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ABSTRACT A novel vehicle rollover warning algorithm based on support vector machine (SVM) empirical
model is proposed to improve the real-time of un-tripped rollover warning algorithm and accuracy of
dynamic rollover warning. Considering the nonlinear characteristic of driver-vehicle-road interaction and
the uncertainty of modeling, the traditional deterministic methods cannot meet the requirements of accurate
vehicle rollover warning modeling. The probability method considering issues of uncertainty is applied to
design vehicle dynamic rollover warning algorithm. The SVM empirical model considers the uncertainties
of the driver-vehicle-road system and the real variability of the parameters, provides an explicit function of
vehicle rollover safety limit and its gradient, and utilizes the hypersurface visualization boundary to define the
rollover safety area and the unsafe area. Targeting on sport utility vehicle under the condition of high-speed
emergency obstacle avoidance, simulations are carried out to verify the proposed vehicle rollover warning
algorithm based on SVM empirical model and of the simulation results show that the proposed algorithm
has accurate warning and good real-time performance. It can effectively improve the warning accuracy of
vehicle dynamic rollover, reduce the interference of nonlinear and uncertainty, and significantly improve the
active safety performance with vehicle rollover prevention.

INDEX TERMS Rollover warning algorithm, support vector machine, empirical model.

I. INTRODUCTION
The major consequences of traffic accident are the serious
loss of life and property, and car rollover accident is one of
the most serious traffic accidents. According to statistics, car
rollover accidents have become the second most common
accidents only after frontal collision [1]. In 2014, although the
car rollover accident rate in France was only 4.7%, it caused
14% deaths of all traffic casualties. At the same time, rollover
accidents tend to damage public facilities such as roads and
bridges, and even caused serious environmental pollution [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiangxue Li .

Therefore, the research on vehicle rollover warning and
control has received worldwide attention. The research on
vehicle rollover warning and control can be classified into two
categories: active and passive rollover protection systems.
Among them, the active vehicle rollover protection system
improves vehicle rollover stability through active control
strategy and device [3]–[6]. For example, Li and Liu [7] uses
active braking based on predictive control to achieve vehi-
cle rollover stability control, but it involves less non-linear
characteristics and uncertainties of the vehicle system.
Ghazali et al. [8] used front wheel steering and active braking
to control vehicle rollover stability. Among them, the for-
mer used low-order model prediction to control and track
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error, while the latter tracked the error through controlling
vehicle speed, but they didn’t provide the impact of tracking
error threshold on rollover control effect. Braghin et al. [9]
proposed a rollover control strategy based on aerodynamic
load estimation. Anubi and Crane [10] used variable stiff-
ness suspension to resist vehicle lateral overturning moment.
Zong et al. [11] used differential braking and synovial mem-
brane control to control rollover of heavy vehicles, which
can effectively improve rollover and yaw stability of heavy
vehicles. Dahmani et al. [12] used robust controller to control
rollover stability under extreme conditions. Jin et al. [13]
proposed the use of robust control and genetic algorithm for
vehicle rollover warning and control. The algorithm has good
robustness in vehicle longitudinal centroid position change.

In addition, passive vehicle rollover protection sys-
tems, such as rollover warning systems, are often used
for rollover control [14]–[19]. For example, Mashadi and
Mostaghimi [20] proposed the vehicle dynamics model when
the wheels were lifted, and deduced the rollover threshold.
Li et al. [21] designed an improved predictive LTR (IPLTR)
to predict load transfer rate as a rollover warning index.
Wang and Chen [22] proposed a method to predict rollover
hazard by using the change of centroid position before and
after wheel lifting. However, the accuracy of centroid position
estimation is difficult to guarantee. He et al. [23] proposed
using reliability method to carry out rollover early warning
control of heavy vehicles. Imine et al. [24] used the esti-
mated tire vertical force to calculate the vehicle load transfer
rate, and then carried out rollover hazard warning control.
Zhu et al. [25] proposed an improved Time to Rollover (TTR)
method for rollover early warning control of heavy vehicles,
in which a Kalman observer was designed to estimate the
roll angle of vehicles in real time, thus ensuring the calcu-
lation accuracy of load transfer rate LTR and TTR values.
Chou and Chu [26] proposed using grey system theory to
carry out rollover early warning control of heavy semi-trailer
vehicles, in which grey rollover index GRI was used as the
basis for rollover risk monitoring.

In summary, most rollover control systems begin to work
when the vehicle is going to rollover, and the driver-vehicle-
road environment can be regarded as a complex interactive
system at that time. The driver or active rollover control
device must timely correct the speed and steering of the
vehicle according to the vehicle dynamic response and road
environment information, so as to avoid the deterioration of
vehicle stability.

However, the driver-vehicle-road environment system
mentioned above has strong nonlinearity and uncertainty of
modeling, and the traditional deterministic scheme is not
enough to establish accurate model. A vision-based support
vector machine (SVM) steering control algorithm of vehi-
cle is proposed of autonomous navigation, the test result
indicates that the algorithm has better accuracy and robust-
ness [27]. Zhu et al. [28] proposed a new dynamic driving
condition identification method. K-Means algorithm, used
to set up the rollover threshold value and Baum-Welch

algorithm for optimizing the proposed rollover warning
model. The driving pattern recognition (DPR) uses clus-
ter analysis to classify driving cycles into different patterns
according to the features extracted from the historical driving
data sampling window and utilizes pattern recognition to
identify real-time driving patterns. [29]. Yan et al. [30] pro-
posed a k-MPSO clustering algorithm for the construction of
typical driving cycles. Zhang et al. [31] proposed a front vehi-
cle detection algorithm for intelligent vehicle based on SVM
method. The experimental results show that the approach can
improve the recognition rate and the robustness of preceding
vehicle detection for the intelligent vehicle. As mentioned
above, SVM is a novel learning method with a theoreti-
cal basis and suitable for small samples. It basically does
not involve probability measure and law of large numbers,
and also simplifies the usual classification and regression
problems.

Therefore, it is suggested that the probabilistic algorithm
considering uncertainties be applied to the design of vehicle
dynamic rollover warning algorithm to reduce the strong
nonlinearity of the system and uncertainties of the external
interference and effectively improve the accuracy of vehicle
dynamic rollover warning.

The novelty of this study is to develop a vehicle rollover
warning method considering the uncertainty of driver-
vehicle-road environment, in which the system uncertainty
is modeled by random variables and whether it exceeds the
critical value to assess the risk of vehicle rollover. At the same
time, due to the real-time requirement of calculation, it is
necessary to determine the most relevant vehicle parameters
as random variables in this paper.

In addition, the traditional vehicle rollover prediction index
LTR can only be calculated by solving coupled dynamic
equation, and cannot be expressed by explicit function. In this
paper, support vector machine (SVM) theory is used to design
empirical model, which can provide an explicit function
of rollover safety limit and its gradient. At the same time,
the visual hypersurface is used to define the safe and unsafe
areas of vehicle rollover, which further reveals the charac-
teristics of vehicle rollover. The simulation results verify the
correctness of the model and algorithm.

The rest of the paper is organized as follows: vehicle
model and rollover risk assessment indicator are devel-
oped in Section 2. Section 3 focuses on the empirical
model of support vector machine. The influence of param-
eters of SVM model on rollover prediction results are
presented in Section 4. Finally, the conclusions are given
in Section 5.

II. VEHICLE MODEL AND ROLLOVER RISK ASSESSMENT
INDICATOR
A. VEHICLE MODEL
In this research, a 3 degree of freedom (DOF) linear vehicle
model is used to design rollover early warning controller.
As shown in Figure 1, the 3-DOF vehicle model includes roll,
yaw and lateral motion. The following assumptions are made:
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FIGURE 1. Schematic diagram of simplified 3-DOF vehicle model.

(1) The model uses the front wheel steer angle as input;
(2) The vertical motion of vehicle is neglected;
(3) The pitching motion of the vehicle is neglected;
(4) The role of aerodynamics is neglected;
(5) The influence of load transfer on the characteristics of

tire is neglected;
According to the Daramber’s principle, three equilibrium

equations can be derived as the following.
The moment balance equation around axis Z is

Jzzψ̈ = F12lv − F34lh (1)

The force balance equation in Y direction is

m(V̇y + ψ̇Vx) = F12 + F34 (2)

The moment balance equation around axis X is

Jxeqφ̈ = mayh cosφ + mgh sinφ − kφ − cφ̇ (3)

where, m is the mass of the whole vehicle, Jxeq is the rotating
inertia of the vehicle mass around the roll axis, and Jzz is the
rotating inertia of the vehicle mass around the Z axis. lv is
the distance from the center of gravity to the front axle; lh is
the distance from the center of gravity to the rear axle;
ay is the lateral acceleration of the vehicle; ψ is the side slip
angle of the vehicle;φ is the roll angle of the vehicle; vx , vy are
the longitudinal and lateral speed of the vehicle; F12 and F34
are the lateral force of the front and rear tires of the vehicle is
defined as sum; α12 and α34 are the roll angle of the front and
rear tires; k is the cornering stiffness of the suspension; c is
the damping coefficient of the suspension. At the same time,
the following conditions are satisfied

F12 = Cvα12 (4)

F34 = Chα34 (5)

Jxeq = Jxx + mh2 (6)

where Jxx is the rotating inertia of vehicle mass around longi-
tudinal axis of vehicle body center of gravity; Cv and Ch are
the cornering stiffness of the front and rear tires respectively.

And h is the distance from the center of gravity to the roll
center;

With small angle assumption, it satisfies the following
formula.

ay = V̇y + Vxψ̇ (7)

α12 = δ − β −
lv
Vx
ψ̇ (8)

α34 = −β +
lh
Vx
ψ̇ (9)

The motion differential equation of the simplified
3-DOF vehicle model is obtained and written in the form of
state equation.

β̇ = −
σJxeq
mJxxVx

β +

(
ρJxeq
mJxxV 2

x
− 1

)
ψ̇

−
hc

JxxVx
φ̇ +

h(mgh− k)
JxxVx

φ +
CvJxeq
mJxxVx

δ (10)

ψ̈ =
ρ

Jzz
β −

κ

JzzVx
ψ̇ +

Cvlv
Jzz

δ (11)

φ̈ = −
hσ
Jxeq

β +
hρ

JxeqVx
ψ̇ −

c
Jxeq

φ̇ +
mgh− k
Jxeq

φ +
hCv
Jxeq

δ

(12)

where it defines 
σ = Cv + Ch
ρ = Chlh − Cvlv
κ = Cvl2v + Chl

2
h

(13)

B. ROLLOVER RISK ASSESSMENT INDICATOR
Tsourapas et al. [32] proposed an algorithm for rollover haz-
ard criterion based on actual vehicle lateral load transfer rate.
The roll stability of vehicles can be dynamically reflected by
the Load Transfer Ratio (LTR). LTR is simply defined as the
ratio of the difference of the vertical loads on the wheels on
both sides of the vehicle to the sum of the vertical loads in
Equation (14) as below.

LTR =

∣∣∣∣ n∑
i=1

(FLi − FRi)

∣∣∣∣
n∑
i=1

(FLi + FRi)
(14)

where FLi and FRi are the vertical loads on the left and right
wheels of the vehicle respectively, and i and n are the position
of the axle and the total number of axles respectively.

Miege [33] proposed a set of algorithm for load transfer
rate which can be used to control roll stability on test vehicle.
LTR can be rewritten as follows,

LTR =
ay
g

(
h+ hRC

dt

)
−

h
dt
φ (15)

where h is the distance from the center of mass to the center
of roll; hRC is the height of the roll center; dt is the vehicle
tread; ay is the lateral acceleration at the center of gravity; and
φ is the roll angle of the spring-loaded mass of the vehicle.
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In summary, LTR is a value that varies between [−1, 1],
and LTR is 0 when vehicles are driving on straight roads.
In extreme conditions, when one side of the axle is lifted off
the ground, the LTR is −1 or 1.
In this study, the rollover risk assessment index is defined

as the rollover limit state function R(x). The index can effec-
tively define the safety boundary of rollover hazard, that is,
in the dangerous area of rollover, the function value is posi-
tive; in the safe area, the function value is negative. Specific
definitions are as follows,

R(x) = |LTRmax(x)| − LTRthreshold (16)

where LTRthreshold is the preset threshold of the lateral load
transfer rate, and LTRmax(x) is the maximum value of lateral
load transfer rate in the process of vehicle rollover hazard
prediction. x is an n-dimensional random variable with all the
parameters affecting rollover stability.

A lot of research work has been carried out to determine
the key vehicle condition and parameters involved in roll
over. One finding [34] is that, with other vehicle parameters
unchanged, vehicle height of mass center, vehicle longitu-
dinal speed, tire lateral stiffness and track of vehicle are,
in turn, the most influential factors in vehicle rollover sta-
bility. Because the larger the dimension of random variables
is, the more the calculation work of subsequent rollover
hazard prediction are involved, which affects the real-time
performance of the algorithm. Therefore, the two parameters
including vehicle height of mass center and vehicle longi-
tudinal speed are selected in this paper as two-dimensional
random variables for the follow-up processing of rollover
warning.

III. EMPIRICAL MODEL OF SUPPORT VECTOR MACHINE
A. SVM ALGORITHM
Support vector machine (SVM) was first proposed by
Vapnik et al. in 1998 [35]. It has many unique advantages
in solving small samples, nonlinearity and high-dimensional
pattern recognition. Support vector machine (SVM) is based
on the Vapnik-Chervonenkis (VC) dimension theory of
statistical learning theory and the principle of structural
risk minimization, seeking the best compromise between the
complexities of the model and learning ability according to
the limited sample information. The idea of support vector
machine classification model is based on the principle of
structured risk minimization which makes it different from
traditional neural network model. SVM model seeks to min-
imize the upper bound of generalization error rather than
empirical error. As SVM algorithm has strong nonlinear
classification ability and can be used for classification and
regression, especially as a better classification tool, it has
been widely used in pattern recognition and other fields.

Two-class support vector machine algorithm is used in this
research. Two types of training samples are unsafe and safe
zones. The optimal classification surface of SVM requires
that the classification line not only separates the two types
of training samples correctly, that is, the training error rate

FIGURE 2. Optimal classification surface of SVM.

is 0, but also maximizes the classification interval (margin).
As shown in Figure 2, H is the classification line that sep-
arates the two types of samples, H1 and H2 from the two
samples are the points closest to H and parallel to H, and the
margin is the vertical distance between H1 and H2. The red
and blue points in the graph are support vectors, which are
also the points closest to the optimal classification surface.

The two-class support vector machine algorithm is as fol-
lows: the training data set is (x1, y1), . . . ,(xn, yn), x∈Rn,
y∈{+1, −1}. The linear discriminant function is,

g(x) = (wT x)+ b (17)

where, in this paper, the training data x is the data of longi-
tudinal speed and height of mass center; y is class tag, yn ∈
{−1, 1}; w is normal vector of hyperplane. The discriminant
function is normalized to make that all the samples of the two
classes to satisfy the condition |g(x)| ≥ 1. When y = −1,
g(x) ≤ −1; When y=1, g(x)≥1. In which the sample closest
from the classification plane is when is |g(x)| = 1.

The objective of this study is to find the decision-making
surface with the largest classification interval. Firstly,
the margin classification interval needs to be figured out.
Because the nearest sample from the classification surface
satisfies |g(x)| = 1, the margin classification interval is
defined as (18).

m arg in =
2
‖w‖

(18)

where, m arg in is the maximum value of distance from any
sample point to hyperplane. So the optimal classification sur-
face problem can be expressed as the following optimization
problem,min

1
2
‖w‖2 + C

n∑
i=1

ξi

yi[(wT x)+ b] ≥ 1− ξi, i = 1, 2, · · · , n

(19)

where, ξi is classification loss for the ith sample point.
In order to consider the generalization performance of the
algorithm. b is the solution of the above problem.The penalty
factor C is used to control the training error of the sys-
tem. High values of C favors the separation between the
two domains but make this separator sensitive to data noise.
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If there are errors on the system, less values of C are sug-
gested. This can lead to give less influence of the uncertainties
and reduce the number of support vectors.

The above optimization problem is a typical conditional
extremum problem, which can be solved by Lagrange multi-
plier method as follows,

L(w, b, a) =
1
2
‖w‖2 −

n∑
i=1

ai[yi(wT x + b)− 1] (20)

where, ai is Lagrange coefficient; partial derivative of
Lagrange function is obtained and make it equal to zero.

w∗ =
∑

aiyixi
n∑
i=1

aiyi = 0
(21)

By introducing the optimal solution of L, we can get the
optimal solution.

L(w∗, b∗, a) = −
1
2

∑
i

∑
j

aiajyiyj(xi, xj)+
∑
i

ai (22)

To satisfy the optimum solution w∗ and b∗ need to satisfy
the following,

n∑
i=1

ai(yi[(wT x)+ b]− 1) = 0 (23)

For most samples, they are not on the nearest line to the
classification surfaces, that is when yi[(wT x) + b] − 1 > 0,
ai = 0; Only a few data points (support vectors) on the
boundary satisfy,

yi[(wT x)+ b]− 1 = 0

ai 6= 0 (24)

B. EXPLICIT FUNCTION OF ROLLOVER LIMIT STATE
FUNCTION
Support vector is only a small part of the whole samples,
which greatly reduces the computational complexity involved
in the original problem. Finally, the optimal classification
function (explicit function of limit state function) of the above
problem is obtained.

R(x) = sgn
{
(w∗.x)+ b∗

}
= sgn

{∑
aiyi(xi.x)+ b∗

}
(25)

where sgn() is a sign function. Since the non-support vectors
correspond to ai = 0, the summation of the above formulas
is actually only for support vectors.

For nonlinear problems, SVM tries to transform them into
linear problems in another space by means of nonlinear trans-
formation which can be realized by defining proper inner
product function (kernel function). At present, the commonly
used kernel functions include polynomial kernel, radial basis
function kernel and sigmoid kernel and etc., and the selection
of their parameters has a great impact on the final iden-
tification results [36]. The optimal classification function

FIGURE 3. An empirical model of vehicle rollover prediction based
on SVM.

(explicit function of limit state function) corresponding to the
kernel function can be expressed as follows,

R(x) = sgn
{∑

aiyiK (x, xi)+ b∗
}

(26)

C. EMPIRICAL MODEL OF VEHICLE ROLLOVER HAZARD
An empirical model for vehicle rollover hazard prediction
is built using SVM algorithm. The essence of the empirical
model is a two-class support vector machine classifier, which
determines the explicit function of vehicle rollover limit state
function. That is, a hypersurface is defined to approximate
as much as possible the separating surface between vehi-
cle rollover hazard area and safety area, and continuously
divide the vehicle state samples into two different areas:
rollover unsafe area (R(x) > 0: unsafe)and rollover safe area
R(x) < 0: safe). The empirical model is shown in Figure 3.
As shown in Figure 3, the driver-vehicle-road environment

model in Carsim software is selected to obtain vehicle states
and parameters, and two kinds of variables (deterministic
variable and random variable) are used as inputs of the empir-
ical model for vehicle rollover hazard prediction. Among
them, the random variables include the height of mass center
and the longitudinal speed which are most closely related
to vehicle rollover. After normalizing the input variables,
the SVM classification algorithm is used to determine the
sign of rollover limit state function, and the hypersurface is
used to visually define the safety and unsafe areas of vehicle
rollover. After trained by a large number of off-line training
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FIGURE 4. Carsim SUV rollover warning simulation.

TABLE 1. Vehicle parameters of SUV model.

samples, the empirical model of vehicle rollover prediction
based on SVM can be used for on-line rollover warning
control of vehicle rollover status.

IV. THE INFLUENCE OF PARAMETERS OF SVM MODEL
ON ROLLOVER PREDICTION RESULTS
In order to verify the above-mentioned vehicle rollover haz-
ard prediction model, the rollover warning simulation anal-
ysis of a SUV sport utility vehicle under fishhook working
condition is carried out in Carsim, the vehicle simulation
software of American Mechanical Simulation Company.
Carsim SUV rollover warning Simulation sketch is shown
in Figure 4.

The main parameters of SUV vehicle model are listed
in Table 1.

In this paper, the fish-hook test of National Highway Traf-
fic Safety Administration (NHTSA) is used to evaluate the
validity of the empirical model of SVM rollover prediction
for a SUV vehicle. The initial speed of the vehicle is 80 km/h,
and the road adhesion coefficient is set to 0.85. During the
test, the steering wheel angle input of the vehicle is shown
in Figure 5, the longitudinal velocity the vehicle is shown
in Figure 6, the lateral acceleration at the center of mass of
the vehicle is shown in Figure 7, and the tire force of the
four wheels and the load transfer of the vehicle are shown
in Figure 8 and Figure 9, respectively.

As shown in Figure 5, at the initial position of the test
condition, the driver quickly makes a left turn of 294 degrees
and then makes a right turn-back operation of 294 degrees.
In this process, the longitudinal velocity of the vehicle is
shown in Figure 6. The lateral acceleration change at the

FIGURE 5. Steering wheel angle.

FIGURE 6. The longitudinal velocity.

FIGURE 7. The lateral acceleration.

center of mass is shown in Figure 7, and it can be seen that
themaximum lateral acceleration in the test is above 0.8g; and
the tire forces curve of the four wheels is shown in Figure 8.
The tire forces of the two wheels on the left side of the vehicle
increases rapidly to over 8000N, while the tire force of the
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FIGURE 8. The tire forces.

FIGURE 9. The lateral load transfer rate.

two wheels on the right side decreases to about 500N. The
change of vehicle lateral load transfer rate under the whole
simulation condition is shown in Figure 9. During the abrupt
steering process of 2-6s, the vehicle lateral load transfer rate is
close to 0.8. That is to say, during the steering process, most
of the right tire force is transferred to the left tire, and the
wheel is about to be lifted off in the critical state. At this time,
the vehicle rollover stability is very poor.

The SVM rollover hazard empirical model is used to
evaluate the rollover hazard of SUV vehicle, and the visual
hypersurface is used to define the rollover hazard and safety
area, which lays the foundation for the subsequent rollover
warning.

Vehicle longitudinal velocity and vehicle height of mass
center are selected as two random input variables of
the model. The input space of the sample is defined as
follows.

0 =

 x = (V , h)
V ∈ [−20km/h, 80km/h]
h ∈ [0.672m, 0.688m]

 (27)

In addition, before applying the SVM model algorithm,
the above two random variable vectors must be normalized

FIGURE 10. Vehicle rollover risk recognition (four-order polynomial).

so that their range of values belongs to [−1, +1], so as to
speed up the solution of the optimal solution. The threshold
value of lateral load transfer rate LTRthreshold in the rollover
limit state function of the vehicle rollover hazard empirical
model R(x) is set to 0.6.
In order to verify the influence of parameters of

SVM model on the prediction results of rollover hazard, this
paper chooses polynomial kernel and radial basis function
to compare the results of rollover hazard prediction when
choosing the kernel function of SVM algorithm.

A. POLYNOMIAL KERNEL OF SVM MODEL
In this algorithm, in order to analytically describe the dan-
gerous limit state of rollover, several multi-order polynomial
kernels are defined, and different penalty factor C is selected
to verify the algorithm.

(1) 4-order polynomial kernel function, penalty factor
C = 1
(2) 5-order polynomial kernel function, penalty factor

C = 1
Figure 10 shows that the SVM empirical model chooses a

fourth-order polynomial kernel function with penalty factor
C = 1, and there is one error sample in the recognition
result. When the SVM empirical model chooses a fifth-order
polynomial kernel function with penalty factor C = 1
in Figure 11, the recognition accuracy of the model
reaches 100%. It can be seen that increasing the order of
polynomial kernel function is conducive to improving the
recognition accuracy of the model. At the same time, the
circled samples in the empirical model mentioned above are
selected as support vectors. It can be found that the polyno-
mial kernel SVMmodel with less support vectors can be used
to visualize rollover risk classification and recognition, and
the recognition rate is satisfied.
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FIGURE 11. Vehicle rollover risk recognition (five-order polynomial).

FIGURE 12. Vehicle rollover risk identification (rbf_sigma=0.2).

B. RADIAL BASIS FUNCTION OF SVM MODEL
In order to analytically describe the limit state of rollover, sev-
eral kernels with different radial basis function coefficients
are defined to verify the algorithm.

(1) Radial basis coefficient rbf_sigma=0.2
(2) Radial basis coefficient rbf_sigma=0.16
In Figure 12, when the empirical model of SVMwith radial

basis coefficient of 0.2 is selected, an error sample appears
in the recognition result of the model, and when the radial
basis coefficient of the model is set to 0.16, the recognition
accuracy of the model reaches 100%. It can be seen that

FIGURE 13. Vehicle rollover risk identification (rbf_sigma=0.16).

reducing the radial basis coefficient can effectively improve
the accuracy of model recognition. At the same time, the cir-
cled samples in Figure 12and Figure 13 are the selected
support vector. Compared with the polynomial-based SVM
empirical model, the number of support vectors selected by
the radial-based SVM empirical model is much larger than
that of the polynomial-based SVM empirical model.

Vehicle rollover test is a very dangerous experiment. As the
first step of the research, simulation or hardware in the loop
experiment is a more practical verification method for the
proposed algorithm. SVM is a small sample learning method.
The advantage of SVM method is that it can achieve high
accuracy of classification with small sample and nonlinear-
ity. Other methods, such as Markov chain, Neural Networks
need a large number of samples to train, which is expensive
and inefficient. To verify the theoretical feasibility of SVM
method in identifying the safe and unsafe zone of vehicle
rollover under all conditions, simulation experiments in Car-
sim are carried out to collect the sample data (some data
used to train the SVM empirical model and the other data for
recognition to verify the proposed SVMmodel). The training
samples include 10 rollover safety and dangerous samples
(5 samples for each), through SVM algorithm training,
the training results are as shown in the Fig. 14.

At the same time, an experiment with a sample containing
50 rollover safe and dangerous conditions is carried out. The
experiment results are shown in the Fig.15. It can be seen that
SVMmethod can achieve high accuracy of classification with
small sample in terms of identifying the safe and unsafe zone
of vehicle rollover. The recognition accuracy of the model
is 100%.

The two kinds of SVM rollover hazard early warning
empirical models based on two different kernel functions
mentioned above can effectively identify and classify the
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FIGURE 14. SVM training results.

FIGURE 15. SVM experiment results.

rollover risk and safety samples of SUVvehicles, and visually
define the rollover safe and hazard zones. The accuracy of
model recognition is closely related to the parameter selec-
tion of the SVM empirical model. The simulation results
show that, compared with the higher order polynomial kernel
function and the correct radial basis function, the appropriate
empirical model of SVM can ensure a high accuracy with
small sample recognition. Once the parameters of the above
empirical model based on SVM are trained offline, the model
can be applied to the field of vehicle rollover warning and
control.

V. CONCLUSION
In this paper, a vehicle rollover early warning algorithm based
on the Support vector machine (SVM) model is proposed.
The Support vector machine model takes into account the
uncertainty of the driver-vehicle-road system and the real
variability of the parameters, and provides an explicit func-
tion of the vehicle rollover safety limit and its gradient. The
simulation results show that the proposed empirical model of
SVM can ensure a high accuracy of rollover warning with
small sample recognition.

A. PRACTICAL AND IMPLICATIONS
To prevent rollover accident, the proposed rollover risk warn-
ing algorithm can effectively identify and classify the rollover
risk and safety samples of SUV vehicles, and visually define
the rollover safe and hazard zones. The appropriate empirical
model of SVM can ensure a high accuracy with small sample
recognition.

Once the parameters of the above empirical model based
on SVM are trained offline, the model can be applied to the
field of vehicle rollover warning and control. In addition,
the traditional vehicle rollover prediction index LTR can
only be calculated by solving coupled dynamic equation,
and cannot be expressed by explicit function. This paper
solves this problem skillfully and it can ensure the good
applicability of the proposed algorithm. At the same time, the
rollover warning algorithm based on SVM empirical model
can reduce the strong nonlinearity and the interference of
external uncertainties.

B. FUTURE WORK
In future work, we will concentrates on some investigations:
(1) Vehicle rollover test is a very dangerous experiment.
As the first step of this research, simulation experiment is
a more practical verification method for the proposed algo-
rithm. In the next step, we will use it in the real vehicle
test to further verify the accuracy of the proposed algorithm.
In the real vehicle test, considering the availability and inter-
ference of parameters, such as measurement noise, we will
select the best random variables to establish and train the
SVM empirical model.

(2) In the next step, we will further study the impact of key
parameters such as penalty coefficient, radial basis coefficient
in the empirical model, as well as the practicability and
sensitivity analysis of the algorithm.

REFERENCES
[1] Z. J. Jin, J. S. Weng, and H. Y. Hu, ‘‘Rollover warning and anti-

rollover control for automobile,’’ Int. J. Dyn. Control, vol. 5, pp. 365–369,
Apr. 2007, doi: 10.3969/j.issn.1672-6553.2007.04.016.

[2] J. L. Evans, S. A. Batzer, S. B. Andrews, and R. M. Hooker, ‘‘Evaluation
of heavy truck rollover crashworthiness,’’ in Proc. Int. Proc. 19th Int. Saf.
Conf. Enhanced Saf. Vehicles, Orlando, FL, USA, Nov. 2005, pp. 91–96,
doi: 10.1115/IMECE2005-81300.

[3] G. Phanomchoeng and R. Rajamani, ‘‘New rollover index for the detection
of tripped and untripped rollovers,’’ IEEE Trans. Ind. Electron., vol. 60,
no. 10, pp. 4726–4736, Oct. 2013, doi: 10.1109/TIE.2012.2211312.

[4] J. Yoon, D. Kim, and K. Yi, ‘‘Design of a rollover index-based vehicle
stability control scheme,’’ Vehicle Syst. Dyn., vol. 45, no. 5, pp. 459–475,
May 2007, doi: 10.1080/00423110701245165.

[5] Y. Sellami, H. Imine, A. Boubezoul, and J.-C. Cadiou, ‘‘Rollover risk
prediction of heavy vehicles by reliability index and empirical mod-
elling,’’ Vehicle Syst. Dyn., vol. 56, no. 3, pp. 385–405, Mar. 2018, doi:
10.1080/00423114.2017.1381980.

[6] R.-H. Zhang, Z.-C. He, H.-W. Wang, F. You, and K.-N. Li, ‘‘Study on
self-tuning tyre friction control for developing main-servo loop integrated
chassis control system,’’ IEEE Access, vol. 5, pp. 6649–6660, 2017.

[7] L. Li, Y. Lu, R. Wang, and J. Chen, ‘‘A three-dimensional
dynamics control framework of vehicle lateral stability and rollover
prevention via active braking with MPC,’’ IEEE Trans. Ind.
Electron., vol. 64, no. 4, pp. 3389–3401, Apr. 2017, doi: 10.1109/
TIE.2016.2583400.

108332 VOLUME 8, 2020

http://dx.doi.org/10.3969/j.issn.1672-6553.2007.04.016
http://dx.doi.org/10.1115/IMECE2005-81300
http://dx.doi.org/10.1109/TIE.2012.2211312
http://dx.doi.org/10.1080/00423110701245165
http://dx.doi.org/10.1080/00423114.2017.1381980
http://dx.doi.org/10.1109/TIE.2016.2583400
http://dx.doi.org/10.1109/TIE.2016.2583400


T. Zhu et al.: Research on a Novel Vehicle Rollover Risk Warning Algorithm

[8] M. Ghazali, M. Durali, and H. Salarieh, ‘‘Path-following in model
predictive rollover prevention using front steering and braking,’’
Vehicle Syst. Dyn., vol. 55, no. 1, pp. 121–148, Jan. 2017, doi:
10.1080/00423114.2016.1246741.

[9] F. Braghin, F. Cheli, R. Corradi, G. Tomasini, and E. Sabbioni,
‘‘Active anti-rollover system for heavy-duty road vehicles,’’ Vehi-
cle Syst. Dyn., vol. 46, no. sup1, pp. 653–668, Sep. 2008, doi:
10.1080/00423110802033064.

[10] O. M. Anubi and C. D. Crane, ‘‘Roll stabilisation of road vehicles using
a variable stiffness suspension system,’’ J. Vehicle Syst. Dyn., vol. 51,
pp. 1894–1917, Nov. 2013, doi: 10.1080/00423114.2013.843713.

[11] C. Zong, T. Zhu, C. Wang, and H. Liu, ‘‘Multi-objective stability con-
trol algorithm of heavy tractor semi-trailer based on differential brak-
ing,’’ Chin. J. Mech. Eng., vol. 25, no. 1, pp. 88–97, Jan. 2012, doi:
10.3901/cjme.2012.01.088.

[12] H. Dahmani, O. Pages, A. El Hajjaji, and N. Daraoui, ‘‘Observer-based
robust control of vehicle dynamics for rollover mitigation in critical sit-
uations,’’ IEEE Trans. Intell. Transp. Syst., vol. 15, no. 1, pp. 274–284,
Feb. 2014, doi: 10.1109/TITS.2013.2281135.

[13] Z. Jin, L. Zhang, J. Zhang, and A. Khajepour, ‘‘Stability and opti-
mised H∞ control of tripped and untripped vehicle rollover,’’ Vehi-
cle Syst. Dyn., vol. 54, no. 10, pp. 1405–1427, Jul. 2016, doi:
10.1080/00423114.2016.1205750.

[14] C. Larish, D. Piyabongkarn, V. Tsourapas, and R. Rajamani, ‘‘A new
predictive lateral load transfer ratio for rollover prevention systems,’’
IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 2928–2936, Sep. 2013, doi:
10.1109/tvt.2013.2252930.

[15] X. Sun, H. Zhang, W. Meng, R. Zhang, K. Li, and T. Peng,
‘‘Primary resonance analysis and vibration suppression for the harmon-
ically excited nonlinear suspension system using a pair of symmetric
viscoelastic buffers,’’ Nonlinear Dyn., vol. 94, no. 2, pp. 1243–1265,
Oct. 2018, doi: 10.1007/s11071-018-4421-9.

[16] C. H. Chen, C. C. Yao, T. H. Hsu, and Y. F. Su, ‘‘A novel design for vehicle
rollover warning system based advanced image processing,’’ in Proc. ITS
World Congr., vol. 55, Jan. 2012, pp. 704–724.

[17] H. Imine and V. Dolcemascolo, ‘‘Rollover risk prediction of heavy vehi-
cle in interaction with infrastructure,’’ J. Heavy Vehicle Syst., vol. 14,
pp. 294–307, Nov. 2007, doi: 10.1504/ijhvs.2007.015605.

[18] V. Tsourapas, D. Piyabongkarn, A. C. Williams, and R. Rajamani, ‘‘New
method of identifying real-time predictive lateral load transfer ratio for
rollover prevention systems,’’ J. Non-Linear Mech., vol. 43, pp. 858–867,
Jul. 2009, doi: 10.1109/ACC.2009.5160061.

[19] H. Xiong, X. Zhu, and R. Zhang, ‘‘Energy recovery strategy numeri-
cal simulation for dual axle drive pure electric vehicle based on motor
loss model and big data calculation,’’ Complexity, vol. 2018, Aug. 2018,
Art. no. 4071743

[20] B. Mashadi and H. Mostaghimi, ‘‘Vehicle lift-off modelling and a
new rollover detection criterion,’’ Vehicle Syst. Dyn., vol. 55, no. 5,
pp. 704–724, Jan. 2017, doi: 10.1080/00423114.2016.1278076.

[21] H. Li, Y. Zhao, H. Wang, and F. Lin, ‘‘Design of an improved predictive
LTR for rollover warning systems,’’ J. Brazilian Soc. Mech. Sci. Eng.,
vol. 39, pp. 3379–3791, Oct. 2017, doi: 10.1007/s40430-017-0796-7.

[22] F. C. Wang and Y. Chen, ‘‘Detection of vehicle tripped and untripped
rollovers by a novel index with mass-center-position estimations,’’ in Proc.
ASME Dyn. Syst. Control Conf., Tysons, VI, USA, Oct. 2017, pp. 1–8, doi:
10.1115/DSCC2017-5149.

[23] Y. He, D. Chu, X.-Y. Lu, C. Wu, and X. Liu, ‘‘Probabilistic assessment
for HDVs rollover using second order reliability method,’’ in Proc. 4th Int.
Conf. Transp. Inf. Saf. (ICTIS), Banff, AB, Canada, Aug. 2017, pp. 77–81,
doi: 10.1109/ICTIS.2017.8047746.

[24] H. Imine, A. Benallegue, T. Madani, and S. Srairi, ‘‘Rollover risk pre-
diction of heavy vehicle using high-order sliding-mode observer: Exper-
imental results,’’ IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2533–2543,
Jul. 2014, doi: 10.1109/TVT.2013.2292998.

[25] T. J. Zhu, C. F. Zong, and B. S. Wu, ‘‘Rollover warning system of heavy
duty vehicle based on improved TTR algorithm,’’ J. Mech. Eng., vol. 47,
pp. 88–94, May 2011, doi: 10.3901/JME.2011.10.088.

[26] T. Chou and T.-W. Chu, ‘‘An improvement in rollover detection of artic-
ulated vehicles using the grey system theory,’’ Vehicle Syst. Dyn., vol. 52,
no. 5, pp. 679–703, May 2014, doi: 10.1080/00423114.2014.889316.

[27] Y. Zhu, X. X. Xu, and Y. C. Xu, ‘‘Study on intelligent vehicle steering
control algorithm using SVM,’’ in Proc. Int. Conf. Cybern. Inform., in
Lecture Notes in Electrical Engineering, vol. 163, 2013, pp. 1481–1491,
doi: 10.1007/978-1-4614-3872-4_189.

[28] T. Zhu, B. Li, and C. Zong, ‘‘A new driving condition identification method
for heavy duty vehicles based on HHMM,’’ J. Heavy Vehicle Syst., vol. 26,
pp. 334–350, Jul. 2019, doi: 10.1504/IJHVS.2019.101470.

[29] J. Hu, D. Liu, C. Du, F. Yan, and C. Lv, ‘‘Intelligent energy management
strategy of hybrid energy storage system for electric vehicle based on
driving pattern recognition,’’ Energy, vol. 198, pp. 467–475, May 2020,
doi: 10.1016/j.energy.2020.117298.

[30] W. Yan, M.-J. Li, Y.-C. Zhong, C.-Y. Qu, and G.-X. Li, ‘‘A
novel k-MPSO clustering algorithm for the construction of typical
driving cycles,’’ IEEE Access, vol. 8, pp. 64028–64036, 2020, doi:
10.1109/ACCESS.2020.2985207.

[31] Z. Zhang, X. Yu, F. You, G. Siedel, W. He, and L. Yang, ‘‘A front vehicle
detection algorithm for intelligent vehicle based on improved Gabor filter
and SVM,’’ Recent Patents Comput. Sci., vol. 8, no. 1, pp. 231–242, 2015,
doi: 10.2174/2213275907666141023220519.

[32] V. Tsourapas, D. Piyabongkarn, A. C. Williams, and R. Rajamani, ‘‘New
method of identifying real-time predictive lateral load transfer ratio for
rollover prevention systems,’’ in Proc. Amer. Control Conf., St. Louis, MO,
USA, Jun. 2009, pp. 439–444.

[33] A. J. P. Miege, ‘‘Active roll control of an experimental articulated vehi-
cle,’’ Ph.D. dissertation, Dept. Eng., Cambridge Univ., Cambridge, U.K.,
2003.

[34] Y. Sellami, H. Imine, B. Jacob, F. Bernardin, and J. C. Cadiou, ‘‘Rollover
risk prevention of heavy vehicles by reliability-based analysis,’’ in Proc.
Int. Conf. Heavy Vehicle Transp. Technol., 2008, pp. 124–130, doi:
10.1002/9781118557464.ch23.

[35] V. Vapnik, Statistical Learning Theory. New York, NY, USA:Wiley, 1998,
chs. 10–11, pp. 401–492.

[36] W. W. Hsieh, Machine Learning Methods in the Environmental Sciences:
Neural Networks and Kernels. Cambridge, U.K.: Cambridge Univ. Press,
2009, ch. 7, pp. 157–169.

TIANJUN ZHU was born in Xingtai, Hebei,
China, in 1977. He received the B.S. degree
in vehicle engineering from Hebei Agricultural
University, Baoding, in 2000, and the M.S.
degree in mechanical engineering and the Ph.D.
degree in vehicle engineering from Jilin Univer-
sity. Changchun, Jilin, China, in 2005 and 2010,
respectively.

From 2000 to 2017, he was a Professor with
the Hebei University of Engineering, Hebei. From

2010 to 2012, he was a Postdoctoral Research Fellow with the China
Automotive Technology and Research Center. From 2012 to 2013, he was
a Postdoctoral Research Fellow with the University of Waterloo, Waterloo,
ON, Canada. Since 2017, he has been a Professor with the Mechanical and
Automotive Engineering College, Zhaoqing University, Guangdong. He is
the author of two books, more than 100 articles, and more than 20 inventions.
His research interests include vehicle dynamic control, new energy vehicles,
and self-driving vehicle applications. He serves as a Guest Editor for the
International Journal of Heavy Vehicle Systems.

XIAOXUAN YIN was born in Yuanshi, Shiji-
azhuang, Hebei, China, in 1994. He received
the B.S. degree in vehicle engineering from the
Hebei University of Engineering, Handan, China,
in 2018, where he is currently pursuing the M.S.
degree in mechanical engineering. His research
interest includes vehicle dynamic control.

VOLUME 8, 2020 108333

http://dx.doi.org/10.1080/00423114.2016.1246741
http://dx.doi.org/10.1080/00423110802033064
http://dx.doi.org/10.1080/00423114.2013.843713
http://dx.doi.org/10.3901/cjme.2012.01.088
http://dx.doi.org/10.1109/TITS.2013.2281135
http://dx.doi.org/10.1080/00423114.2016.1205750
http://dx.doi.org/10.1109/tvt.2013.2252930
http://dx.doi.org/10.1007/s11071-018-4421-9
http://dx.doi.org/10.1504/ijhvs.2007.015605
http://dx.doi.org/10.1109/ACC.2009.5160061
http://dx.doi.org/10.1080/00423114.2016.1278076
http://dx.doi.org/10.1007/s40430-017-0796-7
http://dx.doi.org/10.1115/DSCC2017-5149
http://dx.doi.org/10.1109/ICTIS.2017.8047746
http://dx.doi.org/10.1109/TVT.2013.2292998
http://dx.doi.org/10.3901/JME.2011.10.088
http://dx.doi.org/10.1080/00423114.2014.889316
http://dx.doi.org/10.1007/978-1-4614-3872-4_189
http://dx.doi.org/10.1504/IJHVS.2019.101470
http://dx.doi.org/10.1016/j.energy.2020.117298
http://dx.doi.org/10.1109/ACCESS.2020.2985207
http://dx.doi.org/10.2174/2213275907666141023220519
http://dx.doi.org/10.1002/9781118557464.ch23


T. Zhu et al.: Research on a Novel Vehicle Rollover Risk Warning Algorithm

XIAOXIANG NA received the B.Sc. and M.Sc.
degrees in automotive engineering from the Col-
lege of Automotive Engineering, Jilin Univer-
sity, China, in 2007 and 2009, respectively, and
the Ph.D. degree in driver-vehicle dynamics from
the Department of Engineering, University of
Cambridge, U.K., in 2014. He is currently a
Senior Research Associate with the University of
Cambridge. His main research interests include
driver-vehicle dynamics and vehicle performance
in-service assessment.

BIN LI received the Ph.D. degree from Shang-
hai Jiao Tong University, China, in 2010. He is
currently with Aptiv PLC (USA), focusing on
autonomous driving algorithm development and
verification of localization, motion planning and
vehicle control. He is serving as an Associate
Editor of the International Journal of Vehicle
Autonomous Systems (IJVAS), SAE International
Journal of Commercial Vehicles and SAE Interna-
tional Journal of Passenger Cars: Electronic and

Electrical Systems. He has been an active organizer for SAEWorld Congress,
COMVEC and ASME conferences, since 2015. His research interests focus
on autonomous driving, vehicle system modeling, dynamics and control,
electrified vehicles, and integrated vehicle motion control.

108334 VOLUME 8, 2020


	INTRODUCTION
	VEHICLE MODEL AND ROLLOVER RISK ASSESSMENT INDICATOR
	VEHICLE MODEL
	ROLLOVER RISK ASSESSMENT INDICATOR

	EMPIRICAL MODEL OF SUPPORT VECTOR MACHINE
	SVM ALGORITHM
	EXPLICIT FUNCTION OF ROLLOVER LIMIT STATE FUNCTION
	EMPIRICAL MODEL OF VEHICLE ROLLOVER HAZARD

	THE INFLUENCE OF PARAMETERS OF SVM MODEL ON ROLLOVER PREDICTION RESULTS
	POLYNOMIAL KERNEL OF SVM MODEL
	RADIAL BASIS FUNCTION OF SVM MODEL

	CONCLUSION
	PRACTICAL AND IMPLICATIONS
	FUTURE WORK

	REFERENCES
	Biographies
	TIANJUN ZHU
	XIAOXUAN YIN
	XIAOXIANG NA
	BIN LI


