
Received May 6, 2020, accepted June 7, 2020, date of publication June 10, 2020, date of current version June 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3001394

Ground Vehicle Tracking Using Context-Based
Sojourn Time Dependent Markov Model
and Pseudo-Measurement
ZHEN TIAN 1,2, MING CEN 3, YINGUO LI 1,3, AND HAO ZHU 3
1Department of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
3Department of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Corresponding author: Ming Cen (m_cen0104@sina.com)

This work was supported in part by the Chongqing Science and Technology Commission under Grant cstc2020jscx-dxwtB0003 and Grant
cstc2017jcyjAX0293, in part by the Chongqing Scientific Innovation Project under Grant CYB17132, and in part by the Chongqing
University of Posts and Telecommunications (CQUPT) Talent Program under Grant BYJS2017007.

ABSTRACT Tracking maneuvering vehicles in complex dynamic environment is a challenging problem
for advanced driver assistance system and autonomous driving systems. Most conventional vehicle tracking
algorithms can not model the vehicle dynamic exactly because of the uncertain moving behavior. However,
due to the on-road capability, vehicles have to subject to various constraints imposed by traffic rules and
roads. Taking advantage of those context information can refine and improve the performance of tracking as it
provides additional prior information for vehicles’ dynamic behavior. To achieve this goal, this paper presents
a novel context-enhanced tracking approach that exploits the context information to reduce the uncertainty
of dynamic estimation. A new context-based sojourn-time dependent semi-Markov (STDM) model, called
sojourn-time dependent semi-Markov variable structure interacting multiple model (STDM-VSIMM), is
proposed to describe the vehicle’s longitudinal acceleration process. In order to cope with the context
information into STDM model, a context-based Bayesian network is presented to replace the fixed model
transition probabilities with sojourn-time dependent transition probabilities. Compared with traditional
interacting multiple model tracking with fixed transition probability, this adaptation switching strategy
makes the vehicle motion sequence closer to the natural behavior and improve the tracking performance.
Furthermore, a novel pseudo-measurement is constructed to formulate the road-map constraint in tracking
process for reducing uncertain on mobility constraints. Simulation results shows that the proposed STDM-
VSIMM can achieve better performance after considering the context.

INDEX TERMS Vehicle tracking, context-enhanced, sojourn-time dependent Markov model,
pseudo-measurements.

I. INTRODUCTION
Tracking ground vehicle targets is important for many appli-
cations in traffic surveillance [1], advanced driver assistance
systems (ADAS) [2] and autonomous driving systems [3].
The major issue in vehicle tracking research is to find exact
dynamic model to estimate target’s kinematics state, such as
position, velocity and acceleration. Many dynamic models
for target tracking have been proposed in recent years [4]. To
handle the highlymaneuvering target, the interactingmultiple
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model (IMM) [5], [6] estimator has proven to be a state-of-
the-art framework, which operates different dynamic models
in parallel all the time. However, the distinguishing feature
of vehicle tracking is that the vehicle motions subjected to
various constraints imposed by traffic rules and roads. These
external information can significantly help to improve track-
ing performance, since they provide additional prior knowl-
edge to reduce target motions uncertainty. Therefore, the goal
of this paper is to track maneuvering vehicles with the prior
information.

In the field of information fusion, the prior knowledge
that ‘‘surrounds’’ a situation of interest in the world could be
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considered as contextual information [7]. The significance of
contextual information have been gradually demonstrated in
an increasing number of works [8], [9]. Many existing works
on contextual information that enhance target tracking can be
classified in terms of the contextual sources and divided into
the following two categories.

The first category of context is the static context, which
includes physical and logical structures, such as road maps,
geographic information system (GIS) data, urban environ-
ment, etc. The static context is generally considered as a
constraining parameter of motion model which can refine
state estimators directly. Many works have been proposed
to model this context into tracking process. In [1], a road
map constrained approach was presented where the direc-
tional process noise (DPN) of dynamics model was proposed
and handled by variable structure interacting multiple model
(VSIMM). The road constraint assume the DPN in longitudi-
nal direction is more uncertainty than lateral noise, which the
standard motion models assume the noise in both directions
are equal. The different of IMM and VSIMM is the motion
model set, where the VSIMM is an adaptive version of the
fixed IMM estimator, and the variable model set is adjusted
according to the current road information. This VSIMM has
proven to be one of the most popular estimator for its simplic-
ity and intuitiveness, and it has become a benchmark frame-
work in vehicle target [10]–[12]. Unlike the DPN method
into the dynamics modeling, it is usual having the on-road
constrained represented as a set of waypoints and junctions
to describe the equality constrained dynamics [13]–[17]. The
linear equality constraint method was proposed in [13], [14]
and the optimal solution is the projection of Kalman filter
estimates onto the road. A unified framework for constrained
dynamic modeling is proposed in [16] by giving the con-
straints and an approximate dynamic equation. The static
context constraints also be extended to the non-linear filters.
Making use of the particle filter, an attractor-directed particle
filter [18] was presented where the attractive potential field
[19] was used to guide the particles in inference propagation.
In this approach, an attractor point is assigned according to
the prior distribution to form an attractive force on the par-
ticles. In an analogous way, incorporating the static context
knowledge with the particle filter also can be found in visual
tracking applications [20], [21].

In other cases, the context is dynamic context, which
includes contextual variables, such environment conditions,
traffic conditions, road vehicles, etc. The dynamic context
can come from knowledge, indirect inference processes and
learned data and can not update the tracking processes
directly. Therefore, the dynamic context is usual in the
examples at high-level fusion processes (JDL Levels 2-4),
such as situation understanding [22] and intent assessment
[23]. Since situations and intent rarely happen independently,
incorporation of dynamic context not only provide the situa-
tion understanding, but also improve accuracy and robustness
of a tracking process.

While the utilization of static context (road maps) has been
explored in detail in the literature, using dynamic context in
tracking process has not yet been well-addressed. Therefore,
using dynamic context for vehicle tracking is a topic that
received lots of attention in the recent years. The main chal-
lenge is how to develop a representation of dynamic context
and utilize the context in the tracking process. One way of
incorporating the dynamic context into the filtering process
is described with the help of dynamic Bayesian networks
(DBNs) [24], in which a composite Bayesian approach is
proposed for wildlife protection application. The inferred
dynamic context from DBNs allows a better discrimination
and analysis of complex maneuvering behavior of the targets.
However, the proposed works combining the context infor-
mation with particle-filter, which may lead to high compu-
tational cost. Combining context reasoning with the spatio-
temporal relationships of the events to support tracking pro-
cess is proposed in [25], in which target actions were viewed
as a hidden Markov model with a relevant spatial and event
context associated with each node. However, the context in
[25] is only selected based on goal driven sets of actions, such
as going right, going left and going straight.

Thus the motivation for this paper is to propose a new vehi-
cle tracking algorithm that comprehensively integrates var-
ious types of context with sojourn-time-dependent Markov
model. A new context-based sojourn-time dependent semi-
Markov (STDM) model, called sojourn-time dependent
semi-Markov variable structure interacting multiple model
(STDM-VSIMM), is proposed to integrate the longitudinal
acceleration process into the tracking process. The tran-
sition probability matrix of STDM-VSIMM is calculated
by context-based Bayesian network and the sojourn time
probability mass function (pmf). Two important issues are
addressed in this paper. First, in order to cope with the
dynamic context, the context BN is presented to inference
heterogeneity context variables. Unlike [9], [24] use the
BN for describing the mobility of the targets, the proposed
method incorporation the BN with STDM-VSIMM, which
the fixed model transition probabilities matrix (TPM) are
replaced by a set of transition probability functions of sojourn
time. Using the dynamic context in TPM is more suitable
for describing driving behavior than using context directly.
Second, the effects of the model parameter on the estima-
tion accuracy are analyzed and evaluated by the posterior
Cramer-Rao lower bound (PCRLB). What’s more, consider-
ing the static context with road map, a novel context pseudo-
measurement is also proposed to constraint the motion.

The main contribution of the paper can be described as
four aspects. First, the longitudinal acceleration is mod-
eled as a semi-Markov jump process (semi-Markov chain)
to describe the vehicles’ dynamic behavior. Second, a new
context-based sojourn-time dependent semi-Markov model,
the STDM-VSIMM, in which replaced the fixed model
transition probabilities with sojourn-time dependent transi-
tion probabilities, is presented to integrate the context-based
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motion behavior into the tracking process. Third, a Bayesian
approach is proposed to sound incorporation of different
types of uncertain context information on vehicle’s mobility.
Fourth, a new kind of pseudo-measurement is constructed to
model road constraints into estimation process.

The rest of this paper is organized as follows. Section II
describes the vehicle tracking in detail, which includes track-
ing scenario, dynamics model, directional process noise and
measurement model. In Section III, the STDM-VSIMM
is proposed, which incorporated the context BNs with
sojourn time. Then the pseudo-measurement is also pro-
posed to describe the road-map constraint. Section IV intro-
duces the context-enhancedmulti-vehicle tracking algorithm.
Section V shows the experimental results of the proposed
context-enhanced algorithm. The comparisons are made
among different tracking algorithm. The conclusions are
given in Section VI.

II. PROBLEM FORMULATION
A. CONTEXT VEHICLE TRACKING SCENARIO
This work considers the problem of tracking the highly
maneuvering ground vehicle with the application to ADAS
and autonomous driving system. The ground vehicles are
moving on the roadwith diversemotion states (speed up, slow
down, stop, etc.) based on the traffic situation. Two major
challenges for vehicle tracking arises from the motion uncer-
tainty and measurement uncertainty. Those uncertainty refer
to the fact that the true dynamic behaviors of the vehicle are
unknown for tracker and the sensors always have clutter and
false alarms, respectively. Thus, the task of vehicle tracking
is aim at handling those uncertainty.

Since the road network and vehicle targets in ADAS and
autonomous driving system are usually known or detected,
themotion of targets are constrained by some external factors.
Those external factors are considered as the context infor-
mation, which affects or constrains the dynamic behavior
of targets and the measurement process. The context might
be partially or completely known during the estimation and
should be used to obtain better estimates.

In this paper, the context information addressed with two
kinds of information: road maps and interaction informa-
tion which are divided into static context and dynamic con-
text, respectively. The road map [1], [11] is defined using
a sequence of connected linear segments with way points,
which is belong to static context. The interaction information
[12], [26], [27] describes the interaction effect with surround-
ing vehicles. For example, the vehicle usually keep a safe dis-
tance from other vehicles and avoid potential collision risks.
This interactions between vehicles have been considered as
dynamic context.

A sample example are shown in Fig.1, two vehicle are
moving from way points A to B in a 2-D plane and in
single lane road. The vehicles are constrained by the road
and surrounding vehicles, which is different from the general
off-road tracking. Restrictions on whether vehicles will be
influenced by other vehicles are typically determined by the

FIGURE 1. An example of context tracking scenario: vehicles travel along
the road center line with the segment connecting A to B. Vehicles motion
are constrained by the road and front vehicle. xoy is the Cartesian
coordinate; ξoη is the coordinate constructed by along and orthogonal
road directions.

surrounding circumstances. For example, the safe distance,
the velocity, the weather conditions or the traffic.

B. DYNAMICS MODEL
The vehicle can be dynamically model in various ways for
different kind of vehicle i.e., rail, grounded, air, etc [28]–[34].
For the application of ADAS and autonomous driving system,
the vehicle is usually treated as a point object without a shape,
especially in using the radar sensors. In 2-D physical world,
the point motion can be described by its 2-D position and
velocity vectors. Thus, a general evolution of its state can
be described by the discrete time nonlinear model [5] in the
Cartesian coordinate system as

x(k + 1) = f (x(k), u(k), v(k)) (1)

where x(k) , [x, ẋ, ẍ, y, ẏ, ÿ]′, x and y are the positions of
vehicle in the X and Y directions, respectively. The corre-
sponding velocities and accelerations are ẋ and ẏ, and, ẍ and ÿ,
respectively. f is a nonlinear (prediction) function, u(k) is the
control input vector. v(k) is the model process noise, which
has some assumed distribution. k is the current time instant.
The corresponding discrete time linear motion model is given
by

x(k + 1) = Fx(k)+Gu(k)+ 0v(k). (2)

As pointed out in review paper [4], the major issue for
vehicle tracking is motion uncertainty. The accurate dynamic
model of the target is not available to the tracker. Specifically,
in the linear motion (2), the actual control input u of the target,
and possibly the actual form of F are most often unknown
to the tracker. Due to a lack of knowledge of its dynamics,
target motion modeling is thus one of the first tasks for
maneuvering target tracking. In the target motion modeling,
the most popular approach is to model the input u as a random
process. The reader is referred to [4], [5] for a comprehensive
survey on the available techniques. With a 1-D state vector
x , [x, ẋ, ẍ], we summarize the models used in this paper.
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1) Nearly Constant Velocity (NCV) Model: The NCV
model is a nonmaneuvering model with control input u is
zero. The white noise process v(k) is used to model the effect
of the control input u. Note that the ‘‘nearly constant-velocity
model’’ emphasizes that these accelerations are small. The
corresponding state model representation is given by (2) with
u(k) ≡ 0, process noise variance σ 2

NCV , and

FNCV =

1 T 0
0 1 0
0 0 0

, 0NCV =

T 2/2
T
0

. (3)

where T is the sampling interval.
2) Nearly Constant Acceleration (NCA) Model: The NCA

model is a maneuvering model and the acceleration is a
Wiener process. Specifically, the acceleration increment is
an independent (white noise) process [5]. The corresponding
state model representation is given by (2) with u(k) ≡ 0,
process noise variance σ 2

NCA, and

FNCA =

1 T T 2/2
0 1 T
0 0 1

, 0NCA =

T 2/2
T
1

. (4)

3) Mean-Adaptive Acceleration (MAA) Model: The NCA
model assumes the acceleration is an independent increment,
which is uncoupled of any other time. Make use of the
Markov process, the acceleration at one time is related with
its values at other times. In other words, the acceleration
(control input) can model as time-correlated stochastic pro-
cess by considering the Markov process. The Singer model
[35] model the acceleration is zero-mean first-order station-
ary Markov process. Further, the extension of Singer model
with an adaptive mean, is called mean-adaptive acceleration
(MAA) model [36], which have to a non-zero mean of the
acceleration. Specifically the acceleration a(k) = ã(k) +
ā(k), where ã(t) is the zero-mean Singer acceleration process
and ā(k) is the mean of the acceleration. The corresponding
discrete-time equivalent is given by (2) with u(k) ≡ ā(k), and

FMAA =

1 T (αT − 1+ e−αT )/α2

0 1 (1− e−αT )/α
0 0 e−αT

, 0MAA = I,

GMAA =

T 2/2
T
1

−
(αT − 1+ e−αT )/α2

(1− e−αT )/α
e−αT

, (5)

where α = 1/τ , where τ is a maneuver-specific time con-
stant. The discrete-time vector process noise covariance is
2ασ 2(k)2Q, whereQ = [qij(α,T )]3i,j=1 is a symmetric matrix
[35].

σ 2(k) =


4− π
π

(amax − â(k))2 if â(k) > 0,
4− π
π

(a−max + â(k))2 if â(k) < 0.
(6)

where â(k) is the filter estimate acceleration, a−max and amax
is the lower and upper bounds of the estimate acceleration

FIGURE 2. Representative random acceleration process models.

â(k). The mean acceleration term ā(k+1) is given by follow-
ing recursion as

ā(k + 1) = e−αT â(k)+ (1− e−αT )â(k). (7)

4) Interacting Multiple Model (IMM) Model: The multi-
ple model (MM) filter captures different dynamic models in
parallel all the time, and the transition between those models
is described by a first-order Markov chain. As the MM con-
sidered the hypotheses with all possible model sequences, the
computational complexity of the optimal solution is increased
exponentially. The most popular suboptimal solution the is
IMM filter [6], where the model hypotheses are merged all
branches that belong to the same model at each time instant.
The IMM is extended to variable structure IMM (VS-IMM)
[37] with variable mode sets. More detail about IMM and
VSIMM the reader is referred to [6]. The IMM is used in
paper as a benchmarkmodel and detailed steps are introduced
in Section IV-B.

5) Semi-Markov Jump Process Models: The Singer model
approximates the target acceleration as a continuous-time
zero-meanMarkov process. However, in some case the accel-
eration process is non-zero mean, which are assumed piece-
wise constant, such as the pilot maneuver behavior with the
commands [38]. The representative random noise process
to model the acceleration process are shown in Fig.2. This
piecewise-constant random processes is a semi-Markov jump
process (the engineering-oriented description was given in
[38]). The different of Markov process and semi-Markov
process is that the semi-Markov process has the time interval
stays in a state, which is called sojourn time.

Classic work about on the semi-Markov problems are pro-
posed in [39], which the semi-Markov chain is used for esti-
mating state transition. Reference [39] assumed the known
jump acceleration levels ã1, . . . , ãn, and known transition
probability P{u(tk ) = ãj | u(tk−1) = ãi} =, i, j = 1, . . . , n,
the sojourn time has an exponential distribution, the unknown
acceleration mean u(t) is estimated by a weighted sum of
the levels: u(t) =

∑
ãiP{u(t) = ãi | c(t)} where as in a
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multiple-model formulation, the weight is the posterior prob-
ability of each context level. The survey paper [4] pointed out
that semi-Markov jump acceleration process with exponen-
tially distributed sojourn time in each state is referred to as
a Markovian jump-mean acceleration model. The unknown
jump acceleration mean u(t) amounts to multiple models of
the input in a degenerated form.

In [40] a sojourn-time dependent semi-Markov IMM
(STDM-IMM) algorithm is introduced, and this semi-
Markov process is actually a sojourn-time dependent Markov
chain. The solution is to replace Markov chain to semi-
Markov chain by a sojourn-time dependent transition prob-
abilities. The advantage of STDM-IMM algorithm is it can
handle general sojourn time distributions. Three important
issues associated with this model are the design of accel-
eration model levels, the sojourn time and the probability
mass functions of sojourn time. However, the disadvantage of
STDM-IMM is to estimate the unknown sojourn time in each
model, which have been pointed out by [41]. Since the vehicle
acceleration behavior rarely happen independently and sub-
ject to various environmental influence, making use of those
context information can provide a new way for estimating the
unknown sojourn time. To achieve this goal, we integrates the
context information with STDM-IMM algorithm, in which
the sojourn time of each acceleration noise models can be
updated by corresponding context information.

C. DIRECTIONAL PROCESS NOISE
The traditional dynamic models in Cartesian coordinates
assume that the target can move in any direction. There-
fore, use equal process noise variances in both the X and Y
directions. This means that for off-road targets the motion
uncertainties in both directions are identical. Due to the on-
road attribute, the directional process noise (DPN) were used
in [1] for modeling the process noise with corresponding
road network. Furthermore, by modeling vehicle dynamic
directly in road coordinates, the motion uncertainty of vehicle
is along and across the direction of the road, which is called
longitudinal and lateral process noise in 2-d road coordinate
system [11]. As shown in Fig.1, the process noise components
along X and Y directions are given by vx and vy, respectively.
Similarly, vξ and vη are the longitudinal and lateral process
noise, respectively.

Taking advantage of DPN, we can describe the vehicle
longitudinal and lateral maneuvering behavior using different
dynamic models. In this paper, we consider the high maneu-
vering behavior in the longitudinal direction, which means
the longitudinal uncertainty is higher than lateral direction.
Thus, the longitudinal noise vξ is assume as semi-Markov
jump process (semi-Markov chain). Likewise to the tradi-
tional modeling, the lateral noise is assumed as a small while
noise. Thus, this problem is how to use the context infor-
mation to describe the noise vξ with the semi-Markov jump
process.

It is noted that the if the state estimation is carried out in
the xoy coordinate system, the variances of the longitudinal

and lateral process noise components in the on-road motion
models need to be converted into unified Cartesian oxy coor-
dinates. Given the angle between Cartesian coordinates and
2-D road coordinates, the transformation covariance matrix
Q can be written as

Q =
[
−cosθ sinθ
sinθ cosθ

] [
σ 2
ξ 0
0 σ 2

η

] [
−cosθ sinθ
sinθ cosθ

]
. (8)

D. MEASUREMENT MODEL
Many sensors can be used to track vehicles, such as camera,
lidar, millimeter-wave radar, etc. In connected environment,
the cooperative tracking sensors such as global positioning
system (GPS) and V2X communication are generally used
for vehicle tracking. In this paper, we assumed all the mea-
surement are converted to 2-D road coordinate [11], and the
measurement vector z(k) is given by

z(k) =
[
ξ (k)
η(k)

]
+ w(k) =

[
ξ (k)
η(k)

]
+

[
wξ (k)
wη(k)

]
(9)

where w(t) is the 2 × 1 Gaussian measurement noise vector.
wξ (k) and wη(t) are corresponding independent Gaussian

with measurement noises with wξ (k) ∼ N
(
0, σ 2

ξ

)
and

wη(t) ∼ N
(
0, σ 2

η

)
. The covariance matrix R(t) of measure-

ment is given by

R(tk ) =
[
Rξξ (t) Rηξ (t)
Rξr (t) Rηη(t)

]
=

[
σ 2
ξ 0
0 σ 2

η

]
. (10)

We denote the set of all measurements received at time step
tk as

z(k) = {zm(k),m = 1, 2 . . . ,M (k)} (11)

where M (k) is the number of measurements in the a time
stamp k .

The cumulative set of measurements available up to time
step k as

zk = {z(i), i = 1, 2, . . . , k} (12)

In the vehicle tracking scenario, the vehicle is moving
along the road and the trajectory of a target along the road-
map can be considered as a context information. For example,
the vehicle is assumed to travel on a straight road in Fig.1.
Using the road line constraint fromA to B in the filtering pro-
cess can significant improve the tracking performance. This is
also called destination constraint in [42], [43], which is used
for tracking an anti-radiation missile to protect a radar array
from its threat. Unlike the constraint method for target motion
model [14], [17], [44], the idea reformulated themeasurement
model with the road constraint. In this paper, the pseudo-
measurement is constructed to model road constraints, which
is discussed in Section III-D.
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III. CONTEXT-BASED SOJOURN-TIME DEPENDENT
MARKOV MODEL AND PSEUDO-MEASUREMENTS
This section introduces the context-enhanced tracking algo-
rithm that incorporating the context with sojourn-time
dependent Markov Model and pseudo-measurements. We
first model the longitudinal acceleration process as a
semi-Markov chain, then we discuss type of dynamic
context and how to corporate it into the semi-Markov
chain with the Bayesian network. Lastly, the pseudo-
measurement is proposed to describe the road map
constraint.

A. SOJOURN-TIME DEPENDENT MARKOV MODEL
In intelligent transportation system, the driver behavior under
the different context cases, will have different maneuvering
behavior with a random sojourn time. For example, the driver
will make a heavy deceleration in a short time to avoid
accident under the crisis situation. While in normal situation,
the driver will have a slightly deceleration with a longer
time to keep a safe distance. To incorporate the sojourn-
time dependence vehicle motion, the semi-Markov jump pro-
cess is considered for longitudinal state estimation in this
paper.

One optimal solution to the semi-Markov jump problem
was proposed with STDM-IMM algorithm in [40], which
extends the IMMfilter from the normal Markov system to the
semi-Markov system with sojourn-time-dependent transition
probability. This method can handle arbitrary sojourn-time
distributions, and it it more effective to model the acceler-
ation than the a white noise model with a mean of random
jumps [39]. In STDM-IMM, the Markov chain of the model
transitions is replaced with sojourn-time dependent transition
probabilities.

Let us consider a first-order semi-Markov chain, the tran-
sition probability of the STDM chain is a function of sojourn
time τ and is defined as [45]

π ′ij(τ ) = P{mj(k) | mi(k − 1), τi(k − 1) = τ } (13)

where τi(k − 1) is the sojourn time of model i at time k − 1.
If the k = 0, the sojourn time is assumed as τ = 1, Thus the
τ can take are from 1 to k . m(k) is the currently active model
(model state) at time k . The event mode mj(k) is denoted as
mj(k) , {m(k) = mj}.
In order to get the sojourn-time-dependent transition prob-

ability, the prior knowledge of the sojourn-time pmf is
defined as

gi(τ ) , P{τi(k) = τ | mi(k), zk}, (14)

and the cumulative distribution function of the sojourn time
pmf is written as

Gi(τ ) =
k∑
τ=1

gi(τ ). (15)

FIGURE 3. A sojourn-time-dependent semi-Markov system with three
models.

The conditional probability of transition form i to j at time
k − 1 using the (13) and (15) as follow:

π ′ij(τ ) =


πijGi(τ ) if i 6= j

1+ πiiGi(τ )−
m∑
j′=1

πij′Gi(τ ) if i = j
(16)

where π ′ij(τ ) is the conditional probability of transition with
sojourn time. πij is the original transition probability. m is
the number of models in the STDM system. A three models
STDMsystem is shown in Fig.3. It can be seen that the STDM
system becomes a Markov system when Gi(τ ) is set as 1,
which can be solved by the traditional IMM.

However, due to the sojourn time τ at each model is
unknown, the conditional probability mass function (pmf) of
the sojourn time πij(τ ) is difficult to obtain, this disadvantage
is also pointed out in [41].

To address the limitations of sojourn time, we propose the a
context-based sojourn-time-dependent semi-Markov model,
called STDM-VSIMM. The main improvement is to propose
adaptive sojourn time estimator, in which the sojourn time
of each acceleration noise models can be estimated by corre-
sponding dynamic context. Moreover, the STDM-IMM can
be extend to the variable structure framework with context.

In proposed STDM-VSIMM method, the sojourn time τ
is calculated in each context hypothesis as the model history.
The following assumption is made

P{τi(k) | ck} = P{τi(k) | zk} (17)

where ck denotes the entire interaction information about the
context influence collected at this location up to time k .

In order to model and infer the context influence for
sojourn-time in the STDM process, the probability distribu-
tions P{mi(k) | ck} is defined, where mi(k) = true means
that the vehicle target is moving with the specific accelera-
tion noise mi at time k . Then, we can rewrite sojourn-time
probability distribution as

P{τi(k) | ck} =
∑
mi

P{τi(k) | mi(k)}P{mi(k) | ck} (18)

where the simplest case mi(k) is a binary variable: mi(k) =
true represents the model is selected in the context hypothe-
ses, while mi(k) = false represents the context model is
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FIGURE 4. Bayesian network describing correlations between the states
x(k) of a dynamic process, measurement z(k) and context interaction
influences on the process.

not selected. P{τi(k) | mi(k)} is the probability about the
τi(k) when mi(k) is selected, which can be set from the prior
knowledge. P{mi(k) | ck} is the model probability under the
contextual information, this probability is inferred in follow-
ing Section III-B and Section III-C.

For each model, the highest probability P{τi(k) | ck} is
selected, then sojourn-time τi(k) updated by the probability
history of each models. Accordingly, the P(mi(k) | ck ) meet∑m

i=1 P(mi(k) | c
k ) = 1. An overall of the discrete causal

model describing the context STDM process is shown in
Fig.4. Note that the m(k) = {mi(k), i = 1, 2, . . . ,M} is the
set of the motion models.

B. DYNAMIC CONTEXT INTERACTION FACTORS
This section discusses correlated context information which
can influence the longitudinal acceleration noise of the
motion model. The contextual information [7] is a prior
knowledge in which aids understanding the situation. The
significance of context information for tracking problem has
been demonstrated in [24], [25]. However, many works con-
siders the road network as the constraining factor of motion
model, few of relevant context research provides the con-
text interaction in understanding the driving maneuvering
behavior. In this paper, we develop a representation of the
interaction relationships between vehicles and utilizes con-
text information in the filtering process. This preliminary
works about context-aided tracking have been presented in
the conference paper [27].

Considering the major factors of road incidents [46], the
context information about the interaction influence is gen-
eralized for representing the uncertain driving behavior. As
shown in Fig. 5, Surrounding vehicles (pedestrian), traffic,
environment and driver can assumed as four types of context
interaction. As the data of driver (drowsiness, distraction) are
hardly to obtain, this impact factor is not considered in this
paper. The impact factor of surrounding vehicles consider
the interaction between vehicles. Vehicles usually keep a
safe distance to avoid potential collision risks. The motion
of vehicles will changing when interaction happens. The
context of traffic information is seen as the constraint in
motion estimators. For example, the vehicle will slow down
and stop when traffic light is red or the stop sign in front.

FIGURE 5. Semantic network of main factors involved in driving
maneuvering behavior.

Environment context include the weather, road condition and
even the noises of tracking sensor. For example, the detection
probability Pd is influenced by the foggy or snowy weather.

C. DYNAMIC CONTEXT FACTORS IN STDM PROCESSES
In this section, the Bayesian network is used to efficient
handle the dynamic context between such diverse interac-
tion information and the maneuvering model probability
P{mi(k)|ck}. The contextual information in Bayesian network
are definition in the Fig.6 and by the following parents nodes:
• v(k) is a multi-state variable that represents the vehicle
nodes for the maneuvering probability of each acceler-
ation noise. vs(k) and vp(k) are the position and speed
represent the distance and speed between the tracking
target and the interactive objects, respectively. vt(k) is
the type of interaction target, such as car, truck, etc.

• t(k) is a multi-state variable that represents the con-
gestion level of the traffic condition. It denotes the
maneuvering probabilistic of the vehicle. tr(k) is the
traffic rule states, such as stop and keep. It represents
the red light or stop sign for driving behavior. tc(k) is
the traffic condition state, such as heavy(congestion),
medium(normal), light(smooth).

• e(k) is a multi-state variable, which represent environ-
mental factors effecting driving behavior. er(k) is road
nodes such as snow road, rain road, dry road, etc. ew(k)
represents the weather visibility, such as far, medium,
near, etc.

• mi(k) is a multi-state variable, which represent interac-
tion model probability.

As shown in Fig.6, the joint probability distribution of the
context factors representation is shown in (19).

P{v(k)}

= P{vp(k)}P{vt(k)}P{vs(k)}

∗P{ew(k)}P{er(k)}P{t(k)}P{tc(k)}

∗P{v(k) | vp(k), vt(k), vs(k)}P{e(k) | ew(k), er(k)}

∗P{e(k) | ew(k), er(k)}P{mi(k) | v(k), e(k), t(k)} (19)

where the P{v(k)} is the set of all variables involved in
the factorization. This factorization is key to cost efficient
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FIGURE 6. The Bayesian network describing contextual interaction.
Variables v, t and e represent vehicle, traffic, environment of the context.
The grey variables are real context data. The variable mi represent
derived interaction model probability for each model i .

construction of the context interaction models and it supports
sound and efficient computation of p(mi(k)|ck ) with a suit-
able inference algorithm, such as message-passing algorithm,
junction-tree propagation. The essential of the Bayesian
network based context interaction model is calculating the
posterior probability distribution p(mi(k)|ck ) of the model
probability index node mi(k) according context evidence set.
Considering that the dynamic context interaction model is

a single connected network, and the path is short generally,
the message-passing algorithm [47] is suitable for the threat
model reasoning to meet the real time requirement. As shown
in Fig.7, each node in the message-passing algorithm cal-
culates own posterior probability according to the message
from evidence nodes and internal conditional probability of
the node, and propagates to adjacent nodes, until influence
of the evidence spreads to all nodes of the network. Assume
the graph into two parts: an upper subgraph G+BA, and a
lower subgraph G−BA, then the context data is denoted as D

+

BA
and D−BA, respectively. Thus, using Bayes’ rule and Bayes
Network conditional independence assumption, the posterior
probability distribution of Ai can be written as

P(Ai|D
+

BA,D
+

CA,D
−

AX ,D
−

AY )

= αP(Ai|D
+

BA,D
+

CA)P(D
−

AX |Ai)P(D
−

AY |Ai)

= αP(D−AX |Ai)P(D
−

AY |Ai)

·

∑
jk

P(Ai|Bj,Ck )P(Bj|D
+

BA)P(Ck |D
+

CA)

 (20)

where a is a normalizing constant.
Starting from the definition of πA(Bj) = P(Bj|D

+

BA), then it
becomes:

P(Ai|D
+

BA,D
+

CA,D
−

AX ,D
−

AY )

= αλX (Ai)λY (Ai) ·

∑
jk

P(Ai|Bj,Ck )πA(Bj)πX (Ck )


For more detail about probabilistic reasoning of BN,

the reader is referred to [47]. As soon as P{mi(k)|ck} is
updated, it is integrated in (18) to calculate sojourn time
probability.

FIGURE 7. Message-passing algorithm in a part of Bayesian network.

D. PSEUDO-MEASUREMENTS
In this section, pseudo-measurements are constructed
to describe the road map constraint. Inspired by [42],
the pseudo-measurement constraints are constructed for
anti-radiation missile system. We proposed a pseudo-
measurement method for vehicle tracking problem. As the
vehicle move on the road, the vehicle always follows the road
line. If the positions of two road map points on the straight
line are available at (ξ (r − 1), η(r − 1)) and (ξ (r), η(r)), the
constraint trajectory can be constructed by

η(r − 1)− η(r)
ξ (r − 1)− ξ (r)

=
η(k)− η(r)
ξ (k)− ξ (r)

=

˙η(k)
˙ξ (k)

(21)

where the (ξ (k), η(k)) and ( ˙ξ (k), ˙η(k)) are vehicle position
and velocity at time k, respectively. If (ξ (r−1), η(r−1)) and
(ξ (r), η(r)) are both known, the constraints is in (21).
In this paper, we consider use the measurement point

(ξm(k), ηm(k)) to replace the road point (ξ (r − 1), η(r − 1)),
then a pseudo-measurement can be written as:

γ (k) = ˙η(k)(ξm(k)− ξ (r))− ˙ξ (k)(ηm(k)− η(r)) = 0 (22)

where γ (k) is the constant and error-free. This error-free
pseudo-measurement can also be augmented into the mea-
surement vector to convert a context constrained problem into
the regular filtering problem. The pseudo-measurement with
the context road-map constraint can be written as:

z(tk )=

ξ (k)η(k)
γ (k)

 (23)

=

 ξ (k)
η(k)

˙η(k)(ξm(k)−ξ (r))− ˙ξ (k) (ηm(k)−η(r))

+
wξ (k)wη(k)
wγ (k)


(24)

with the covariances

R(k) =

Rξξ (k) Rξη(k) Rξγ (k)
Rξη(k) Rηη(k) Rηγ (k)
Rξγ (k) Rηγ (k) Rγ γ (k)

 (25)
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FIGURE 8. Block diagram of the proposed context-based multi-vehicle tracking algorithm.

=

 σ 2
ξ 0 0
0 σ 2

η 0
0 0 0

 (26)

where Rξη(k) and Rηξ (k) are the cross-covariances of the
of measurement ξ and η, respectively. σ 2

γ is the variance of
pseudo-measurement γ , which is assumed as error-free.

IV. CONTEXT-BASED VEHICLE TRACKING ALGORITHM
In this section, the context-enhanced multi-vehicle track-
ing algorithm was proposed, which considers the context
information by integrating the context-based STDM system
and pseudo-measurement into tracking process. Based on
the methods described in section III, the block diagram of
proposed tracking algorithm is shown in Fig.8.

A. UNSCENTED TRANSFORMATION
Considering the high nonlinearity of (24), the unscented
transformation (UT) is to deal with the nonlinear measure-
ments. 1) Generate Sigma Points: Sigma points are generated
as the following:

χ0(k) = x̂(k|k − 1)

χ i(k) = x̂(k|k − 1)+
[√

(Nz + λ)P(k|k − 1)
]
i
,

i = 1, . . . ,N s
x

χ i(k) = x̂(k|k − 1)+
[√

(Nz + λ)P(k|k − 1)
]
i−Nz

,

i = N s
x + 1, . . . , 2Nz (27)

where
[√

(Nz + λ)P(k|k − 1)
]
i
represents the ith column of

matrix
[√

(Nz + λ)P(k|k − 1)
]
. Nz denotes the dimension of

the augmentedmeasurement vector z(k), λ can be any number
except for λ + Nz = 0. P(k|k − 1) is one step predict
covariance. The weights Wm

i and W c
i are calculated as

Wm
0 =

λ

Nz + λ

W c
0 =

λ

Nz + λ
+ (1− α2 + β)

Wm
i = W c

i =
1

2(Nz + λ)
, i = 1, . . . , 2Nz. (28)

where α and β are empirical parameters of the sigma points,
and α is used to determine the spread of the sigma points
around z̄(k), β incorporates prior knowledge of the distribu-
tion of z(k).

Then, instantiating each sigma point using the nonlinear
functions in (24) to obtain the posterior sigma points as

χ̂ i(k|k−1) = h(χi(k)) =

ξi(k)ηi(k)
γi(k)

, i = 0, 1, . . . 2Nz. (29)

Finally, the mean ẑ(k), variance and cross covariance are
given by

ẑ(k) =
2Nz∑
i=0

Wmean
i ẑi(k) (30)

Pz(k)=
2Nz∑
i=0

W c
i (χ̂ i(k|k−1)−ẑ(k))(χ̂ i(k|k−1)−ẑ(k))

′ (31)

Pzx(k)=
2Nz∑
i=0

W c
i (χ0(k)−x̂(k|k−1))(χ̂ i(k|k−1)−ẑ(k))

′. (32)

B. STDM-VSIMM FILTER
The proposed STDM-VSIMM filter is modified by the basis
of the STDM-IMM filter, where vehicle dynamics are cap-
tured by multiple motion models, and where the transition
between those models is described by a sojourn-time depen-
dent Markov chain.

The main improvement is to propose an adaptive sojourn-
time dependent transition probability based on dynamic con-
text, which is closer to the natural behavior of the maneuver-
ing vehicle. The adaptive sojourn-time dependent transition
probability of STDM system is introduced in Section III.
Another modification is that the IMM algorithm is extended
to VSIMM algorithm with the current context. This context-
based variable structure eliminates the need for carrying all
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the possiblemodels throughout the entire tracking period, sig-
nificantly reducing computational complexity and improving
tacking accuracy.

Let us consider the linear discrete-time kinematic models
given in (2) with multiple models by

x(k) = Fx(k − 1)+ 0v(k,m(k)) (33)

where m(k) denotes the model at time k . The acceleration
noise is semi-Markov jump Gaussian noise. For each model
i, v(k,mi(k)) ∼ N (ui,Qi) with mean ui and covariance Qi.
One cycle of STDM-VSIMM at time k can be summarized as
following steps.

1) Calculation of the mixing probabilities:

µi|j(k−1|k − 1) =
1
c̄j
πijµi(k − 1|k − 1), i, j = 1, . . . ,N

(34)

where c̄j =
∑N

i=1, πijµi(k−1|k−1), j = 1, . . . ,N . π ′ij is the
sojourn-time-dependent transition probability from model i
to model j, which is proposed in Section III.
2) Mixing: the mean and the covariance matrix for the jth

mode-matched filter are given by

x̂0j(k−1|k−1) =
N∑
i=1

µi|j(k−1|k−1)x̂i(k−1|k−1) (35)

P0j(k−1|k−1) =
N∑
i=1

µi|j(k − 1|k − 1){Pi(k − 1|k − 1)

+

[
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]
·

[
[x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]′
}

(36)

3) Mode matched filtering: for j = 1, 2 . . .N, use the
estimate (35), covariance (36) and observation z(k) as input to
matchmj(k). The Kalman filer with unscented transformation
(27)-(32) are used to yield xj(k|k) and Pj(k|k). The Gaussian
likelihood for the measurement can be calculated from the
innovation vector νj(k) and its covariance Ŝj(k) following

3j(k) =
exp

[
−(1/2)

(
νj(k)

)′ (Ŝj(k))−1 νj(k)]√∣∣∣2π Ŝj(k)∣∣∣ (37)

where νj(k) = z(k) − ẑ(k|k − 1; x̂0j(k − 1|k − 1)), zk is the
measurement and ẑ(k|k−1; x̂0j(k−1|k−1)) is the predicted
measurement for mode filter mj(k), respectively. Ŝj(k) is the
innovation covariance, Ŝj(k) , Ŝj(k,P0j(k − 1|k − 1)).
4) Mode probability update:

µj(k|k) =
µj(k|k − 1)3j(k)∑N
j µj(k|k − 1)3j(k)

(38)

5) Estimate: the combined state and the corresponding
covariance matrix are calculated from the weighted state

estimates and its covariances

x̂(k|k) =
N∑
i=1

µj(k|k)xj(k|k) (39)

P(k|k) =
N∑
i=1

µj(k|k){Pj(k|k)+ [x̂j(k|k)− x̂(k|k)]

· [x̂j(k|k)− x̂(k|k)]′} (40)

6) Variable Filter Module Selection: Since the vehicle may
have non-maneuvering state, the variable model is considered
to handle this possibility, where the NCV model is used. The
basic idea to make multiple motion models adaptive is to use
the dynamic context in Section III.

C. MEASUREMENT VALIDATION
All the measurements should be validated before data asso-
ciation, which can effectively reduce false alarms and avoid
erroneous assignments. Validation is performed in two stages.

1) Road constraint validation: As the vehicle target is
moving with road constraint, the valid measurement confi-
dence regions will intersect with segment of the road. Based
on the pseudo-measurement described in Section III-D, the
validation problem is equivalent to testing whether the
pseudo-measurement γ (k) is in the confidence regions. To be
specific, the confidence region of measurement is given by

V1(k, γ1) = γ (k) ≤ γ1 (41)

where γ1 is the confidence threshold.
2) Tracking gate: the tracking gate is commonly used for

measurement validation, which is formed for each track based
on its predicted measurement. The measurement z(k) is valid
for associating with the n th track only if the measurement
will be in the following region

V2(k, γ1) = v(k)′S(k)v(k) ≤ γ2 (42)

where v(k) = z(k)− ẑ(k|k−1), γ2 is the validation threshold,
ẑ(k + 1|k) is the predicted measurement and S(k) is the inno-
vation covariance. Because of the multiple models, ẑ(k|k−1)
and S(k) correspond to the IMM module in (37) with the
largest |S(k)| so that the measurement is validated or rejected
by all modules [1].

After the on-road constraint validation and gating valida-
tion, the measurements can be considered for data association
and track initialization.

D. DATA ASSOCIATION
In order to track multiple targets with imperfect sensors,
it is necessary to handle the measurement-to-track associa-
tion problem. Measurement provided by sensors are always
affected by some clutter, while the nearest neighbor (NN) [6],
multiple hypothesis tracking (MHT) [48], joint probabilistic
data association (JPDA) [49] and 2-D assignment data asso-
ciation are commonly used for deal with the measurement
origin uncertainty. In this paper, the 2-D assignment data
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association is used for vehicle tracking. The details on 2-D
assignment algorithm can be found in [50].

E. TRACK MANAGEMENT
Based on the data association results, track management is
used to improve the true track detection probability and to
reduce the false track acceptance probability. The track state
includes three states: tentative, confirmed and dead. In this
paper, the sliding-window based M/N logic management
method is applied to manage the track. All measurements
that after measurement validation and data association were
not associated with any existing track and are initialized as
tentative tracks. Then, a M/N test (a track is confirmed if at
least M measurement is associated together over N frames;
otherwise, the track needs to be deleted) is used for tentative
track. For confirmed track, if the M/N test is not satisfied,
then delete the track. The performance of M/N logic man-
agement method is affected by the variable probability of
false alarm (PFA) Pd . Considering the occlusion environment
in vehicle tracking, the 2/2&2/3 logic can be used to form
tentative tracks.

V. EXPERIMENTAL RESULTS
In this section, we demonstrate the performance of the
STDM-VSIMM multi-vehicle tracking algorithm through
simulation experiments. To analyze the performance, the pro-
posed algorithm is compared with the KF and IMM filters. In
order to test the road constraint, the proposed are compared
with pseudo-measurement.

A. SIMULATION SCENARIO
Two tracking vehicles are simulated to move along the road.
They initial positions at 2D road coordinate system are
(50m, 0m) and (100m, 4m) with corresponding initial longitu-
dinal speed of 10m/s and 25m/s, respectively. Since the lane
changing is not the considered in this paper, for simplicity,
the lateral speed is assumed as zero and a Gaussian white
process noise with variance σla = 0.2m/s2 is added to model
the lateral motion. The longitudinal maneuvers are generated
with the non-zeros jump-mean acceleration input, which are
shown in detail in Table. 1 and Table. 2. The measurements
are assumed reported only position measurement in the 2D
road coordinate every T = 2s with the standard deviations
of error being σξ = 2m and ση = 1m along the longitudi-
nal and lateral directions, respectively. The target detection
probability PD = 0.95, and the false alarms are assumed to
be uniformly distributed, and with the spatial density λ =
2.0× 10−5/m2. The ground truth trajectories and estimation
trajectories are illustrated in Fig.9.

B. CONFIGURATION OF THE LONGITUDINAL TRACKING
ALGORITHMS
1) KF-based tracking algorithm: the KF tracking algorithm
is configured with the nearly constant-acceleration (NCA)
model for longitudinal direction. The longitudinal process
noise variance of the NCA model is σlo = 0.3m/s2.

FIGURE 9. The ground truth and estimation trajectories.

TABLE 1. The context maneuver parameter of target A.

TABLE 2. The context maneuver parameter of target B.

2) IMM-based tracking algorithm: the IMM-based track-
ing algorithm is configured as nearly constant velocity (NCV)
and mean-adaptive acceleration model (MAA) to model the
longitudinal motion. The process noise variance of NCV
model is σNCAlo = 0.1m/s2. The parameters for MAA model
is given with α = 1/τ = 1/5, amax = 4m/s2, and
amax = −4m/s2. The process noise variance of the MAA
is σlo = 0.3m/s2. After the configurations to model the lon-
gitudinal motion with NCV and MAA, the IMM is used for
estimating the vehicle motion. The initial model probability
µ0 = [0.5, 0.5] and the fixed TPM of IMM is giving by (43)

5 =

[
0.9 0.1
0.1 0.9

]
. (43)

3) STDM-VSIMM based tracking algorithm: Three jump
acceleration process model and a NCV model are deployed
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TABLE 3. PCT of p(c|v ).

TABLE 4. PCT of p(v |vp).

as the model set of STDM. The jump acceleration noises,
namely, low maneuvering, medium maneuvering, high
maneuvering, respectively. For each model, the directional
process noises are wh(k) ∼ N (2, 1), wm(k) ∼ N (1, 0.75),
wk (k) ∼ N (0.5, 0.5). In the STDM-VSIMM filter, the
probability mass functions of sojourn time of the jump accel-
eration noises are

gh(τ ) = a1e−|τ−3|

gm(τ ) = a2e−|τ−5|

gl(τ ) = a3e−|τ−7| (44)

where ai, i = 1, 2, 3 are set to the value which meet∑
∞

τ ai(τ ) = 1.
The STDM-VSIMM estimator uses initial model probabil-

ityµ0 = [0.25, 0.25, 0.25, 0.25] and the initial TPM is giving
by (16)

5 =


0.1 0.3 0.3 0.3
0.3 0.1 0.3 0.3
0.3 0.3 0.1 0.3
0.3 0.3 0.3 0.1

 . (45)

The STDM-VSIMM based tracking algorithm estimates
the sojourn time according to the pdf of sojourn time using
(44) and the context-based Bayesian network. In order to
make the BN work, parameterizing the conditional prob-
ability table (CPT) for each node is the critical step. For
simplicity, the context interaction information in Fig. 6, only
the the vehicle interaction node v(k) is considered in our sim-
ulation. According the our previous work about the bayesian
network threat assessment in [51], the CPT table is given in
Table.3, Table.4, Table.5 to calculate the conditional proba-
bility for each node over time after receiving the contextual
information.

4) Posterior Cramer-Rao lower bound (PCRLB): The pos-
terior Cramer-Rao lower bound is applied to evaluate the
performance of proposed estimation method. According [52]

TABLE 5. PCT of p(v |vs).

and [53], the PCRLB on the augmented state estimation error
covariance matrix Pk+1 is the inverse of the Fisher informa-
tion matrix (FIM) Jk+1, thus

Pk+1,E
[(
Ŷk+1−Yk+1

)(
Ŷk+1−Yk+1

)T]
>J−1k+1. (46)

where Ŷk+1 , [X̂Tk+1, X̂
T
t,k+1]

T be the unbiased estimate of
Yk+1 , [XTk+1,X

T
t,k+1]

T conditioned on the measurement set
Zk+1.
The posterior FIM Jk+1 is given with a recursive equation

in [54]:

Jk+1 = D22
k − D

21
k (Jk + D11

k )−1D12
k︸ ︷︷ ︸

JX ,k+1

+JZ ,k+1 (47)

where

D11
k = E{−1Xk

Xk ln p(Xk+1|Xk )} (48)

D12
k = E{−1Xk+1

Xk ln p(Xk+1|Xk )} (49)

D21
k = (D12

k )′ (50)

D22
k = E{−1Xk+1

Xk+1
ln p(Xk+1|Xk )} (51)

JZ ,k+1 = E{−1Xk+1
Xk+1

ln p(Zk+1|Xk+1)}. (52)

For the linear dynamic system, the FIM Jk+1 is given by

Jk+1 =
(
FkJ−1k FTk +Qk

)−1
+ JZ ,k+1 (53)

where Fk , diag{Fk ,Fk}, Qk , diag{Qk ,Qt,k}, and the
FIM is initialized as J0 = P−10 . Matrix JZ ,k+1 gives the
measurement contributions to the PCRLB and is given by

JZ ,k+1 =
[
∂hk+1
∂Ŷk+1

]T
(Rk+1)−1

[
∂hk+1
∂Ŷk+1

]
. (54)

C. CONFIGURATION OF THE LATERAL TRACKING
ALGORITHMS
The lateral tracking algorithms are compared with themethod
of using the pseudo-measurements. The without pseudo-
measurements method is a normal KF filter with the NCV
model to tracking vehicles. The without one is the same NCV
model as the normal one. The true position of the target
A at 100s in road coordinates (x100, y100) = (2903m, 0m),
is assumed as the prior known road center for testing the
proposed pseudo constraint.
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FIGURE 10. Longitudinal PRMSE of vehicle A.

FIGURE 11. Longitudinal VRMSE of vehicle A.

D. SIMULATION RESULT OF LONGITUDINAL
In this experiment, the four filters are applied on the test
scenario for 200 Monte Carlo runs. The two benchmark tra-
jectories regarding longitudinal and lateral position are shown
in Fig.9. The position root mean square error (PRMSE) and
velocity root mean square error (VRMSE) are used for mea-
suring the accuracy of the longitudinal motion. Furthermore,
the optimal sub-pattern assignment (OSPA) [55], and the
proposed PCRLB are also used to evaluate performance.

Fig.10 and Fig.12 show the PRMSE for vehicle A and
vehicle B, respectively. We see from the figures that the
error gain comes mainly from the maneuvering instant (the
maneuvering inputs are given in Table 1 and 2). The KF
tracking algorithm gives the poor longitudinal position esti-
mates when the maneuvering happen. The IMM algorithm
shows a better result than the KF one. This is because the
MAA model is more accurate to model the maneuvering
state. It can be seen that the filter performance improvement
with the proposed STDM-VSIMM is hence larger when the
maneuvering segments are longer. This is because that the
STDM-VSIMM longitudinal estimator is more accurate to
predicate the sojourn time of the motion behaviors, then it
gets better results than other algorithms. What’s more, the
STDM-VSIMM based tracking algorithm is further towards

FIGURE 12. Longitudinal PRMSE of vehicle B.

FIGURE 13. Longitudinal VRMSE of vehicle B.

the PCRLB than others. Fig.11 and Fig.13 shows the VRMES
for each filter. It is also seen that the proposed filter outper-
form the KF filter and fixed set IMMfilter. This confirms that
the sojourn time dependent transition probabilities represent
target behavior better than the fixed transition probability.

The overall statistic of longitudinal PRMSE and VRMSE
in 200 Monte Carlo runs is shown in Table. 6. As we can see,
the STDM-VSIMM filter yields better performance than the
other filters with respect to both position and velocitymetrics.
To be more specific, comparing with the IMM filter, the pro-
posed STDM-VSIMMfilter gain 7.4% PRMSE performance
and 18% VRMSE performance.

However, the performance increase is not as much as other
paper [12], [41], this is because the measurement standard
deviations is σξ = 2m. If the we use the noise sensors with
the σξ = 5m or σξ = 10m, the performance increase is better.
In fact, it depends on the actual measurement error of the
sensors. Nevertheless, it is noticed that the improvement of
proposed filter is more obvious than others at the maneuver-
ing time segments. Since the performance gain comes mainly
from maneuvering segments, the proposed are shown to have
a better ability to track high maneuvering target, such as
aircraft, unmanned aerial vehicle, etc.
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TABLE 6. The RMSE of different longitudinal tracking algorithms.

FIGURE 14. The OSPA distance of vehicle A.

FIGURE 15. The OSPA distance of vehicle B.

The proposed method is also compared using the opti-
mal sub-pattern assignment (OSPA) metric [55]. The OSPA
metric computes the distance between two track sets by the
localisation error and track label error. The track label compo-
nent can effectively capture the data association performance.
The results of OSPA distance can been seen in Fig.14 and
Fig.15. The proposed has the smallest OSPA distance, which
represents the smallest estimation error and least amount of
incorrect data association. Besides, as we can see in Table. 7,
the overall OSPA distance of proposed STDM-VSIMM algo-
rithm performance also outperforms than other algorithms.

Apart from error performance, it is also of interest to
study the longitudinal motion model switching probability.
The modeling switching is shown with the maneuvering
from 40s-56s of vehicle A. In this segment, the acceleration
input is 0.5 m/s2 at 40s-46s, 1 m/s2 at 48s-51s, 2 m/s2

TABLE 7. The OSPA distance of different longitudinal tracking algorithms.

FIGURE 16. The mode probability of vehicle A from 40s to 60s.

TABLE 8. The PRMSE of different lateral tracking algorithms.

at 53s-56s. As we can seen from Fig.16, the lowmotion prob-
ability is very close to 1 at 41s-45s. Then the middle motion
and highmotion probability increases at 46s-51s and 54s-56s,
respectively. So the proposed context-based STDM works
as expected and estimates the model switching probability
accurately. This is because that the sojourn time in model
is clearly estimated with context information, whereas the
sojourn time in IMM is ambiguous.

E. SIMULATION RESULT OF LATERAL
The lateral position RMSE is shown in Fig.17. The proposed
method, which incorporates the road map constraint with
pseudo-measurement, produces estimates more accurate than
the unconstrained one. The overall statistics of lateral mean
PRMSE are shown in Table. 8. Apparently, the lateral estima-
tion result are significantly improved when using the road-
map constraint. The mean performance gain is 16.9 % of two
vehicles. This demonstrates the effectiveness of incorporating
the pseudo-measurement as the road constraint, which signif-
icantly improve estimate accuracy.

F. COMPUTATIONAL COST
The lowest computational cost of KF is observed than other
filters. The computational complexity of KF is O(m), where
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FIGURE 17. Lateral PRMSE of vehicle A.

TABLE 9. Average computation times of longitudinal algorithms.

the m is the number of targets. The proposed filter has the
same computational complexity (O(m2)) as the IMM. But
the proposed filter has only slightly higher requirements than
the IMM. This is because the computation of adaptive state
transition probability cost some executing time. In order to
test the cost of the transition probability using Bayesian
network, the computation times are compared as shown in
Table. 9. All algorithms are running with 2.4 GHz and 8G
ram PC after 200 Monte Carlo simulations. As expected,
the KF method is fastest algorithms in which the context
information is considered. Comparing with the IMMmethod,
the STDM-VSIMM approach requires a higher computation
cost due to the computation of the Bayesian network. Note
that the computational cost is under 200 Monte Carlo run.
However, for only one run case, it still shows an acceptable
computational for a real time vehicle tracking application.

VI. CONCLUSION
This paper introduced a novel context-enhanced vehicle
tracking approach, which integrated with types of con-
text information. Based on the fact that the longitudinal
acceleration of vehicles is a semi-Markov jump process, a
sojourn-time dependent semi-Markov model has been pro-
posed through sufficiently incorporating the dynamic con-
text information. The proposed approach calculate the model
switching probabilities with the sojourn time probability
mass function and its likelihood, then the normal Markov
switching is replaced by the semi-Markov switching. Unlike
the traditional way which utilize the context in tracking
process directly, the proposed approach inference and rea-
son the context interaction based on the Bayesian networks,
which can is more appropriate and accurately. Furthermore,
considering the static context with road map, a novel con-

text pseudo-measurement is also proposed to constraint the
motion.

The proposed filter is evaluated on numerical simulations,
the results demonstrated that the proposed context-enhanced
tracking algorithms outperform other algorithms, due to bet-
ter prediction of target maneuvers caused by vehicle interac-
tion and the road map constraint. It was also shown that the
context can significantly reduce the estimation uncertainties
and make the overall filtering process more efficient. It is
worth noting that the assuming of the sojourn time probability
mass function should be on the basis of target maneuver
behavior. Nevertheless, since we use a Bayesian inference
approach to correlate with the context, the impact of such
problems is mitigated.

Furthermore, it would be interesting to apply the proposed
dynamic model to other tracking scenarios including the
following aspects. First, the STDM-VSIMM can be used
in air traffic surveillance due to the fact that most aerial
vehicles have a jump acceleration [40], and thereby the
tracking performance could be further improved. Second,
the context-based method is good for lack of observations
(measurements) scenario, which can reduce the estimation
uncertainties. Third, some turn models [4] (constant turn
model, circular motion model) can also be integrated with
the proposed STDM-VSIMM to track more specific targets.
In the future research, we will investigate the extension of
context-enhanced method for vehicle tracking. For exam-
ple, using context for improving data association in missing
measurement occasions. What’s more, we will explore the
spatio-temporal context representations for sojourn time with
a hidden Markov model.
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