 100
CNN feature only 75.6 933 99.74
Feature level fusion 82.1 95.3 100
Fusion by ensemble 77.1 96.1 100
Multi-level fusion 83.9 95.8 100
The proposed framework

) 84.4+0.56 95.9+0.24 100
(without msf)

msf: mislabeled sample filtering.

fusion by ensemble [35], multi-level fusion (that uses both
feature level fusion and ensemble) [42], [67], and joint level
fusion. As a representative of joint level fusion, the proposed
framework was compared with the other three. In the com-
pared frameworks, we used SVM and PCA as classifier and
feature reducer for they are widely used in the field. The
comparison results are given in table 5. In the table, as control
groups, the first row gives the testing accuracies of the clas-
sifier trained with the hand-crafted features, and the second
row shows the prediction accuracies of the classifier trained
with the CNN feature reduced by PCA.

From the perspective of acc0, except the proposed frame-
work, the multi-level fusion framework, which uses an
ensemble of the classifiers in first three rows, showed a better
performance than the others. In addition, the framework with
feature fusion by ensemble achieves the highest acc0.5 with
using an ensemble of the classifiers in the two control groups.
These results further prove the complementarity between the
hand-crafted and CNN features. In general, comparing with
the other framework, the proposed framework showed the
best overall performance. Although its acc0.5 was not the
highest, it was only 0.17% lower than the highest. This result
demonstrates the structure superior proposed framework.

VI. CONCLUSION

In this research, an effective image classification framework
with a multi-level feature fusion module and a mislabeled
sample filtering module was proposed for objective fabric
smoothness appearance assessment. The proposed frame-
work contains a mislabeled sample filter module and a multi-
level feature fusion module. In the comparison experiments,
the proposed framework achieved 85.2%, 96.1%, and 100%
average accuracies under the errors of 0 degree, 0.5 degree,
and 1 degree respectively, outperformed the stat-of-the-art
models in existing research. Moreover, the training stability
of the framework has also proved to be the best among var-
ious CNN methods. The ablation experiment demonstrated
the important contributions of the multi-level feature fusion
module and the mislabeled sample filtering module in the
framework. And the proposed feature fusion module showed
superior performance than the other existing feature fusion
frameworks. More specifically, when the label error rate in
the training set increases, the sample filtering module limited
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the prediction error to a smaller range in the experiment.
Promisingly, the proposed framework can promote the indus-
trial application of fabric smoothness appearance evaluation.

However, the study still has the following limitations.
(1) Although we have explored the method for multi-color
fabric image decoloration in our previous study [25], the per-
formance of the smoothness appearance assessment methods
should be further discussed on the decolored multi-color
fabric images. (2) In order to further improve the training
stability of the proposed method, the fabric image sample size
should be further extended.
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