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ABSTRACT In this paper, an effective solution for adaptive sensor scheduling integrated with power and
bandwidth allocation is developed for centralized multiple target tracking (MTT) in the netted collocated
multiple-input multiple-output (C-MIMO) radar system. By incorporating a modified particle filter, the
predicted posterior Cramér-Rao lower bound (PCRLB) is calculated. Aiming at improving the sum of target
tracking accuracy of location, the predicted PCRLBs for the location of multiple targets is derived as the
optimization metric. Owing to the dynamic sensor scheduling is NP-hard, a convex relaxation technique
is adopted for the sensor scheduling. Taking account of the problem of power and bandwidth allocation is
non-convex, a joint convex relaxation technique and cycle minimizer algorithm is adopted to convert the
non-convex optimization problem into a series of convex problems. After the results of resource allocation
are fed back to each node, an adaptive closed-loop system is established. Numerical results demonstrate that
the location tracking accuracy can be improved efficiently by the proposed algorithm.

INDEX TERMS Collocated MIMO radar, PCRLB, netted radar system, sensor scheduling, resource
allocation.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Themultistatic radar network has become a vigorous research
field recently, given its great spatial diversity over the mono-
static radar system [1]–[7]. For the collocated multiple-input
multiple-output (C-MIMO) radar network system [3], [4],
each C-MIMO radar can execute multiple radar tasks inde-
pendently by launching multiple beams simultaneously in the
simultaneous multibeam (SM) working mode [8]. Due to its
high degree of freedom in waveform design, the C-MIMO
radar is suitable and efficient in performing multiple target
tracking (MTT) tasks [9]–[12]. Hence, the C-MIMO radar
network can be effectively incorporated inMTT applications.
However, the finite resources shall be efficiently managed
so as to take full advantages of the spatial diversity and the
waveform diversity of the C-MIMO radar network.

The associate editor coordinating the review of this manuscript and
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The monostatic C-MIMO radar system for MTT has been
well studied in [9]–[13]. In practice, when a C-MIMO radar
tracks multiple targets in the SM working mode, the target
tracking accuracy of location is relevant with some limited
system resources [10]–[12]: (i) the maximum number of gen-
erated beams simultaneously; (ii) the total transmitting power
from all beams; (iii) the total transmitting bandwidth from all
beams. In this case, for a monostatic C-MIMO radar system,
how to manage these limited resources to maximize radar
ability for MTT is of great importance. So far, the research on
the resource allocation for MTT in the monostatic C-MIMO
radar system is not sufficient. Reference [9] proposes a power
allocation method for MTT in the monostatic C-MIMO radar
system by using the SM working mode. Reference [10]
develops a joint beam and power allocation scheme to
further improve the C-MIMO radar’s resource utilization.
Reference [11] proposes a space-time allocation scheme in
C-MIMO radar to further improve the freedom of trans-
mit beam allocation. To improve the target tracking ability

109976 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4529-9363
https://orcid.org/0000-0001-8786-6736
https://orcid.org/0000-0003-4374-9778
https://orcid.org/0000-0002-5575-6943


Z. Li et al.: Adaptive Sensor Scheduling and Resource Allocation in Netted C-MIMO Radar System for Multi-Target Tracking

of velocity, [12] discusses the joint power and time width
allocation problem. In addition to the transmitting resource
allocation, the antenna selection problem in the C-MIMO
radar system for MTT has been studied in [13].

Regarding the netted C-MIMO system, the relevant
researches of the resource allocation for MTT in the SM
working mode are limited, and only appear in [3], [4]
and [14]. Yan et al. [3] studied the resource management
problem for MTT in the C-MIMO radar network system
with the SM working mode initially, and proposed a joint
beam and power allocation scheme under the ideal detection
conditions. Based on [3], Lu et al. [4] further developed a
joint scheduling and power allocation (JSPA) scheme with
adjustable number of targets. Yi et al. [14] focused on the joint
beam and power allocation problem for MTT in the netted
C-MIMO radar system, and implemented a distributed fusion
architecture based on the covariance intersection fusion to
reduce the communication requirements among the C-MIMO
radars.

In general, the existing researches on the resource alloca-
tion in the netted C-MIMO radar system mainly focus on the
resources of beam and transmit power to improve the target
tracking accuracy of location, but the bandwidth allocation is
seldom covered until. However, for the MIMO radar system,
one of the ways to achieve beam orthogonalization is to
allocate multiple beams discrete bandwidth. Compared with
other orthogonal beamforming techniques, this scheme can
achieve waveform diversity by simple filtering mechanism.
Moreover, each transmitter can be flexibly adjusted without
affecting the orthogonality. In addition, Garcia et al. [15]
proved that the bandwidth allocation can further improve
the accuracy of target locating. Zhang et al. [16] studied
a joint power and bandwidth allocation scheme for MTT
in distributed MIMO radar, and bandwidth allocation was
proven to improve the target tracking accuracy well. To the
best of our knowledge, few studies focusing on the problem of
bandwidth allocation in the C-MIMO radar network system
with the SM working mode have been produced. As the
bandwidth resource is vital in the target tracking problem,
the bandwidth allocation must be taken into account.

B. MAIN CONTRIBUTION
In this paper, we intend to address the problem of the sensor
scheduling integrated with power and bandwidth allocation
for MTT in the netted C-MIMO radar system. Each C-MIMO
radar in the network system works in the SM mode. In addi-
tion, the whole network system is operated in the centralized
mode, where each node sends raw data to a common fusion
center and this center allocates resources and conducts sensor
scheduling. In practice, this fusion center can be easily estab-
lished via wireless or cable communications and software
supports [16].

The major contributions are given as follows:
(1) An adaptive cognition tracking system for sensor

scheduling integrated with power and bandwidth alloca-
tion is established. We adopt a modified particle filter

(shown in section III-A) to tackle the nonlinear filtering
problem and acquire an accurate target state estimation.
Due to its predictive ability, the posterior Cramér-Rao lower
bound (PCRLB) is commonly used as an optimal criterion
to guide the resource allocation [9]–[14], and [16]–[18].
Firstly, by using the target state estimation fusion informa-
tion, the PCRLB at the next time is predicted. Secondly,
the objective function related to transmit beam assignment
integrated with power and bandwidth allocation is established
by using the predicted PCRLB. Finally, the results of sen-
sor scheduling and resource allocation are calculated by the
fusion center and fed back to each C-MIMO radar to guide
the task assignment for the next time. As such, a closed-loop
feedback system is established, which can guide the adaptive
allocation of system resources.

(2) By introducing the convex relaxation technique and
the cycle minimizer, the complex non-convex optimization
problem is converted into a serious of easy-solving convex
optimal problem. Technically, the sensor scheduling problem
is a 0-1 inter programming [5]–[7] and is NP-hard [19].
It can be solved via the exhaustive search [20], but the rel-
evant computational burden will be huge for a large-scale
C-MIMO network system. To meet the real-time demand,
we adopt the convex relaxation of the node selection [21],
so that the 0-1 inter programming problem can be converted
into a convex optimization problem. For a given solution
of sensor scheduling, the rest of resource allocation prob-
lem has become the non-convex optimization problem. After
introducing the convex relaxation technique, the non-convex
optimization problem can be converted into the convex opti-
mization problem. In addition, a cycle minimizer solution
could be leveraged to obtain the optimal solution of power
and bandwidth allocation.

(3) We build a bandwidth allocation scheme in the netted
C-MIMO radar system for MTT with the SM working mode.
[15] proved that the joint power and bandwidth allocation
can further improve the positioning accuracy of static target.
In [16], a bandwidth allocation scheme is constructed in the
distributed MIMO radar system for MTT, which shows a
good performance in improving the target tracking accuracy.
However, few studies have focused on the bandwidth allo-
cation in C-MIMO radar. The simulation results demonstrate
that bandwidth optimal allocation could outperform the band-
width average allocation.

The remaining sessions of this paper are as follows.
Section II describes the system model. Section III introduces
the modified particle filter and then establishes the optimiza-
tion model by deriving and integrating the location PCRLB
of each C-MIMO radar. The solution of formulated sensor
scheduling and resource allocation problem is proposed in
section IV. Simulation results and analysis are described in
section V. Section VII concludes this paper.

II. SYSTEM MODEL
Assume that a netted radar system is consist of totally N ≥ 3
widely distributed C-MIMO radars located in 2-D space.
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The radar system undertakes the target tracking role in the
region of interest (ROI). The location of radar n is denoted
as (xn, yn), where n = 1, 2, . . . ,N . Additionally, there are
Q ≥ 3 point-like targets moving in the ROI. For simplicity,
we assume that the number of targets Q in the ROI is a
constant and is known as prior information. For future use,
we introduce a set of binary variables:

en,q,k =

{
1, if target q is tracked by radar n
0, otherwise

(1)

where q = 1, 2, . . . ,Q, and n = 1, 2, . . . ,N . Therefore,
the systemmodel of sensor scheduling in the netted C-MIMO
radar system can be intuitively depicted as Fig. 1.

FIGURE 1. Work-flow of sensor scheduling in the netted C-MIMO radar
system.

A. SIGNAL MODEL
To track these targets, each radar in the system adopts a SM
workingmode, wheremultiple orthogonal transmit beams are
simultaneously generated and used to track different targets.
The transmit signal from the nth radar to target q is normal-
ized and orthogonal such that [16]∫

+∞

−∞

∣∣sn,q (t)∣∣2dt = 1, q = 1, 2, . . . ,Q (2)∫
+∞

−∞

sn,q (t) sHn,q′ (t − τ)dt =

{
0, q 6= q′

1, q = q′
(3)

In addition, consider that all transmit signals are narrowband
with effective bandwidth [22]:

β2n,k =

(∫
f 2
∣∣Sn,q (f )∣∣2 df )/(∫ ∣∣Sn,q (f )∣∣2 df ) (4)

and effective time duration:

T 2
n,k =

(∫
t2
∣∣sn,q (t)∣∣2 dt)/(∫ ∣∣sn,q (t)∣∣2 dt) (5)

Therefore, the received signal from the qth target to radar n
at the kth sample interval is

rn,q,k (t) = an,q,khn,q,ksn,q
(
t − τn,q,k

)
ej2π fn,q,k t + nn,q,k (t)

(6)

where an,q,k represents the attenuation in the signal strength
due to path loss effects, which satisfies that

an,q,k ∝
√
Pn,q,k

/(
Rn,q,k

)2 (7)

where Pn,q,k is the transmit power from radar n to target q,
and Rn,q,k is the distance between radar n and target q. The
term hn,q,k represents the target reflectivity, which is modeled
as a complex known variable. τn,q,k and fn,q,k denote the time
delay and the Doppler frequency respectively. nn,q,k (t) repre-
sents a zero-mean, complex Guassian noise, which complies
with nn,q,k (t)∼N(0, σ 2

n,q).

B. TARGET MOTION MODEL
Assume that the target motion model can be prescribed by a
constant velocity (CV) model [23]:

xq,k = Fqxq,k−1 + wq,k−1 (8)

where xq,k = [xq,k , ẋq,k , yq,k , ẏq,k ]T is the state of target q at
the kth sample interval. Fq denotes the state transition matrix
in the CV model, and wq,k−1 is an uncorrelated process
noise sequence which complies with wq,k−1∼N(0,Qq,k−1).
The math expression of Fq is given by [10]:

Fq =
[
1 T0
0 1

]
⊗ I2 (9)

And Qq can be calculated as:

Qq,k−1 = E
[
wq
k

(
wq
k

)T ]
=

(∫ T0

0
gq,k−1

[
T0 − t

1

] [
T0 − t 1

]
dt
)
⊗ I2

= gq,k−1

[
T 3
0 /3 T 2

0 /2
T 2
0 /2 T0

]
⊗ I2 (10)

whereE denotes the mathematical expectation productor, and
gq,k−1 is the level of process noise intensity. T0 is the sam-
ple time interval, and I2 represents a second-order identity
matrix.

C. MEASUREMENT MODEL
Technically, there is a lot of target information in the radar
receiving signal, which can be extracted by using the suitable
signal processing methods [16]. In this paper, we focus on the
range, Doppler frequency, and bearing angle. Therefore, with
the combination of the binary variable en,q,k , the nth radar’s
measurement equation to the qth target at tracking interval k
is defined as:

zn,q,k =

{
hn
(
xq,k

)
+ un,q,k if en,q,k = 1

0 if en,q,k = 0
(11)

where hn(·) = [hnR(·), h
n
f (·), h

n
θ (·)]

T represents the nonlinear
measurement matrix. After substituting the target state xq,k
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into hn(·), the corresponding elements of the matrix are cal-
culated as [3]:

Rn,q,k = hnR
(
xq,k

)
=

√(
xq,k − xn

)2
+
(
yq,k − yn

)2
fn,q,k = hnfd

(
xq,k

)
= −

2
λn

(
ẋq,k + ẏq,k

)
×

(
xq,k − xn
yq,k − yn

)/
Rn,q,k

θn,q,k = hnθ
(
xq,k

)
= arctan

[(
yq,k − yn

)/(
xq,k − xn

)]
(12)

where λn is the carrier wavelength of the nth radar. In (11),
un,q,k denotes the zero-mean Gaussian noise, who complies
with un,q,k∼N(0,Rn,q,k ). Suppose that the signal noise ratio
(SNR) is high, thus we can define Rn,q,k as the CRLB matrix
of the nth target’s measurement error [24]:

Rn,q,k = diag
(
σ 2
Rn,q,k , σ

2
fn,q,k , σ

2
θn,q,k

)
(13)

where σ 2
Rn,q,k , σ

2
fn,q,k , and σ

2
θn,q,k

are the CRLBs of the estima-
tion errors of corresponding parameters [12]

σ 2
Rn,q,k ∝

(
αn,q,kPn,q,k

∣∣mn,q,k ∣∣2 β2n,q,k)−1
σ 2
fn,q,k ∝

(
αn,q,kPn,q,k

∣∣mn,q,k ∣∣2 T 2
n,q,k

)−1
σ 2
θn,q,k
∝

(
αn,q,kPn,q,k

∣∣mn,q,k ∣∣2/Bw)−1
(14)

where βn,q,k and Tn,q,k denote effective bandwidth and effec-
tive time width, respectively. mn,q,k denotes the target RCS.
BW is the null-to-null beam width of receive antenna [25].

III. RESOURCE OPTIMIZATION STRATEGY
A. MODIFIED PARTICLE FILTER
Due to the measurement model in Section II is nonlinear
and is based on the multi-static system, the particle filter
(PF) [26], which is known as a good tool in solving the
nonlinear filtering problem, is adopted for state estimation.
However, the standard PF directly obtains the importance
function from the state transfer function, which may lead
the problem of particle degradation [27]. The SCKF shares
simple structure and high precision [28], which can provide
an essential reference for selecting the important function in
the PF. As such, the SCKF is applied to the framework of the
PF so as to further improve its accuracy and stability. In this
way, the modified PF can fully combine the advantages of the
SCKF and the standard PF.
Suppose that the number of particles is B and the parameter

to be estimated is the hybrid target state ξq,k . Moreover, let
ξq,k|k−1 and ξq,k|k be the predicted state and the updated
state vector of the qth target at interval k , with corresponding
covariance matrices Yq,k|k−1 and Yq,k|k , respectively. With
the combination of Section II, the SCPF can be described as
follows.
Step 1: Initialization. Let k = 0, suppose an initial

PDF p(ξq,k+1|k ), q = 1, 2, . . . ,Q. Therefore, according to
p(ξq,k+1|k ), the particles state ξb,q,k+1|k can be obtained,
b = 1, 2, . . . ,B.

Step 2: Filtering update. By substituting ξb,q,k+1|k and
the measurement information zq,k+1 = {zn,q,k+1}Nn=1 into
the SCKF, the sample mean x̄q,k+1|k and the corresponding
covariance Ūq,k+1|k can be calculated. All the calculations
details can be found in [28]. Then, the updated particles
state ξb,q,k+1|k ∼ N(x̄q,k+1|k , Ūq,k+1|k ) and then the corre-
sponding importance sampling function q(ξb,q,k+1|k |ξb,q,k|k ,
zq,k+1) can be obtained.
Step 3:Weight calculation and normalization.

wb,q,k+1 = wb,q,k

×
p
(
zq,k+1

∣∣ξb,q,k+1|k ) p (ξb,q,k+1|k ∣∣ξb,q,k )
q
(
ξb,q,k+1|k

∣∣ξb,q,k|k , zq,k+1 )
(15)

w̃b,q,k+1 = wb,q,k+1

/
B∑
b=1

wb,q,k+1 (16)

Step 4: Resampling. According to the important weight
w̃b,q,k+1, ξb,q,k+1|k is resampled as ξ̄b,q,k+1|k , b = 1,
2, . . . ,B. In addition, let wb,q,k+1 = 1/N , b = 1, 2, . . . ,B.
Step 5: State update.

ξq,k+1|k+1 =

B∑
b=1

wb,q,k+1ξ̄b,q,k+1|k (17)

Yq,k+1|k+1 =

B∑
b=1

wb,q,k+1
(
ξ̄b,q,k+1|k − ξq,k+1|k+1

)
×
(
ξ̄b,q,k+1|k − ξq,k+1|k+1

)T
(18)

Step 6: Recursion. Let k = k + 1, propagate ξb,q,k+1|k
according to ξb,q,k+1|k = Fq, ξb,q,k|k +<b,q,k|k (<b,q,k|k ∼

N(0,Yq,k|k )), and return to step 2.

B. PERFORMANCE METRIC
Since the PCRLB provides a lower bound for the target
tracking error and shares predictive ability [29], we adopt the
PCRLB as the performance metric in the resource allocation
problem. Thus, the PCRLB inequality can be written as [30]:

Eξq,k ,zq,k

[(
ξ̂q,k

(
zq,k

)
− ξq,k

) (
ξ̂q,k

(
zq,k

)
− ξq,k

)T]
≥ J−1

(
ξq,k

)
(19)

where ξ̂q,k (zq,k ) is the unbiased estimation of ξq,k , and is
obtained by the SCPF algorithm. J(ξq,k ) is the Bayesian
Fisher information matrix (BFIM), and also the inverse of
the PCRLB. Previously, the PCRLB for the sensor scheduling
problem in the netted C-MIMO radar system has already been
derived in [3]

J
(
ξq,k

)
=

[
Qq,k−1 + FqJ−1

(
ξq,k−1

)
FT
q

]−1
+

N∑
n=1

Eξq,k

[
en,q,k

(
Hn,q,k

)T (Rn,q,k
)−1Hn,q,k

]
(20)
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where Hn,q,k is the Jacobian matrix related to ξq,k and satis-
fies thatHn,q,k = [1ξq,k

hn(ξq,k )]
T. However, solving (20) by

using the Monte Carlo technique [31] is time-consuming and
not cost-effective. In practice, to satisfy the real-time demand,
the following approximation is formed [16]

J
(
ξq,k

)
=

[
Qq,k−1 + FqJ−1

(
ξq,k−1

)
FT
q

]−1
+

N∑
n=1

[
en,q,k

(
Ĥn,q,k

)T (
R̂n,q,k

)−1
Ĥn,q,k

]
(21)

where Ĥn,q,k and R̂n,q,k are the Jacobian and measurement
covariance matrices evaluated around ξq,k|k−1 which denotes
the one-step prediction vector of ξq,k−1 in the zero process
noise condition. Apparently, the results of the sensor selection
will contribute to J(ξq,k ) in (21). In addition, from (7) and
(13)-(14), it is obvious that the allocation results of Pn,q,k
and βn,q,k can effect Rn,q,k and then effect J(ξq,k ). However,
in practice, when effective bandwidth is adjusted, the cor-
responding time width will change consequently, leading to
an intractable case. To avoid the heterogeneous phenomenon
between position and velocity, we extract the position PCRLB
to replace the whole PCRLB. In the following parts, all the
mentioned PCRLBs are the location PCRLBs.

C. OBJECTIVE FUNCTION
To describe the problem of power and bandwidth allocation
in the sensor scheduling process, we further define the power
allocation variable Pn,q,k and bandwidth allocation variable
βn,q,k . As such, combining these variables with the results of
the beam selection, three vectors are established:

ek =
[
e1,k , e2,k , . . . , eQ,k

]T
Pk =

[
P1,k ,P2,k , . . . ,PQ,k

]T
βk =

[
β1,k ,β2,k , . . . ,βQ,k

]T (22)

where eq,k = [e1,q,k , e2,q,k , . . . , eN ,q,k ]T, Pq,k =

[P1,q,k ,P2,q,k , . . . ,PN ,q,k ]T, and βq,k = [β1,q,k , β2,q,k , . . . ,
βN ,q,k ]T. Pn,q,k and βn,q,k can refer to (7), (13) and (14).
Therefore, combining the above with section III-B, the pre-
dictive PCRLB of the qth target can be defined as:

CPCRLB
(
eq,k ,Pq,k ,βq,k

)∣∣
ξq,k
= J−1

(
ξq,k , eq,k ,Pq,k ,Tq,k

)
(23)

In this paper, we focus on the sum of the target tracking
accuracy. Therefore, the objective function is set as:

minF
(
ek ,Pk ,βk

)
= min


Q∑
q=1

√
tr
[
CPCRLB

(
eq,k ,Pq,k ,βq,k

)∣∣
ξq,k

] (24)

IV. SENSOR SCHEDULING INTEGRATED WITH POWER
AND BANDWIDTH ALLOCATION
A. OPTIMIZATION MODEL
Practically, a netted C-MIMO radar system does not always
appoints all the nodes to track a known target, given the

limitation on transmission rate, communication bandwidth,
and computational complexity [5]. Additionally, restricted by
the degrees of freedom, the maximum number of orthog-
onal beams simultaneously generated by a C-MIMO radar
is a constant. Therefore, we assume that only L ≥ 2
nodes can be selected to track one target in the ROI at
each sample interval. Besides, for simplicity, we suppose that
each radar can generate at most M ≥ 2 orthogonal beams
simultaneously.

Additionally, the total power Pn,total and total bandwidth
βn,total of the nth radar are limited. When the selection vari-
able en,q,k = 1, the corresponding transmit power Pn,q,k
and effective bandwidth βn,q,k should be considered as the
variables to be assigned. Based on the above analysis and
assumptions, the optimization model is formulated as:

min F
(
ek ,Pk ,βk

)
s.t.

Q∑
q=1

en,q,kPn,q,k = Pn,total,
Q∑
q=1

en,q,kβn,q,k = βn,total

N∑
n=1

en,q,k = L,
Q∑
q=1

en,q,k ≤ M , en,q,k ∈ {0, 1}

P̄n,min ≤ Pn,q,k ≤ P̄n,max, β̄n,min ≤ βn,q,k ≤ β̄n,max

∀n = 1, 2, . . . ,N , ∀q = 1, 2, . . . ,Q (25)

where the first constraint denotes the limitation of the total
power and bandwidth budget of each radar, while the sec-
ond one limits the number of the radars to be selected and
the maximum number of the transmit beams in each radar.
In addition, the third condition denotes the limitation of the
transmit power and the effective bandwidth, where P̄n,min and
P̄n,max denote the lower and upper bounds of the transmit
power of radar n, while β̄n,min and β̄n,max represent the lower
and upper bounds of the effective bandwidth.

Accordingly, the sensor scheduling integrated with power
and bandwidth allocation scheme is established. After the
solutions of (25) are sent back to each C-MIMO radar,
a closed-loop tracking system can be formed which is shown
in Fig. 2.

B. SOLUTION STRATEGY
From mathematics’ perspective, (25) demonstrates that beam
selection integrated with power and bandwidth allocation for
multiple target tracking in the netted C-MIMO radar system
is an optimization problem. However, due to the existence
of the binary and the continuous variables, the optimization
problem in (25) is non-convex [3]–[5]. To solve the non-
convex optimization problem, we propose a three-step solu-
tion technique.
Step 1: Sensor selection with uniformly allocated power

and bandwidth. In this case, assume that the transmit power
and effective bandwidth of each beam from each radar are
uniformly allocated and thus, the optimization formulation
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FIGURE 2. Framework of recognition tracking system.

can be rewritten as:

min F (ek)

s.t.
N∑
n=1

en,q,k = L,
Q∑
q=1

en,q,k ≤ M , en,q,k ∈ {0, 1}

∀n = 1, 2, . . . ,N , ∀q = 1, 2, . . . ,Q (26)

Due to the set of binary variables ek , (26) is known as a
NP-hard problem in [5], [6] and [16]. To tackle this problem,
we introduce a convex relaxation technique [18], by replacing
the binary constraint en,q,k ∈ {0, 1} with convex constraints
en,q,k ∈ [0, 1], and then (26) can be converted to the convex
optimization problem [7]. In addition, the convex problem
can be further converted to the SDP problem [32]. Therefore,
(26) can be formulated as:

min
Q∑
q=1

√
tr
[
Mq,k

]
s.t.

[
Mq,k I
I J(eq,k )

]
≥ 0

N∑
n=1

en,q,k = L,
Q∑
q=1

en,q,k ≤ M , 0 ≤ en,q,k ≤ 1

∀n = 1, 2, . . . ,N , ∀q = 1, 2, . . . ,Q (27)

whereMq is an auxiliary matrix, which satisfies thatMq,k ≥

J−1(eq,k ). Thus, (28) can be easily solved by the modi-
fied Frank-Wolfe feasible direction method, which is shown
in Table 1.

It should be note that the solution ek for the relaxed prob-
lem (27) can be fractional. To obtain a suboptimal solution
of the sensor selection problem, we shall find the L largest
elements in

{
en,q,k

}N
n=1, and generate a corresponding sub-

optimal sensor selection result êk .

TABLE 1. Modified Frank-Wolfe feasible direction method.

Step 2: Joint power and bandwidth allocation of individual
radar. After the sensor selection solution êk is obtained, our
optimization problem is to allocate the limited power and
bandwidth resource of each radar to its own multiple beams.
The optimization formulation is

min F
(
Pk ,βk

)∣∣
êk

s.t.
Q∑
q=1

ên,q,kPn,q,k = Pn,total,
Q∑
q=1

ên,q,kβn,q,k = βn,total

P̄n,min ≤ Pn,q,k ≤ P̄n,max, β̄n,min ≤ βn,q,k ≤ β̄n,max

∀n = 1, 2, . . . ,N , ∀q = 1, 2, . . . ,Q (28)

However, due to the effective bandwidth exists as the form of
quadratic in (14), (28) is a non-convex problem. To tackle this
problem, we set the bandwidth allocation as the uniformity
firstly, then
Step 2.1: Solve the transient power allocation. On the

condition of uniformly bandwidth allocation, (28) can be
calculated as

minF
(
Pk |êk

)
s.t.

Q∑
q=1

ên,q,kPn,q,k = Pn,total

Pn,min ≤ Pn,q,k ≤ Pn,max

∀n = 1, 2, . . . ,N , ∀q = 1, 2, . . . ,Q (29)

As (29) is a convex optimization problem [4], [5], and thus
(29) can be converted into SDP problem similar to (27).
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Then, we have

min
Q∑
q=1

√
tr
{
Nq,k

}

s.t.

[
Nq,k I

I J(Pq,k )
∣∣
êq,k

]
≥ 0

Q∑
q=1

ên,q,kPn,q,k = Pn,total, Pn,min ≤ Pn,q,k ≤ Pn,max,

∀n = 1, 2, . . . ,N , ∀q = 1, 2, . . . ,Q (30)

where Nq,k is an auxiliary matrix, which satisfies that
Nq,k ≥ J−1(Pq,k )

∣∣
êq,k

. Similar to (27), (30) can be effi-

ciently solved by the modified Frank-Wolfe feasible direction
method, and then we can obtain the suboptimal power allo-
cation P̂k .
Step 2.2: Solve the transient bandwidth allocation. Set the

power allocation as P̂k , temporarily. Therefore, (28) can be
reformulated as

min F
(
βk
∣∣
êk

)
s.t.

Q∑
q=1

ên,q,kβn,q,k = βn,total

βn,min ≤ βn,q,k ≤ βn,max

∀n = 1, 2, . . . ,N , ∀q = 1, 2, . . . ,Q (31)

However, due to the quadratic form of βn,q,k , (31) is non-
convex problem which is difficult to solve. To deal with this
problem, we utilize a convex relaxation technique by intro-
ducing a new vector: γ k = [γ 1,k , γ 2,k , . . . , γQ,k ]

T, where
γ q,k = [γ1,q,k , γ2,q,k , . . . , γN ,q,k ]T = [|β1,q,k |2, |β2,q,k |2,
. . . , |βN ,q,k |

2]T, q = 1, 2, . . . ,Q. Therefore, (31) can be
converted into

min F
(
γ k
∣∣
êk

)
s.t.

Q∑
q=1

ên,q,kγn,q,k ≤ λ1
(
βn,total

)2
Q∑
q=1

ên,q,k
(
γn,q,k

)1/2
≥ λ2βn,total

∣∣βn,min
∣∣2 ≤ γn,q,k ≤ ∣∣βn,max

∣∣2
∀n = 1, 2, . . . ,N , ∀q = 1, 2, . . . ,Q (32)

where λ1 and λ2 are both dynamic parameters, which can be
adjusted according to the simulation results. Similar to (29),
(32) is a convex optimization problem because of the first
order variables γn,q,k , n = 1, 2, . . .N , and q = 1, 2, . . . ,Q.

Similar to (27) and (30), the SDP form of (32) is

min
Q∑
q=1

√
tr
{
Sq,k

}

s.t.

[
Sq,k I

I J(γ q,k )
∣∣
êq,k

]
≥ 0

Q∑
q=1

ên,q,kγn,q,k ≤ λ1
(
βn,total

)2
Q∑
q=1

ên,q,k
(
γn,q,k

)1/2
≥ λ2βn,total

∣∣βn,min
∣∣2 ≤ γn,q,k ≤ ∣∣βn,max

∣∣2
∀n = 1, 2, . . . ,N , ∀q = 1, 2, . . . ,Q (33)

where sq,k is an auxiliary matrix, which satisfies that Nq,k ≥

J−1(γ q,k )
∣∣
êq,k

. Therefore, (33) can be solved by the modified
Frank-Wolfe feasible direction method, and as a result of
which, the transient bandwidth allocation β̂k can be obtained.
Step 2.3: Further improve the bandwidth allocation solu-

tion precision. To improve the precision of the transient
bandwidth allocation solution β̂k , we propose a local search
algorithm shown in Table 2. Firstly, let β̂k = [β̂1,k ,
β̂2,k , . . . , β̂N ,k ], and β̂n,k = [β̂n,1,k , β̂n,2,k , . . . , β̂n,Q,k ], n =
1, 2, . . . ,N. Secondly, set β̂k as the initial point for the local
search algorithm. Thirdly, we reduce one of elements in β̂n,k
by1β, and add1β to any of other element, to generate a new
vector β̂

+

k . Then, the bandwidth solution corresponding to
the minimum value of the cost function is taken as the initial
solution at the next iteration. Finally, the process stops until
the deduction of the cost function in one iteration to another
is satisfied the stopping condition ε.

TABLE 2. Local search algorithm for (32).

Step 3: Record and return. Record the current resource
allocation results and the corresponding cost function values
at each interval. Then, return to step 1, and stop when the
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difference between the twice values of the cost function
satisfies the end condition ϕ. When the loop ends, record the
smaller values of the cost function as the final results, and
separate the corresponding resource allocation results as the
final optimal resource allocation results.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
Technically, the computational complexity of the proposed
solution strategy is mainly determined by the iterations of the
SDP problem. Considering the structures of the optimization
formulations (30) and (33) are similar, and thus the relevant
computational complexity is the same [5]. Consequently,
the proposed solution strategy has the worst-case computa-
tional complexity of O (Q (M + 2)) ≈ O (QM). By con-
trast, the exhaustive search algorithm needs an exponential

complexity of O
(
Q

M∑
m=1

CL
N

)
. As a result, compared with

the exhaustive search algorithm, our proposed method can
evidently reduce the computational complexity especially in
a large-scale optimization problem. In addition, this observa-
tion can be verified in simulations.

V. SIMULATION RESULTS AND ANALYSIS
In this section, simulation results are presented to demon-
strate the effectiveness of the method we proposed. A netted
C-MIMO radar system with N = 16 spatially diverse
C-MIMO radars is used to perform the analysis. For simplic-
ity, we assume that each C-MIMO radar could perform in the
same way. Also the total transmit power of the nth radar is set
as Pn,total = 20kW, the total effective bandwidth of the nth
radar is βn,total = 2MHz, and the total effective time width of
the nth radar is Tn,total = 1ms, and the carrier wavelength of
the nth radar is set as λn = 0.3m, n = 1, 2, . . . ,N . There are
Q = 3 widely separated targets, and all the targets follow the
CV model with the initial parameters of each target specified
in Table 3. The joint configuration of the radar system and
the targets is shown in Fig. 3. A sequence of 20 frames are
used in each Monte Carlo trial with sample interval Ts = 5s,
while the number of Monte Carlo trial Nsim = 100. The
number of particles is set to B = 200. In addition, the lower
and upper bounds of the transmit power are P̄n,min = 0
and P̄n,max = 0.8Pn,total, while the corresponding effective
bandwidth bounds are β̄n,min = 0 and β̄n,max = 0.8βn,total.
For brevity, the maximum beam number of each radar is set
asM = 3, and the maximum number of radars to be selected
for each target is L = 10.

TABLE 3. The initial parameters of each target.

Moreover, to illustrate the utilization of proposed method
in improving the target tracking precision, the total location

FIGURE 3. Netted radar system configuration and targets deployment.

root mean square error (RMSE) at interval k is proposed as

RMSEk=
Q∑
q=1

√√√√√ 1
Nsim

Nsim∑
j=1

(
(xq,k −

_xq,k,j)2+(yq,k−
_yq,k,j)2

)
(34)

where (_xq,k,j,
_yq,k,j) denotes the location estimation of the

qth target at the jth trial. In addition, to further reveal the
effects of the distance of target to radar and the target RCS
on the resource allocation results, two RCS models are con-
sidered (M1, M2). In the first RCS model M1, we mainly
consider the distance effects and thus we set mn,q,k = 1,
n = 1, 2, 3, . . . , 16, q = 1, 2, 3. In the model M2, the RCSs
of target 3 with respect to radar 7 and radar 8 are set as Fig.4,
while the other RCSs are kept the same as M1.

FIGURE 4. Time-varying reflectivity in RCS model M2.

A. SCENARIO 1: STEADY TARGET RCS
In this scenario, we only investigate the effect of the distance
factor on resource allocation results. Thus, the RCS model
M1 is adopted. To demonstrate the effectiveness of sensor
scheduling, we shall make a comparison between our pro-
posed scheduling method and the subset selection method
developed in [33] (for a given tracking target, the radars with
better path condition and better angular spread shall be cho-
sen preferentially). In order to state conveniently, we define
the following referential relationship: eopt, Popt, and βopt cor-
respond to the results of sensor scheduling, power allocation,
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and bandwidth allocation calculated by our proposedmethod,
respectively; ebench represents the results of subset selection
obtained by the method in [33]; Puni and βuni separately
denote the uniformly allocated results of power and band-
width resources.

FIGURE 5. Performance comparison for the five methods in RCS model
M1. (a) PCRLB performance. (b) RMSE performance.

Fig. 5 (a) and (b) show the tracking performance of the
five methods from the perspectives of PCRLB and RMSE,
respectively. In general, the sensor optimization scheduling
integrated with power and bandwidth allocation performs
best among all the methods. In addition, we note that the
bandwidth optimization allocation performs better than the
power optimization allocation. The interpretation can be
found in (14) and (15), as the bandwidth has a quadratic form
in the location submatrix of the PCRLB.

Fig.6 demonstrates the PCRLB comparison of each target
under the proposed optimization method and the exhaustive
search [34]. We all know that the exhaustive search is time-
consuming but accurate, especially in the NP-hard prob-
lem. We can see from Fig. 6 that the close performance to
the exhaustive search method is achieved by our proposed
scheme. In addition, due to the path loss and angular spread,
the tracking accuracy of target 2 is the worst, target 1 is the
second, and target 3 is the best.

The details of sensor scheduling and power allocation
results for each target in RCS modelM1 are shown in Fig. 7,
while the sensor scheduling and bandwidth allocation results

FIGURE 6. Comparison of each target’s PCRLB by the proposed method
and the exhaustive method [34] in RCS model M1.

FIGURE 7. Sensor scheduling and power allocation results in the RCS
model M1. (a) q = 1; (b) q = 2; (c) q = 3.

are represented in Fig. 8, where the grid colors denote the
amount of allocated power and bandwidth for a radar node to
track a certain target. Herein, the allocated power ratio and
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FIGURE 8. Sensor scheduling and bandwidth allocation results in RCS
model M1. (a) q = 1; (b) q = 2; (c) q = 3.

bandwidth ratio are defined as:
rpowern,q,k =

Pn,q,k
Pn,total

rbandwidthn,q,k =
βn,q,k

βn,total

(35)

It can be seen that the target 2 consumes most of the system
resources, which also can be proved in Fig. 6 where shows
that target 2 is the worst tracking target. In addition, radar 14
and radar 15 are selected for target 2 frequently, which can be
explain by that radar 14 and radar 15 are closest to target 2
and share better angular spread.

B. SCENARIO 2: FLUCTUANT TARGET RCS
To further reveal the effects of target RCS, the time-varying
target RCS model M2 is adopted in this scenario. As such,

FIGURE 9. Performance comparison for the five methods in RCS
model M2. (a) PCRLB performance. (b) RMSE performance.

FIGURE 10. Comparison of each target’s PCRLB by the proposed method
and the exhaustive method [34] in RCS model M2.

the results of resource allocation are not only affected by the
path loss and angular spread, but also influenced by the target
RCS. The performance comparison for the five methods in
the fluctuant target RCS model M2 is shown in Fig. 9.

It can be seen from Fig. 9 that the proposed method still
has best performance among the five methods in the second
RCS model M2. Since the target 3 has weaker reflectivity
with respect to radar 7 and radar 8 in model M2 than in
model M1, the tracking performances for all the methods
have declined somewhat. In addition, it’s worth noting that
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FIGURE 11. Sensor scheduling and power allocation results in RCS
model M2. (a) q = 1; (b) q = 2; (c) q = 3.

when the target RCSfluctuates, the tracking performance also
fluctuates accordingly.

The PCRLB comparisons of each target between the pro-
posed optimization method and the exhaustive search [34] are
given in Fig. 10. As the tracking performance of the proposed
method is close to the exhaustive search algorithm, it can
be seen that the proposed method can manage the limited
resources of radar network system effectively. In addition,
the tracking performance of target 3 decreases due to its
weaker reflectivity to radar 7 and radar 8.

Fig. 11 and Fig. 12 show the resource allocation results in
the second RCS modelM2. Different from Fig. 7 and Fig. 8,
radar 7 and radar 8 are not selected during the tracking of

FIGURE 12. Sensor scheduling and bandwidth allocation results in RCS
model M2. (a) q = 1; (b) q = 2; (c) q = 3.

target 3, as target 3 has a weaker reflectivity with respect to
radar 7 and radar 8. Thus, radar 7 and radar 8 are replaced by
other radars (e.g. radar 9 and radar 10) with a path lose and
better angular spread to track target 3. Consequently, in order
tomaintain the tracking performance of target 3, the resources
of radar 7 and radar 8 are allocated to other radars.

In addition, to test the timeliness of the proposed method,
its CPU time is compared with the exhaustive search’s [34]
in Fig. 13. Our simulation condition is MATLAB 2014a
on a computer with 3.7GHz CPU and 8GB RAM. The
results imply that compared with the exhaustive search [34],
the proposed method possesses much lower computational
complexity. It’s crucial to note that the step length interval
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FIGURE 13. CPU time comparison.

of our simulation experiment is set as 5s, which implies that
the proposed method can fully meet the real-time require-
ment. Besides, it is notable that the difference in the CPU
time between the two methods (first optimize power then
bandwidth and first optimize bandwidth then power) is less
than 5%, which further proves the robustness of the proposed
method and the optimization order of two variables can be
swapped.

VI. CONCLUSION
In this paper, a sensor scheduling integrated with power
and bandwidth allocation method is proposed for centralized
MTT in the netted C-MIMO radar system. By introducing a
set of convex relaxation technique and the cycle minimizer
algorithm, the non-convex optimization problem is converted
into a series of convex problems, which are solved by combin-
ing the SDP algorithm and the modified Frank-Wolfe feasible
direction method. The effectiveness of the proposed method
is demonstrated by numerical simulations.
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