
Received May 20, 2020, accepted June 4, 2020, date of publication June 10, 2020, date of current version June 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3001214

Efficient Processing of Spatio-Temporal Joins on
IoT Data
KI YONG LEE1, (Member, IEEE), MINJI SEO 1, RYONG LEE 2,
MINWOO PARK 2, AND SANG-HWAN LEE 2
1Department of Computer Science, Sookmyung Women’s University, Seoul 04310, South Korea
2Scientific Data Research Center, Korea Institute of Science and Technology Information, Daejeon 34141, South Korea

Corresponding author: Ryong Lee (ryonglee@kisti.re.kr)

This work was supported by a Research and Development project, Enabling a System for Sharing and Disseminating Research Data of
Korea Institute of Science and Technology (KISTI), South Korea, under Grant K-20-L01-C04-S01.

ABSTRACT As the Internet of Things (IoT) has become widespread, the demand for storing and querying
data generated by things (e.g., moving sensors) is growing to obtain more useful information. One of the
emerging queries on such IoT data is the spatio-temporal join, which joins data generated by different things
but generated at (almost) the same time and location. In this paper, we propose an efficient method for
processing spatio-temporal joins on IoT data. The proposed method divides the 3D spatio-temporal space
into small, equal-sized spaces, called cells. As data is generated by things, the proposed method maintains
the information about which thing’s data are in which cells. When a spatio-temporal join between specified
things is requested, the proposed method first identifies cells, each of which has data of all the specified
things within or near it. The proposed method then retrieves only the data within or near the identified cells
and performs the join only between the retrieved data. Consequently, compared with previous methods where
the processing cost increases rapidly as the size of data or the number of things being joined increases, the
processing cost is greatly reduced. The experimental results on a real IoT dataset show that the proposed
method significantly reduces the execution time compared with the existing methods.

INDEX TERMS Spatio-temporal join, spatio-temporal index, Internet of Things, IoT data.

I. INTRODUCTION
Recently, with the advance of sensor devices, communication
technology, and computing power, the Internet of Things
(IoT) has become prevalent in many areas including smart
homes, smart cities, connected vehicles, and environmen-
tal monitoring [1]. As IoT is becoming more widespread,
the massive amount of data is being generated by things
(i.e., devices connected to the Internet). Along with this, the
demand for storing and querying data generated by things is
also growing rapidly to obtain more useful information (e.g.,
the correlation between the measurements of two things). For
this reason, there are an increasing number of IoT platforms
being developed to provide the ability to store and query data
generated by things. For example, AWS IoT [2], Microsoft
Azure IoT [3], Oracle IoT [4], Google Cloud IoT [5], and
IBM Watson IoT [6] provide the ability to store the vast
amount of data generated by things, as well as to query the
stored data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaolong Li .

In the IoT, each piece of data generated by a thing typically
contains information about the time and location at which
it was generated. Thus, IoT data, which means data gener-
ated by things in the IoT, can be viewed as spatio-temporal
data [7]. Most current IoT platforms, however, do not pro-
vide query processing especially designed or optimized for
such spatio-temporal data. Most current IoT platforms use
traditional generic SQL or NoSQL query processing (e.g.,
relations, key-value pairs, wide columns, or documents) to
process queries on IoT data. However, this generic approach
may not give the best performance for spatio-temporal data,
which requires consideration in terms of both time and loca-
tion aspects.

One of the emerging queries on such IoT data is the spatio-
temporal join, which joins data generated by different things
but generated at (almost) the same time and location [8]. A
spatio-temporal join is especially useful when we want to
collect data generated by different things but generated at the
same time and location.
Example 1: Suppose two cars Car1 and Car2 have moved

around a city, measuring air quality, i.e., PM2.5 and O3

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 108371

https://orcid.org/0000-0002-4720-8250
https://orcid.org/0000-0001-5142-6106
https://orcid.org/0000-0001-5045-1983
https://orcid.org/0000-0002-8344-0161
https://orcid.org/0000-0002-8104-3234

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

FIGURE 1. Example of a spatio-temporal join.

respectively. The upper figure in Fig.1 shows the locations
and times at which Car1 and Car2 measured PM2.5 and O3
respectively, where the x- and y-axis represent longitude and
latitude, respectively, and t1, . . . , t5 represent time points. If
we perform a spatio-temporal join between data generated
by Car1 and Car2, the PM2.5 values measured by Car1
at time t1, t3, and t5 are joined with the O3 values mea-
sured by Car2 at t1, t3, and t5, respectively, because those
measurements have the same location and time values. Note
that the measurements at t2 and t4 are not in the join result
because they don’t have measurements with the same location
and time values. These joined measurements can be used to
analyze them in an integrated way (e.g., finding a relationship
between PM2.5 and O3).

There has been work on efficient processing of spatio-
temporal joins until recently [9], [10]. However, if we apply
existing spatio-temporal join algorithms to IoT data, most of
them suffer from the following problems. First, the amount
of IoT data keeps increasing as time goes by. However,
the processing cost of most existing spatio-temporal join
algorithms increases directly with increasing size of the input
data. Second, for IoT data, a spatial-temporal join can be
requested over a number of things. However, the processing
cost of most existing algorithms increases rapidly as the
number of things involved in the join increases. Third, most
current IoT platforms use relational database management
systems (RDBMS) or NoSQL as their data storage. How-
ever, many spatio-temporal join algorithms are difficult to
deploy on existing IoT platforms without modifying existing
RDBMS or NoSQL.

Therefore, in this paper, we propose an efficient method for
processing spatio-temporal joins on IoT data. The proposed
method divides the 3D (x, y, t) spatio-temporal space into
small, equal-sized 3D spaces, called cells, where x and y

are the spatial coordinates and t is the time. If new data
are generated by things, the proposed method identifies the
cells to which the new data belong (i.e., the cells in which
the (x, y, t) values of the new data fall) and the cells near
the new data. Then, for each of those cells, the proposed
method records the IDs of the things that generated the new
data. When a spatio-temporal join between specified things
is requested, the proposed method first finds cells, each of
which has data of all the specified things within or near it. The
proposed method then retrieves only the data within or near
the identified cells and performs the join only between the
retrieved data. Consequently, the cost of processing a spatio-
temporal join is greatly reduced because we can easily iden-
tify data close to each other in the 3D space and only need
to access them, without accessing unnecessary data with no
possibility of being joined.
As a result, the proposed method has three main advan-

tages: (1) Its processing cost does not increase directly with
the size of the input data. Rather, its processing cost depends
more strongly on the number of cells having data of all the
specified things. (2) Even if the number of things involved
in the join increases, its processing cost does not increase
rapidly, because we can easily identify the cells that have
data of all the specified things. (3) It can be easily deployed
on top of existing RDBMS and NoSQL without modifying
them. It can be easily implemented using the available index
structures provided by most RDBMS and NoSQL. Through
extensive experiments on a real dataset, we show that the
proposed method reduces the execute time significantly com-
pared with the existing representative spatio-temporal join
algorithms.
The remainder of the paper is organized as follows:

Section II reviews previous work on spatio-temporal joins. In
Section III, we formally define our problem and present the
proposed spatio-temporal join method in detail. Section IV
analyzes the correctness and time complexity of the proposed
method.We present our experimental results in Section V and
conclude in Section VI.

II. RELATED WORK
A. QUERY PROCESSING IN IoT PLATFORMS
Along with the growth of IoT, many IoT platforms are cur-
rently used to connect different devices via the Internet. The
basic functionality of an IoT platform is to transfer data
between things or between things and servers. However,
with the growth of storage capacity and the development of
big data technology, many IoT platforms are increasingly
providing the ability to store and query data generated by
things. For example, most of recently developed IoT plat-
forms, such as AWS IoT [2], Microsoft Azure IoT [3], Oracle
IoT [4], Google Cloud IoT [5], IBM Watson IoT [6], SAP
Leonardo IoT [11], GE Predix Platform [12], Bosch IoT
Suite [13], Siemens MindSphere [14], Cisco IoT [15], and
PTC ThingWorx [16], basically provide the ability to transfer
data between things and monitor and manage those things.

108372 VOLUME 8, 2020

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

In addition to this functionality, they provide the ability to
store data generated by things in existing RDBMS (e.g.,
Oracle, MySQL) or NoSQL (e.g., MongoDB, DynamoDB)
and query the stored data using SQL or other query languages
provided by the underlying storage (i.e., RDBMS orNoSQL).
However, most IoT platforms use only traditional generic
SQL or NoSQL query processing and provide little func-
tionality especially designed or optimized for spatio-temporal
data and queries.

B. SPATIO-TEMPORAL JOINS
Let R(x, y, t, v1) and S(x, y, t, v2) be two relations, where x
and y are the spatial coordinates, t is the time attribute, and v1
and v2 are some value attributes. Given R and S, the spatio-
temporal join considered in this paper can be expressed using
the SQL syntax as follows:

SELECT R.x, S.x,R.y, S.y,R.t, S.t,R.v1, S.v2
FROM R, S

WHERE |R.x − Sx| ≤ θx AND

|R.y− S.y| ≤ θy AND

|R.t − S.t| ≤ θt ,

where θx , θy, and θt are user-specified thresholds. That is,
given two relations R and S, the spatio-temporal join returns
all pairs of tuples, one from R and one from S, whose dif-
ferences in the x, y, and t values are less than or equal to
θx , θy, and θt , respectively. The thresholds θx , θy, and θt are
used in the spatio-temporal join because data independently
generated by different things are difficult to have exactly the
same values of the x, y, and t attributes in practice and, inmost
IoT applications, it is enough if their values are sufficiently
close.

Existing algorithms for processing the spatio-temporal join
are largely divided into three categories: (1) Non-index algo-
rithms: These algorithms assume that no indexes are available
for the input relations (i.e., R and S). If a spatio-temporal
join is requested, these algorithms partition each relation on-
the-fly into single or multiple levels based on the x, y, and t
values using various strategies [17]–[20]. Once the relations
are partitioned, each pair of overlapping partitions, one from
each relation, is read and joined using an in-memory join
algorithm (e.g., the nested-loop join, the plane-sweep algo-
rithm [21], and the Z-order algorithm [22]). Recently, non-
index algorithms for big data platforms (i.e., MapReduce,
Hadoop, and Spark) have been proposed in [9], [10], [23],
[24]. These algorithms perform partitioning and partition-
wise joins in parallel on the big data platforms. However,
because the amount of IoT data is very large in practice, the
cost of partitioning the input data on-the-fly is prohibitive in
the IoT environment, especially when spatio-temporal joins
are frequently requested.

(2) One-index algorithms: These algorithms use only one
index built on either side of the input relations. Most of these
algorithms are based on the index nested loop join [8], which
uses a spatio-temporal index built on either R or S. A spatio-

FIGURE 2. Example of a synchronized tree traversal.

temporal index is an index allowing efficient access to spatio-
temporal data based on their x, y, and t values, such as RT-tree
(R-tree with time intervals) [25], MR-tree (multiple R-trees)
[25], 3D R-tree (3-dimensional R-tree) [26], HR-tree (histor-
ical R-tree) [27], and MV3R-tree (multi-version R-tree) [28].
Suppose among the input relations R and S, only S is indexed
with a spatio-temporal index on the x, y, and t attributes.
Then, for each tuple r in R, S is searched using the spatio-
temporal index to find all tuples in S satisfying the spatio-
temporal join predicate with r . Thus, unnecessary access
to S is reduced. However, because the search is repeatedly
performed for each tuple in R, the processing cost increases
directly with increasing size of the input data.

(3) Multi-index algorithms: These algorithms assume that
all the input relations are indexedwith the same type of hierar-
chical spatio-temporal index, such as 3D R-tree. In this case,
a spatio-temporal join can be performed efficiently using a
synchronized traversal of the indices [29]–[31]. Suppose both
R and S are indexed with 3D R-trees IR and IS , respectively.
This approach starts from the root nodes of IR and IS and
synchronously traverses IR and IS to the leaf level. If the cur-
rently visited node in IR, say nR, intersects with the currently
visited node in IS , say nS (i.e., the minimum bounding boxes
of nR and nS overlap), then this approach finds pairs of nodes,
one from the child nodes of nR and one from the child nodes
of nS , that overlap each other. This approach then continues
to traverse only those overlapping nodes. This process is
recursively performed until the leaf nodes are reached. For
example, Fig.2 illustrates an example of two indexes IR and
IS built on R and S, respectively. Starting from the root nodes
of IR and IS , this approach synchronously traverses to pairs
of nodes (A1,B1) and (A2,B2), respectively. It then traverses
only to (a1, b1) and (a2, b2) and stops because the leaf levels
are reached. Finally, the join is performed only between
objects in pairs (a1, b1) and (a2, b2), respectively. Thus, only
tuples in R and S that have the possibility of being joined
with each other are accessed. However, a problem of this
approach is that exhaustive enumeration of all combinations
at each level is prohibitive because of their large number [32].
Moreover, the number of the combinations of overlapping
nodes can grow extremely large as the number of things being
joined increases [33].

VOLUME 8, 2020 108373

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

In addition to the spatio-temporal join algorithms
described above, there have been much work on similar but
different problems. Reference [34] has proposed a spatio-
temporal join method between time-series grid data and time-
series point data. Reference [35] has proposed a join method
between trajectories and points to discover sequences of
activities from trajectories. Reference [36] has proposed a
method for discovering the cascading spatio-temporal pat-
terns, which uses a spatio-temporal join internally. Reference
[37] has proposed probabilistic, spatio-temporal joins on
symbolic tracking data with uncertainty. Reference [38] has
proposed an algorithm for a predictive spatio-temporal join,
which finds all pairs of objects that are expected to be close to
each other in the future. Reference [39] has proposed an algo-
rithm for processing continuous spatio-temporal joins over
spatio-temporal data streams. Reference [40] has developed
models for estimating spatio-temporal join selectivity based
on probabilistic analysis. However, all these works consider
different problems from ours or their definitions of spatio-
temporal join are different from ours (e.g., the join predicate,
the type of input data).

Compared to the previous spatio-temporal join algorithms,
the proposed spatio-temporal algorithm has the following
advantages: (1) Unlike non-index algorithms and one-index
algorithms, the processing cost does not increase directlywith
increasing input size. (2) Unlike multi-index algorithms, the
processing cost does not increase much even if the number
of things involved in the join increases. (3) It can be easily
implemented on top of existing RDBMS and NoSQLwithout
modifying their internal implementation. In the following
section, we describe the proposed algorithm in detail.

III. PROPOSED METHOD
A. PROBLEM DEFINITION
Let o1, o2, . . . , on be n things whose data to be joined. Let
Di(x, y, t, vi) be the relation that stores data generated by oi
(i = 1, 2, . . . , n), where x and y represent the location where
the tuple is generated (e.g., longitude and latitude), t repre-
sents the time when the tuple is generated, and vi represents
the actual data sensed or measured by oi. Thus, we can think
of each Di as storing the measurements of a moving object
over time, where x and y represent the spatial property of the
object and t represents the temporal property of the object.
Here, vi can be different types of data for different oi (e.g.,
PM2.5, O3, pressure, temperature, etc.). Although we assume
that each Di has only one value attribute vi, the proposed
method can be trivially applied when each Di has multiple
value attributes. For a tuple d ∈ Di, its x, y, t , and vi attribute
values are denoted by d .x, d .y, d .t , and d .vi, respectively.

Given D1, D2, . . . ,Dn, where Di is the relation that stores
data generated by oi (i = 1, 2, . . . , n) and user-specified
thresholds θx , θy, and θt , the spatio-temporal join of D1,
D2, . . . ,Dn, denoted by STJ ([D1,D2, . . . ,Dn], [θx , θy, θt]),
is formally defined as follows:

STJ ([D1,D2, . . . ,Dn], [θx , θy, θt])

FIGURE 3. Overview of the proposed method.

= {(d1, d2, . . . , dn)|∀i ∈ {1, 2, . . . , n}(di ∈ Di)

∧∀i, j ∈ {1, 2, . . . , n}(|di.x − dj.x| ≤ θx
∧|di.y− dj.y| ≤ θy
∧|di.t − dj.t| ≤ θt)}.

That is, the spatio-temporal join considered in this paper
combines tuples, one from each of D1, D2, . . . ,Dn, that have
the same x, y, and t values within errors of θx , θy, and θt ,
respectively. The aim of this paper is to develop an effi-
cient method for processing the spatio-temporal join defined
above.

Note that we do not use the Euclidean distance to com-
pute the adjacency between tuples. Because the unit of the
t attribute values is different from those of the x and y
attribute values, to make the problem simple, we compute the
adjacency between tuples on each axis.

B. ALGORITHM OVERVIEW
In order to process the spatio-temporal join on IoT data
efficiently, we set three goals in designing our proposed
method. First, we aim to avoid accessing the whole of any
of D1, D2, . . . ,Dn. This prevents the processing cost from
increasing directly with increasing input size. Second, we aim
to lower the cost of identifying tuples in D1, D2, . . . ,Dn
that can be joined together. This prevents the processing
cost from increasing rapidly as the number of things being
joined increases. Third, we aim to design a method that can
be easily implemented using the available features provided
by existing RDBMS and NoSQL. This makes the proposed
method easy to deploy on existing IoT platforms.

Fig.3 shows the overview of the proposed spatio-temporal
join method. Before processing spatio-temporal joins, we
conceptually partitions the 3D (x, y, t) spatio-temporal space
into small, equal-sized spaces, which we call cells, where x
and y are the coordinates in the plane and t is the time dimen-
sion. We then consider each tuple d ∈ Di (i = 1, 2, . . . , n) as
a point in the 3D space whose coordinates are (d .x, d .y, d .t).

108374 VOLUME 8, 2020

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

FIGURE 4. Example of cell index construction.

If a new tuple d is generated by oi and inserted into Di, we
identify the cell c containing d and insert oi into c.I , which
represents the set of IDs of things that generated tuples in c.
Also, we identify the cells near d (except the cell containing
d) and, for each c of those cells, insert oi into c.N , which
represents the set of IDs of things that generated tuples near c.

Once this information is constructed to reflect all new
tuples, we can process the spatio-temporal join efficiently. If
a spatio-temporal join between D1, D2, . . . ,Dn is requested,
we first find the cells, each c of which has all of o1, o2, . . . , on
in c.I ∪ c.N . Then, for each of those cells, we retrieve only
those tuples in D1, D2, . . . ,Dn that are inside or near that
cell. Finally, we perform the join only between the retrieved
tuples and output the results. This approach, however, may
produce duplicate results, which we will describe in detail
in Section III.E. Thus, before outputting the joined tuples,
we perform an additional filtering step to eliminate duplicate
results.

By using this approach, the proposed method has the fol-
lowing advantages: (1) Because we access only tuples in the
cells that have tuples of all of o1, o2, . . . , on inside or near
them, an increase in the input size does not directly lead to
an increase in the processing cost. (2) Even if the number
of things being joined increases, the processing cost does
not increase rapidly because we can easily find the cells that
have tuples of all of o1, o2, . . . , on inside or near them by
a simple intersection operation, which will be described in
detail in Section III.D. (3) The proposed method can be easily
implemented on top of existing RDBMS and NoSQL using
the existing index structures (i.e., multidimensional index and
inverted index) provided by most RDBMS and NoSQL.

The proposed method consists of three main steps: (1) cell
index construction, (2) join, and (3) duplicate filtering. In the
next subsections, we describe each step in detail.

C. CELL INDEX CONSTRUCTION
As described in the previous section, the proposed method
partitions the 3D (x, y, t) spatio-temporal space into equal-
sized cells. Let1x,1y, and1t be the size of a cell along the
x-, y- and t-axis, respectively. Fig.4 shows an example of two
adjacent cells, namely c1 and c2. We denote a particular cell
as c[i][j][k], where i, j, and k are the x, y, and t indices of the
cell, which start from 0, respectively. The space covered by a

cell c[i][j][k] is expressed as follows:

c[i][j][k] = {(x, y, t) ∈ R3
|

x ∈ [xmin +1x · i, xmin +1x · (i+ 1))

∧ y ∈ [ymin +1y · i, ymin +1y · (y+ 1))

∧ t ∈ [tmin +1t · i, tmin +1t · (t + 1))},

where [a, b) is a left-closed and right open interval and xmin,
ymin, and tmin are the minimum values of x-, y-, and t-axis,
respectively. If a cell c has a tuple inside or near it, we
maintain the following information for c:
• c.I : the set of IDs of things whose tuple d is within c
(i.e., (d .x, d .y, d .t) ∈ c).

• c.N : the set of IDs of things whose tuple d is outside c
but d’s joinable space overlaps c (i.e., (d .x, d .y, d .t) 6∈ c
∧ jsp(d) ∩ c 6= ∅).

Here, the joinable space of a tuple d , denoted by jsp(d),
is defined as follows:

jsp(d) = {(x, y, t) ∈ R3
||x − d .x| ≤ 2x ∧ |y− d .y|

≤ 2y ∧ |t − d .t| ≤ 2t },

where 2x , 2y, and 2t are the maximum values of θx , θy,
and θt allowed in STJ ([D1,D2, . . . ,Dn], [θx , θy, θt]). That is,
the joinable space of a tuple d represents the space where
tuples having the possibility of being joined with d can exist.

For example, in Fig. 4, suppose tuples d1, d2, d3, and d4
are generated by o1, o2, o3, and o4 and inserted into D1,
D2, D3 and D4, respectively (i.e., d1 ∈ D1, d2 ∈ D2,
d3 ∈ D3, and d4 ∈ D4). The boxes surrounding d1, d2,
d3, and d4 represent their join spaces, respectively. In Fig. 4,
c1.I = {o1, o2} because tuples generated by o1 and o2 (i.e.,
d1 and d2) are within c1. Also, c1.N = {o3} because a
tuple generated by o3 (i.e., d3) is outside c1 but its joinable
space overlaps c1. Similarly, c2.I = {o3, o4} because tuples
generated by o3 and o4 (i.e., d3 and d4) are within c2, and
c2.N = {o2} because a tuple generated by o2 (i.e., d2) is
outside c2 but its joinable space overlaps c2. Once c.I and
c.N are constructed for all cells that have tuples inside or near
them, we can process the spatio-temporal join efficiently. We
will describe the processing of a spatio-temporal join in the
next subsection.
Now we describe how to construct c.I and c.N for cells

that have tuples inside or near them. Initially, c.I = ∅ and
c.N = ∅ for all cells. Suppose we are given a new tuple d ,
which was generated by oi and inserted intoDi. Then we first
identify the indices of the cell to which d belongs using the
following equations:

i = b(d .x − xmin)/1xc

j = b(d .y− ymin)/1yc

k = b(d .t − tmin)/1tc

We then insert oi into c[i][j][k].I . Next we identify the range
of the indices of the cells overlapping the joinable space of d ,
jsp(d), using the following inequality:

b(d .x − xmin −2x)/1xc ≤ i ≤ b(d .x − xmin +2x)/1xc

VOLUME 8, 2020 108375

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

b(d .y− ymin −2y)/1yc ≤ j ≤ b(d .y− ymin +2y)/1yc

b(d .t − tmin −2t)/1tc ≤ k ≤ b(d .t − tmin +2t)/1tc

Finally, we insert oi into c[i][j][k].N where i, j, and k are in
the above range except the cell to which d belongs.

However, note that because 2x � 1x, 2y � 1y, and
2t � 1t in practice (i.e., the maximum allowable error for
the equi-join condition is much smaller than the size of a cell),
there are usually no such i, j, and k for which we need to insert
oi into c[i][j][k].N . Also note that we need tomaintain c.I and
c.N only for cells that have tuples inside or near them. In other
words, if a cell has no tuples inside and near it, we don’t need
to maintain any information about that cell.

Algorithm 1 Cell Index Construction
Input: a set 1D of new tuples inserted into D1,

D2, . . . ,Dn
1 for each d ∈ 1D do
2 Let oi be the ID of the thing that generated d
3 i = b(di.x − xmin)/1xc
4 j = b(di.y− ymin)/1yc
5 k = b(di.t − tmin)/1tc
6 c[i][j][k].I = c[i][j][k].I ∪ {oi}
7

8 imin = b(di.x − xmin −2x)/1xc
9 imax = b(di.x − xmin +2x)/1xc

10 jmin = b(di.y− ymin −2y)/1yc
11 jmax = b(di.y− ymin +2y)/1yc
12 kmin = b(di.t − tmin −2t)/1tc
13 kmax = b(di.t − tmin +2t)/1tc
14 for i = imin to imax do
15 for j = jmin to jmax do
16 for k = kmin to kmax do
17 if (i 6= b(di.x − xmin)/1xc∧

j 6= b(di.y− ymin)/1yc∧
k 6= b(di.t − tmin)/1tc) then

18 c[i][j][k].N = c[i][j][k].N ∪ {oi}
19 end
20 end
21 end
22 end
23 end

Algorithm 1 shows the procedure for cell index construc-
tion described so far. For each new tuple d , we first identify
the cell c to which d belongs (lines 3-5) and insert the ID of
the thing that generated d into c.I (line 6). Next we identify
the cells, each c of which overlaps the joinable space of d
(lines 8-13) and insert the ID of the thing that generated d
into c.N except the cell to which d belongs (lines 14-22).

D. JOIN
Once the cell index is updated to reflect all new tuples (i.e.,
c.I and c.N are updated for all cells that have new tuples
inside or near them), we can process a spatio-temporal join

efficiently by using the cell index. Suppose a spatio-temporal
join is requested over D1, D2, . . . ,Dn. The proposed method
performs the join in three stages: (1) Finding join occurrence
cells: We find the cells that have tuples of all of o1, o2, . . . , on
inside or near them. (2) Retrieving candidate tuples: For each
cell found, we retrieve tuples from D1, D2, . . . ,Dn that are
in or near the cell. (3) Performing joins: For each cell found,
we perform a join between the tuples retrieved from D1,
D2, . . . ,Dn that are in or near the cell. Now we describe each
of the three stages in detail.

1) STAGE 1: FINDING JOIN OCCURRENCE CELLS
In this step, we find the cells that have tuples of all of o1,
o2, . . . , on inside or near them. Since tuples cannot be joined
if they are far from each other in the 3D spatio-temporal
space, it is sufficient to consider only those cells to obtain the
join result. To do this, for each oi (i = 1, 2, . . . , n), we first
find the set Ci of cells, each of which contains oi in c.I or c.N
(i.e., Ci = {c|oi ∈ c.I ∪ c.N }). In other words, Ci represents
the set of cells that have tuples of oi inside or near them. This
can be performed very efficiently using an inverted index that
maps oi to the list of cells containing oi in c.I or c.N . After
obtaining Ci for each oi (i = 1, 2, . . . , n), we compute C =
C1∩C2∩. . .∩Cn. Here,C represents the set of cells that have
tuples of all of o1, o2, . . . , on inside or near them. Therefore,
in order to perform the join between D1, D2, . . . ,Dn, we
only need to consider the tuples in D1, D2, . . . ,Dn that are
in or near the cells in C .

2) STAGE 2: RETRIEVING CANDIDATE TUPLES
Once C = C1 ∩ C2 ∩ . . . ∩ Cn is obtained, for each cell c ∈
C , we retrieve the tuples of o1, o2, . . . , on that are in or near
c. To do this, for each oi (i = 1, 2, . . . , n), we retrieve the
tuples from Di that are in or near c depending on whether
oi ∈ c.I or oi ∈ c.N . If oi ∈ c.I , then we retrieve the tuples
from Di satisfying the following condition:

δi = {d ∈ Di|(d .x, d .y, d .t) ∈ c}

That is, δi represents the tuples of oi that are in c. δi can be
expressed as a simple range query on Di and can be obtained
very efficiently using any existing multi-dimensional index
(e.g., R-tree) built on the x, y, and t attributes of Di. Other-
wise, if oi ∈ c.N , thenwe retrieve the tuples fromDi satisfying
the following condition:

δi = {d ∈ Di|(d .x, d .y, d .t) 6∈ c ∧ jsp(d) ∩ c 6= ∅}

In this case, δi represents the tuples of oi that are near c (i.e.,
the tuples of oi that are outside c but whose joinable spaces
overlap c). Also in this case, δi can be expressed as a simple
range query on Di and can be obtained very efficiently using
any multi-dimensional index. In this way, for each cell c ∈ C ,
we can obtain δ1, δ2, . . . , δn, which represent the tuples of o1,
o2, . . . , on that are in or near c, respectively.

108376 VOLUME 8, 2020

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

3) STAGE 3: PERFORMING JOINS
Once we obtain δ1, δ2, . . . , δn for a cell c ∈ C , we perform
the join between δ1, δ2, . . . , δn (i.e., STJ ([δ1, δ2, . . . , δn],
[θx , θy, θt])) to generate join results for c. Because each δi
(i = 1, 2, . . . , n) is small in practice, we can easily per-
form STJ ([δ1, δ2, . . . , δn], [θx , θy, θt]) using an existing in-
memory join algorithm such as the nested loop join, the hash
join, the plane sweep, or the Z-order [33]. In the experiments,
we performed STJ ([δ1, δ2, . . . , δn], [θx , θy, θt]) using the join
operators provided by the underlying storage (i.e., Oracle
DBMS andMongoDB) but any existing in-memory join algo-
rithm can be used. By repeating Stage 2 and 3 for each cell
c ∈ C found in Stage 1, we can obtain the complete result of
the requested spatio-temporal join.
However, one problem with the proposed approach

described so far is that duplicate join results may be produced
from different cells in C . In the next subsection, we explain
this problem in detail and describe how to eliminate duplicate
results efficiently.

E. DUPLICATE FILTERING
After finding the set C of join occurrence cells in Stage 1,
we repeat Stage 2 and 3 for each cell c ∈ C . However,
in the process of repeating Stage 2 and 3, duplicate join results
may be produced from different c ∈ C . Let us illustrate this
problem using the example in Fig.4. Suppose we compute
STJ ([D2,D3], [θx , θy, θt]), and d2 and d3 satisfy the join con-
dition (i.e., (d2, d3) ∈ STJ ([D2,D3], [θx , θy, θt])). In Stage
1 of the join step, we first find the set of cells that have tuples
of o2 inside or near them, which results in C2 = {c1, c2}
because o2 ∈ c1.I and o2 ∈ c2.N . Similarly, we find the
set of cells that have tuples of o3 inside or near them, which
results in C3 = {c1, c2} because o3 ∈ c1.N and o3 ∈ c2.I .
Therefore, the set of cells that have tuples of both o2 and
o3 inside or near them is C = C1 ∩ C2 = {c1, c2}. Now
suppose we perform Stage 2 and 3 for c1 ∈ C . Because
o2 ∈ c1.I , we retrieve the tuples of o2 in c1 (i.e., δ2 = {d2}).
Also, because o3 ∈ c1.N , we retrieve the tuples of o3 outside
c1 but whose joinable spaces overlap c1 (i.e., δ3 = {d3}).
Therefore, the join result produced for c1 is STJ ([δ2, δ3],
[θx , θy, θt]) = {(d2, d3)}. Next, suppose we perform Stage
2 and 3 for c2 ∈ C . Because o2 ∈ c2.N , we retrieve the tuples
of o2 outside c2 but whose joinable spaces overlap c2 (i.e.,
δ2 = {d2}). Also, because o3 ∈ c2.I , we retrieve the tuples of
o3 in c2 (i.e., δ3 = {d3}). Therefore, the join result produced
for c2 is STJ ([δ2, δ3], [θx , θy, θt]) = {(d2, d3)}. Consequently,
we can see that the same join result (d2, d3) is produced twice
for c1 and c2.
To avoid this redundancy problem, we use the following

technique. For a cell c ∈ C , suppose tuples d1, d2, . . . , dn
are joined to produce a joined tuple (d1, d2, . . . , dn) in Stage
3. Before outputting the joined tuple (d1, d2, . . . , dn), we
additionally perform the following procedure: First, we select
a tuple among d1, d2, . . . , dn in such a way that the same
tuple is always uniquely selected. For example, in this paper,

we select among d1, d2, . . . , dn the tuple with the minimum
sum of its attribute values. More specifically, for each tuple
di (i = 1, 2, . . . , n), we first compute the sum of its attribute
values (i.e., di.x+di.y+di.t+di.vi). Then, we select the tuple
with the minimum value of di.x+di.y+di.t+di.vi. Let d ′ be
the tuple so selected among d1, d2, . . . , dn. Next, we check if
d ′ is contained in the current cell c. If d ′ is contained in the
current cell c, thenwe output the joined tuple (d1, d2, . . . , dn).
Otherwise, we discard the joined tuple (d1, d2, . . . , dn). That
is, we output the joined tuple (d1, d2, . . . , dn) only when the
current cell c contains the selected tuple d ′. Consequently,
the joined tuple (d1, d2, . . . , dn) is output only for one cell
(i.e., the cell containing d ′) among the cells containing d1,
d2, . . . , dn. For example, in Fig.4, suppose d2 is the tuple with
the minimum sum of its attribute values among d2 and d3. In
this case, the joined tuple (d2, d3) is output only for c1 because
d2 is contained in c1. On the other hand, (d2, d3) is not output
for c2 because d2 is not contained in c2.

Algorithm 2 Spatio-Temporal Join
Input: Relations D1, D2, . . . ,Dn,

Error thresholds θx , θy, θt
1 // Stage 1: Determining join occurrence cells
2 for i = 1 to n do
3 Ci = {c|oi ∈ c.I ∪ c.N }
4 end
5 C = C1 ∩ C2 ∩ . . . ∩ Cn
6

7 for each c ∈ C do
8 // Stage 2: Retrieving candidate tuples
9 for i = 1 to n do

10 δi = ∅

11 if oi ∈ c.I then
12 δi = δi ∪ {d ∈ Di|(d .x, d .y, d .t) ∈ c}
13 end
14 if oi ∈ c.N then
15 δi = δi ∪ {d ∈ Di|(d .x, d .y, d .t) 6∈ c ∧
16 jsp(d) ∩ c 6= ∅}
17 end
18 end
19

20 // Stage 3: Performing joins
21 R = STJ ([δ1, δ2, . . . , δn], [θx , θy, θt])
22 for each (d1, d2, . . . , dn) ∈ R do
23 d ′ = the tuple with the minimum sum of its
24 attribute values among d1, d2, . . . , dn
25 if d ′ ∈ c then
26 output((d1, d2, . . . , dn))
27 end
28 end
29 end

Algorithm 2 provides the procedure for performing a
spatio-temporal join described so far. First, for each oi (i =
1, 2, . . . , n), the proposed algorithm finds the set Ci of cells

VOLUME 8, 2020 108377

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

that have tuples of oi inside or near them (lines 2-4). It then
obtains the set of cells that have tuples of all of o1, o2, . . . , on
inside or near them by computing the intersection of C1, C2,
. . .Cn (line 5). Once such cells are obtained, for each c of
those cells, the proposed method performs the following: (1)
For each oi (i = 1, 2, . . . , n), it retrieves the tuples from Di
that are in c if oi ∈ c.I (lines 11-13) or retrieves the tuples
from Di that are near c if oi ∈ c.N (lines 14-17). (2) Once
these tuples are retrieved, it performs the join between the
retrieved tuples (line 21). (3) Finally, before outputting joined
tuples, it performs the additional redundancy test and outputs
the joined tuples only when they pass the test (lines 22-28).

IV. ANALYSIS OF THE PROPOSED METHOD
In this section, we analyze the correctness and time complex-
ity of the proposed method. First, we prove the correctness of
the proposed method.
Theorem 1: Given n relations D1, D2, . . . ,Dn and user-

specified thresholds θx , θy, and θt , the proposed method
returns all and only the tuples in STJ ([D1,D2, . . . ,Dn],
[θx , θy, θt]).

Proof: Let (d1, d2, . . . , dn) be a tuple in STJ ([D1,
D2, . . . ,Dn], [θx , θy, θt]) (i.e., (d1, d2, . . . , dn) ∈ STJ ([D1,
D2, . . . ,Dn], [θx , θy, θt])). For the joined tuple (d1, d2,. . . , dn),
d1, d2, . . . , dn are either all in the same cell or distributed over
two or more (adjacent) cells.

First, suppose d1, d2, . . . , dn are all in the same cell c. In
this case, by Algorithm 1, c.I contains all of o1, o2, . . . , on
because their tuples d1, d2, . . . , dn are all in c. When Algo-
rithm 2 is performed, by lines 2-4, each Ci contains c because
oi ∈ c.I (i = 1, 2, . . . , n) and accordingly c∈C1∩C2∩. . .∩Cn
= C . Thus, Algorithm 2 performs Stage 2 and 3 for c because
c ∈ C . In Stage 2, because oi ∈ c.I for i = 1, 2, . . . , n,
each δi contains di (i = 1, 2, . . . , n) by lines 11-13. Next,
in Stage 3, because d1 ∈ δ1, d2 ∈ δ2, . . . , dn ∈ δn and d1,
d2, . . . , dn satisfy the join condition, (d1, d2, . . . , dn) ∈ R by
line 21. Finally, because d ′, which is one of d1, d2, . . . , dn,
in c by assumption, (d1, d2, . . . , dn) is output as a joined tuple
by lines 25-27.

Next, suppose d1, d2, .., dn are distributed over two ormore
cells. Without loss of generality, assume that d1 and d2 are
in different cells c1 and c2, respectively. Also assume that
d1 is the tuple with the minimum sum of its attribute val-
ues among d1, d2, . . . , dn without loss of generality. In this
case, by Algorithm 1, c1.I contains o1 because d1, which
is a tuple of o1, is in c1. Now we show that c1.N contains
o2 by Algorithm 1. Consider when d2 is generated by o2
and inserted into D2. After inserting o2 into c2.I because
d2 is in c2, Algorithm 1 inserts o2 into c.N for each cell
c that overlaps jsp(d2) except c2. Because (d1, d2, . . . , dn)
∈ STJ ([D1,D2, . . . ,Dn], [θx , θy, θt]) by assumption, d1 is in
the joinable space of d2 (i.e., d1 ∈ jsp(d2)). Since d1 ∈ c1, c1
must overlap jsp(d2). Therefore, Algorithm 1 inserts o2 into
c1.N . If we apply the same logic to the rest of the tuples d3,
d2, . . . , dn, we can show that either oi ∈ c1.I or oi ∈ c1.N
for i = 3, 4, . . . , n depending on whether di is in c1 or a cell

other than c1. When Algorithm 2 is performed, by lines 2-4,
each Ci contains c1 because oi is contained in c1.I or c1.N
(i = 1, 2, . . . , n) and accordingly c1 ∈ C1 ∩ C2 ∩ . . . ∩ Cn =
C . Thus, Algorithm 2 performs Stage 2 and 3 for c1 because
c1 ∈ C . In Stage 2, for i = 1, 2, . . . , n, if oi ∈ c1.I , then
δi contains di by line 12. Otherwise, if oi ∈ c1.N , then δi
contains di by lines 15-16. Next, in Stage 3, because d1 ∈ δ1,
d2 ∈ δ2, . . . , dn ∈ δn and d1, d2, . . . , dn satisfy the join
condition, (d1, d2, . . . , dn) ∈ R by line 21. Finally, because
d ′, which is d1 by assumption, is in c1, (d1, d2, . . . , dn) is
output as a joined tuple by lines 25-27. Therefore, we have
proved that if a tuple is in STJ ([D1,D2, . . . ,Dn], [θx , θy,
θt]), the tuple is output by the proposed method, regardless
of whether d1, d2, .., dn are all in the same cell or distributed
over two or more cells.
On the other hand, let (d1, d2, . . . , dn) be a tuple not

in STJ ([D1, D2, . . . ,Dn], [θx , θy, θt]) (i.e., (d1, d2, . . . , dn)
6∈ STJ ([D1, D2, . . . ,Dn], [θx , θy, θt])). In this case,
we cannot reach line 23 of Algorithm 2 because (d1,
d2, . . . , dn) 6∈ STJ ([D1,D2, . . . ,Dn], [θx , θy, θt]) and STJ ([δ1,
δ2, . . . , δn], [θx , θy, θt]) ⊆ STJ ([D1, D2, . . . ,Dn], [θx , θy,
θt]) so (d1, d2, . . . , dn) 6∈ STJ ([δ1, δ2, . . . , δn], [θx , θy,
θt]). Therefore, if a tuple is not in STJ ([D1,D2, . . . ,Dn],
[θx , θy, θt]), the tuple cannot be output by the proposed
method.

Consequently, because the proposed algorithm outputs a
tuple if and only if the tuple is in STJ ([D1, D2, . . . ,Dn],
[θx , θy, θt]), the proposed algorithm outputs STJ ([D1,
D2, . . . ,Dn], [θx , θy, θt]) correctly. �
Now we analyze the time complexity of the proposed

method. First, we analyze the time complexity of Algo-
rithm 1. Given a tuple d generated by a thing oi, computing
the indices of the cell c to which d belongs can be done in a
constant time (lines 3-5). Let Ncells be the number of cells
where at least one tuple exists. If we maintain an inverted
index that maps each thing ID to its associated cells, inserting
oi into c.I takes O(Ncells/n) time, where Ncells/n represents
the average number of cells per thing (line 6). After that,
computing the range of indices of the cells overlapping jsp(d)
takes a constant time (lines 8-13). Then, for each cell c
overlapping jsp(d), inserting oi into c.N takes O(Ncells/n)
time if we maintain an inverted index. Because the number
of cells overlapping jsp(d) cannot exceed a certain number
given the values of 2x , 2y, and 2t , the total time to insert oi
into c.N for all cells overlapping jsp(d) is O(Ncells/n) (lines
14-22). Consequently, the time complexity of Algorithm 1 for
one new tuple is O(Ncells/n). If there are Nnew new tuples, the
total time to update the cell index is roughlyO(Nnew·Ncells/n),
assuming that Nnew is small compared to the number of
existing tuples.

From now on, we analyze the time complexity of Algo-
rithm 2. For each oi (i = 1, 2, . . . , n), the time required to
obtain Ci using the inverted index isO(|Ci|), where |Ci| is the
number of cells in Ci. Thus, obtaining all of C1, C2, . . . ,Cn
takes O(

∑n
i=1 |Ci|) time (lines 2-4). After that, computing

C = C1 ∩ C2 ∩ . . .∩ Cn takesO(|C1| + |C2| + . . .+ |Cn|) =

108378 VOLUME 8, 2020

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

O(
∑n

i=1 |Ci|) time, assuming that the inverted index main-
tains the list of cells for each thing in sorted order (line 5).
Hence, Stage 1 takes O(

∑n
i=1 |Ci|) time. Now consider Stage

2 of Algorithm 2. Given a cell c ∈ C , retrieving δi fromDi for
a thing oi takesO(log |Di|+ |δi|) time if we use a hierarchical
index (e.g., R-tree) built on Di, where |Di| and |δi| are the
number of tuples inDi and δi, respectively. Therefore, obtain-
ing all of δ1, δ2, . . . , δn takes O(

∑n
i=1 log |Di| +

∑n
i=1 |δi|)

time (lines 9-18), which corresponds to the time complexity
of Stage 2 for a cell c ∈ C . Finally, given δ1, δ2, . . . , δn, Stage
3 takes O(|δ1| + |δ2| + . . .+ |δn|) = O(

∑n
i=1 |δi|) time if we

use an in-memory join algorithm (e.g., hash join) between δ1,
δ2, . . . , δn. Because Algorithm 2 performs Stage 1 once and
Stage 2 and 3 for each cell c ∈ C , the total time of Algo-
rithm 2 is O(

∑n
i=1 |Ci| + |C| · (

∑n
i=1 log |Di| +

∑n
i=1 |δi|)).

Here, since computing C = C1 ∩ C2 ∩ . . .∩ Cn can be
performed very efficiently (i.e., merging the sorted lists C1,
C2, . . . ,Cn in memory), the execution time of Algorithm 2 is
mainly determined by |C| · (

∑n
i=1 log |Di| +

∑n
i=1 |δi|),

which represents the time to retrieve δ1, δ2, . . . , δn from D1,
D2, . . . ,Dn for each cell c ∈ C . Note that this term is directly
proportional to |C|, where |C| is the number of cells that have
tuples of all of o1, o2, . . . , on inside or near them. Because
|C| is related to the size of the join result, the execution time
of the proposed method depends heavily on the size of the
join result rather than other factors (e.g., the input size or the
number of things being joined). For example, even when the
input size (i.e., |D1|, |D2|, . . . , |Dn|) increases, the execution
time of the proposed method increases slowly because it
depends on

∑n
i=1 log |Di|, rather than

∑n
i=1 |Di|. Similarly,

even when the number of things being joined n increases,
the execution time of the proposed method does not increase
so much because the execution time is increased only by
adding |C| · (log |Di| + |δi|) for each new Di. The increase in
the execution time can be reduced even further because |C|
may decrease as n increases. Therefore, we can see that the
execution time of the proposed method is not much affected
by an increase in the input size or the number of things being
joined.
For comparison, we briefly analyze the time complexity

of the existing methods. First, let us consider a non-index
algorithm. This algorithm first reads all the relations and
partitions them, which takes O(

∑n
i=1 |Di|) time. Let NP be

the number of partitions per relation. After partitioning, for
each group of partitions, one from each relation, it performs
the join between the partitions in the group. This takesO(NP ·∑n

i=1 |Di|/NP) time in total, where |Di|/NP is the average
size of a partition of Di. Thus, the total execution time of
a non-index algorithm is roughly O(

∑n
i=1 |Di|). As a result,

the execution time of a non-index algorithm increases directly
with increasing input size. Next, let us consider an one-index
algorithm, which is based on the index nested loop join. This
algorithmfirst performs an index nested loop join betweenD1
and D2, which takes O(|D1| · log |D2|) time, where log |D2|

represents the depth of the R-tree built onD2. It then performs
an index nested loop join between the previous join result and

the next relation repeatedly for D3, D4, . . . ,Dn, which takes
O(|T1| · log |D3| + |T2| · log |D4| + . . . + |Tn−2| · log |Dn|)
time in total, where |Ti| is the size of the intermediate join
result produced in the ith iteration. Thus, the total execution
time of an one-index algorithm is roughly O(|D1| · log |D2|+∑n

i=3 |Ti−2| · log |Di|). Accordingly, the execution time of an
one-index algorithm increases directly with increasing size
of the input data, especially the first relation D1. Lastly,
let us consider a multi-index algorithm, which is based on
the synchronized index traversal. This algorithm traverses
the R-trees built on D1, D2, . . . ,Dn synchronously from
the root nodes to the leaf level. If we assume that all the
R-trees built on D1, D2, . . . ,Dn have the same depth (i.e.,
log |D1| = log |D2| = . . .= log |Dn|), this traversal takes
O(

∑log |D1|
i=1 (f i)n) time, where f is the average fanout of the

R-trees, f i is the average number of nodes in the ith level
of an R-tree, and (f i)n is the number of possible combina-
tions of nodes at the ith level of the R-trees, one from each
R-tree. Finally, performing the join between tuples retrieved
from D1, D2, . . . ,Dn takes O(

∑n
i=1 |D

′
i|) time, where |D′i|

is the number of tuples retrieved from Di. Consequently,
the total execution time of a multi-index algorithm is roughly
O(

∑log |D1|
i=1 (f i)n +

∑n
i=1 |D

′
i|). Thus, the execution time of

a multi-index algorithm increases rapidly as the number of
relations increases.

V. PERFORMANCE EVALUATION
In this section, we present the performance evaluation results
of the proposed method for various experiments.

A. EXPERIMENTAL SETUP
In the experiments, we compared the performance of the
proposed method with three representative spatio-temporal
join methods:

• Partition-based method (PBM): This method repre-
sents a non-index algorithm, which uses the strategies
proposed in [17]–[20]. It partitions the entire spatio-
temporal space into cells using a uniform grid. If a
spatio-temporal join is requested overD1,D2, . . . ,Dn, it
partitions each relation into groups, each of which corre-
sponds to tuples belonging to the same cell. Finally, for
each cell, all groups of D1, D2, . . . ,Dn associated with
that cell are taken and compared, i.e., all tuples in the
groups are tested for the join condition.We implemented
PBMmainly based on [17], which uses a computational
geometry based plane-sweep technique to perform a join
between groups.

• Indexed nested loop (INL): This method represents an
one-index algorithm, which is based on the index nested
loop join [25]–[28]. If a spatio-temporal join is requested
over D1, D2, . . . ,Dn, it first performs an indexed nested
loop join between D1 and D2 using the spatio-temporal
index built on D2. Next, it performs an index nested
loop join between the previous result and D3 using the
spatio-temporal index built onD3. It repeats this process

VOLUME 8, 2020 108379

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

for D4, . . . ,Dn. For this method, we used 3D R-trees
as the spatio-temporal indices. To implement INL, we
refer to the pseudo-code for an index nested loop join
algorithm presented in [8]. Please refer to [8] to see the
implementation details.

• Synchronized tree traversal (STT): This method rep-
resents a multi-index algorithm, which is based on the
synchronized index traversal [29]–[31]. If a spatio-
temporal join is requested over D1, D2, . . . ,Dn, it starts
from the root nodes of the 3D R-trees built on D1,
D2, . . . ,Dn and synchronously traverses the 3D R-trees
to the leaf level. At each level, it finds nodes, one from
each index, that all overlap each other and continues
to traverse only those overlapping nodes. To implement
STT, we also refer to the pseudo-code for a synchronized
tree traversal algorithm presented in [8]. Please refer to
[8] to see the implementation details.

• Proposed method (OUR): This method is our proposed
method.

To be fair, we may compare the proposed method only
with spatio-temporal join methods that use all indexes built
on all the relations. However, given the relations all with
indexes, we can use any of PBM, INL, and STT to perform
a spatio-temporal join between them in principle. Thus, for
comprehensiveness, we compared the proposed method with
all of PBM, INL, and STT. There is another point worth
mentioning. Although there are a number of more recently
proposed methods on spatio-temporal joins, all of them are
based on PBM, INL, or STT, consider different problems
from ours, or their definitions of spatio-temporal joins are
different from ours, as we described in Section II.B. Hence,
as far as we know, PBM, INL, and STT are still the most
representative and best performing methods for exactly the
same problem we are dealing with. Thus, we compared the
proposed method with PBM, INL, and STT.

The experiments were performed on a PC running Win-
dows 10 with an Intel i7-5820 3.3 GHz CPU, 32 GB DRAM,
and 2 TB HDD. We implemented all the methods in Java on
top of existing RDBMS and NoSQL, respectively.

As an existing RDBMS, we used Oracle RDBMS, which
is a popular storage system adopted by a number of IoT
platforms [4], [11].We created n relationsD1,D2,,Dn and
implemented the four methods using the facilities provided
by Oracle DBMS. For INL, STT, and OUR, we created a
3D R-tree, which is provided by Oracle Spatial [41], on
the x, y, and t attributes of each Di (i = 1, 2, . . . , n). For
STT, we used the spatial operator SDO_JOIN, which is also
provided by Oracle Spatial, to perform spatial joins based
on the synchronized tree traversal. However, because the
SDO_JOIN operator currently supports only two relations,
we report the performance of STT on Oracle DBMS only
for two relations. To the best of our knowledge, there is
currently no well-known RDBMS that supports STT for more
than two relations, which makes STT difficult to deploy on
existing IoT platforms. Note that we need to modify the
internal implementation of Oracle Spatial significantly to

FIGURE 5. Example of a taxi, the sensors installed on it, and the
dashboard system.

FIGURE 6. Location distribution of the real dataset.

makeOracle DBMS support STT for more than two relations.
This is because, in order to control the traversal of an R-tree
ourselves and access the internal information of an R-tree
directly, we need to modify the existing implementation of
the R-tree in Oracle Spatial. Similar to this case, some pro-
posed methods can be implemented on existing RDBMS and
NoSQL only by modifying the existing implementation of
the RDBMS and NoSQL (e.g., the existing index structures,
the existing access methods, or the existing query processor).
For OUR, we additionally created an inverted index that maps
each thing ID to its associated cells.

On the other hand, as an existing NoSQL, we used Mon-
goDB, which is another popular storage system used in many
IoT platforms, especially for storing and managing large-
scale heterogeneous IoT data [42]. In the case of MongoDB,
we created n collectionsD1,D2, . . . ,Dn, each of which corre-
sponds to a relation in RDBMS. For INL, STT, and OUR, we
implemented and created a 3D R-tree on the x, y, and t fields
of each Di (i = 1, 2, . . . , n). Because MongoDB currently
does not provide R-tree support, we implemented the R-tree
in a similar way to [43]. For OUR, we additionally created an
inverted index to efficiently find cells associated with a given
thing ID.

For the experiments, we used a real IoT dataset, called
Mobile Urban Sensing Dataset, provided by Korea Institute
of Science and Technology Information (KISTI) [44]. This
dataset contains air quality data measured and collected by
a number of taxis driving around Daegu city, South Korea,
from September 23 to October 22, 2017. Each taxi, which
corresponds to a thing in the IoT, is equippedwith a number of
sensors measuring air quality including PM1.0, PM2.5, PM10,

108380 VOLUME 8, 2020

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

FIGURE 7. Performance evaluation with varying number of tuples per relation.

TABLE 1. Description of the air quality dataset.

O2, O3, NH3, CO, NO2, CH4, H2, VOC, temperature, and
humidity. While driving, each taxi periodically measures air
quality, generates tuples containing the measurements, and
sends them to the server via cellular networks. Fig. 5 shows
an example of a taxi and the sensors installed on the taxi,
along with the dashboard system showing the most recent
measurements of each taxi. Fig. 6 is a map showing the
location distribution of the collected air quality data (red
spots). Table 1 presents the description of the real dataset. In
Mobile Urban Sensing Dataset, each tuple contains 17 values,
which correspond to values of the 17 attributes in Table 1. For
experiments, we first created six relations D1, D2, . . . ,D6,
each of which is used to store data generated by a particular
taxi and has the 17 attributes in Table 1. Then, for each
relation Di (i = 1, 2, . . . , 6), we extracted tuples with Taxi
ID attribute value i from the dataset, split each of them into
17 values, and inserted them into Di. Note that the longitude,
latitude, and time attributes in the dataset correspond to the
x, y, and t attributes in Di, respectively.
In the experiments, we evaluated the performance of the

compared methods by varying four parameters, with their
default values given in bold in Table 2. When we varied
one parameter, we fixed the other parameters to their default
values.

TABLE 2. Experimental parameters.

• The number of tuples per relation: We varied the
number of tuples per relation from 300,000 to 700,000
to examine how the performance of themethods changes
as the input size increases.

• The number of relations: We varied the number of
relations being joined from 2 to 6 to investigate the per-
formance characteristics of the methods as the number
of relations increases.

• Join thresholds: We also varied the join thresholds
(θx , θy, θt) from (10 m, 10 m, 2 min) to (50 m, 50 m,
10 min) to study the performance behavior of the com-
pared methods.

• Cell size: In the proposed method, the cell size deter-
mines the number of tuples accessed during join pro-
cessing. To observe how the size of cells affects the
performance of the proposed method, we varied the size
of a cell1x ×1y×1t from 200 m × 200 m × 30 min
to 1,000 m × 1,000 m × 90 min.

As the performance measure, we used the total execution
time taken to process a given spatio-temporal join. Note
that we excluded the index construction time (i.e., the time
to construct R-trees and the cell index) from the execution

VOLUME 8, 2020 108381

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

time because once the indices are constructed, they are used
repeatedly for subsequent queries. However, we separately
report the cell index construction time in the proposedmethod
in Section V.F. For PBM, we divided each of x-, y-, and t-axis
into 10 equal length intervals and partitioned each relation
into 10 × 10×10 = 1, 000 groups. Finally, for OUR, we set
the maximum allowed values of θx , θy, and θt to2x = 100 m,
2y = 100 m, and 2t = 20 min, respectively.

B. VARYING THE SIZE OF RELATIONS
Figure 7 shows the execution time of all the methods when
we varied the number of tuples per relation from 300,000 to
700,000. In this experiment, we performed a spatio-temporal
join over 4 relations with the join thresholds θx = 10 m,
θy = 10 m, and θt = 2 min. For the proposed method
(OUR), we set the cell size to 600 m × 600 m × 60 min. In
Figures 7, 8, . . . , 11, the left figures (i.e., Figures 7(a), 8(a),
. . . 11(a)) show the performance of the methods implemented
on top of Oracle DBMS, whereas the right figures (i.e.,
Figures 7(b), 8(b), . . . , 11(b)) show the performance of the
methods implemented on top of MongoDB.

In Figure 7(a) and (b), PBM shows the worst performance
among the compared methods because it does not use indices
and reads all tuples in the relations to partition them on-the-
fly when a join is requested. Its execution time thus increases
fast directly with increasing size of relations. Among the
index-based methods, INL has the longest execution time.
Because INL needs to repeatedly perform index searches
for each tuple in the inner relations, its execution time also
increases fast with increasing size of relations. In comparison,
STT shows better performance than INL in Figure 7(b).
(Note that we do not report the performance of SST on
Oracle DBMS in Figure 7(a) for the reason described in
Section V.A.) Since STT traverses the indices built on all
the relations synchronously and accesses only those tuples
in their overlapping leaf nodes, STT accesses fewer tuples
than INL. However, STT must enumerate all possible com-
binations of nodes at each level of the indices and check
every combination to see if their bounding boxes overlap.
On the contrary, OUR can easily identify join occurrence
cells by a simple intersection operation and accesses only
those tuples that are in or near those cells. As a result,
as shown in Figure 7, OUR outperforms the other methods
significantly. More specifically, compared with PBM and
INL, OUR reduces the execution time by up to 83% and
76%, respectively, in Figure 7(a). Also in Figure 7(b), OUR
reduces the execution time by up to 93%, 89%, and 78%
compared with PBM, INL, and STT, respectively. Note also
that the execution time of OUR increases slowly compared
with the other methods, because its execution time depends
on

∑n
i=1 log |Di| as analyzed in Section IV.

C. VARYING THE NUMBER OF RELATIONS
Figure 8 shows the execution time of all the methods when
we increased the number of relations in the join from 2 to 6.
In this experiment, we set the number of tuples per relation

to 500,000 and the join thresholds to θx = 10 m, θy = 10 m,
and θt = 2 min. For OUR, the cell size was set to 600 m ×
600 m × 60 min.
Also in this experiment, OUR shows the best performance,

STT and INL are the next, and PBM shows the worst per-
formance. As we can see in Figure 8(a) and (b), OUR out-
performs the other methods significantly regardless of the
number of relations. The execution time of PBM increases
faster than the other methods because an increase in the num-
ber of relations leads directly to an increase in the input size.
Compared with PBM, the execution time of INL increases
slowly. This is because INL uses the intermediate join result
between two relations as the inner relation in the next join
and the size of the intermediate join result tends to decrease
as we proceed to more relations. SST performs better than
INL in Figure 8(b), but note that their performance gap is
much smaller than that in Figure 7(b). (Note also that we
report the performance of SST on Oracle DBMS only for
two relations in Figure 8(a) for the same reason described in
SectionV.A.) In STT, as the number of relations increases, the
number of possible combinations of nodes at each level of the
indices and the number of overlapping nodes grow rapidly. As
a result, this causes a relatively larger increase in its execution
time. The performance of OUR is also affected by the number
of relations because the cost of retrieving candidate tuples
from the relations (i.e., |C| · (

∑n
i=1 log |Di| +

∑n
i=1 |δi|))

increases. However, also in this case, the execution time of
OUR does not increase much compared to the other methods
because the cost of retrieving candidates tuples increases only
by |C| · (log |Di| + |δi|) for each new Di. Consequently,
OUR shows consistently better performance than the other
methods.

D. VARYING THE JOIN THRESHOLDS
Figure 9 shows the execution time of all the methods whenwe
varied the join thresholds from θx = 10 m, θy = 10 m, and
θt = 2 min to θx = 50 m, θy = 50 m, and θt = 10 min. Here,
we set the number of relations in the join to 4 and the number
of tuples per relation to 500,000. The cell size for OUR was
set to 600 m × 600 m × 60 min.
We can see that the execution time of all the methods

increases as the join thresholds increase. This is because the
size of the join results (i.e., the number of output tuples)
increases as the join thresholds increase. More specifically,
in PBM, the execution time increases because the cost of
writing output tuples increases. Similarly, the execution time
of INL increases because the cost of writing the intermediate
and final join results increases. The execution time of STT
also increases because the number of visited nodes in the
indices and the cost of writing output tuples increase. Also
in OUR, the cost of retrieving candidate tuples from the
relations and writing output tuples increases. However, as we
can see in Figure 9, the execution time of any method does
not increase particularly fast or slowly as the join thresholds
increase. Again in this experiment, OUR consistently outper-
forms the other methods for all the join threshold values.

108382 VOLUME 8, 2020

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

FIGURE 8. Performance evaluation with varying number of relations.

FIGURE 9. Performance evaluation with varying join threshold values.

FIGURE 10. Performance evaluation with varying cell sizes.

E. VARYING THE CELL SIZE
The proposed method partitions the 3D space into cells and
finds the join occurrence cells when a spatio-temporal join
is requested. Thus, the performance of OUR is affected by

the cell size because the number of join occurrence cells and
accordingly the number of candidate tuples retrieved from the
relations vary. Figure 10 shows the execution time of all the
methods when we varied the cell size. Note that only OUR is

VOLUME 8, 2020 108383

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

FIGURE 11. Data insertion and index construction time in the proposed method.

affected by the cell size because the other methods do not use
the cell index. However, we present the execution time of the
other methods for comparison only.

In this experiment, we set the number of relations in the
join to 4 and the number of tuples per relation to 500,000.
The join thresholds were set to θx = 10 m, θy = 10 m,
and θt = 2 min. As we can see in Figure 10(a) and (b),
the execution time of OUR increases slightly as the cell size
increases from 200 m × 200 m × 30 min to 1,000 m ×
1,000 m × 90 min. In general, as the cell size increases,
the number of join occurrence cells decreases because each
cell occupies more space. However, because the number of
tuples in each cell increases, the total number of retrieved
tuples increases. On the other hand, if the cell size decreases,
although the number of join occurrence cells increases, the
total number of retrieved tuples decreases. This is because the
spaces where tuples are joined are more precisely identified.
As a result, the execution time of OUR increases slightly
as the cell size increases, because more candidate tuples are
retrieved from the relations. However, in Figure 10, we can
observe that OUR always shows better performance than the
other methods even when the cell size increases up to 1,000m
× 1,000 × 90 min. Obviously, the performance of OUR
is expected to degrade if the cell size is excessively large,
because too many candidate tuples will be retrieved from
the relations. On the other hand, if the cell size is extremely
small, we can also expect that the performance of OUR will
deteriorate because the number of cells to process becomes
too large. In general, we recommend setting the cell size so
that all tuples within or near n cells fit easily in memory,
where n is the maximum number of relations being joined.
This allows STJ ([δ1, δ2, . . . , δn], [θx , θy, θt]) to always be
performed in memory. The size of all tuples within or near
n cells can be easily obtained from sample data.

F. INDEX CONSTRUCTION TIME
In the proposed method, the cell index must be constructed
in advance, before processing a spatio-temporal join. If the

cell index takes too long to construct, the usability of the
proposedmethodwill be very limited. In the final experiment,
we measured the time taken to construct all the indexes in the
proposed method (i.e., the cell index, an inverted index, and
R-trees). Figure 11 shows the time taken to insert a set of new
tuples, including the time taken to construct all the indexes.
Here, we set the number of relations to 6, andwe increased the
number of newly inserted tuples per relation from 300,000 to
700,000 (thus, a total of 1,800,000 to 4,200,000 tuples). The
cell size was set to 600 m × 600 m × 60 min. Also, because
the time taken to construct the cell index is affected by 2x ,
2y, and2t , we varied2x ,2y, and2t for each fixed number
of newly inserted tuples. In Figure 11, M1 represents when
2x = 50 m, 2y = 50 m, and 2t = 10 min, M2 represents
when 2x = 100 m, 2y = 100 m, and 2t = 20 min,
and M3 represents when 2x = 150 m, 2y = 150 m, and
2t = 30 min. Also in Figure 11, the dark gray portion
of bars (‘Relations + R-trees’) represents the time taken to
insert all the new tuples into the relations, including the time
taken to construct R-trees on the relations. Thus, this portion
is equal to the data insertion and index construction time in
INL and STT. On the other hand, the light gray portion of
bars (‘Cell index’) and the white portion of bars (‘Inverted
index’) represent the time taken to construct the cell index
and inverted index in OUR, respectively. Thus, these portions
represent the additional cost incurred in OUR to construct the
cell and inverted indexes additionally.

As we can see in Figure 11, the data insertion and index
construction time in OUR is increased by about 16-17%
compared to INL and STT due to the additional indexes
(i.e., the cell and inverted indexes). However, even when the
number of new tuples per relation is 700,000, the total time
to construct the cell and inverted indexes does not exceed
3 minutes in both Figure 11(a) and (b). In the case of our
real dataset, the total number of tuples arriving each day is
about 150,000 on average. Considering the fact that the cell
index only needs to be updated once to reflect a given set of
new tuples, this level of execution time is not expensive and

108384 VOLUME 8, 2020

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

acceptable in most real applications. For example, we can
update the cell index once every hour or shorter periods to
reflect the new tuples that have arrived in the meantime.
Furthermore, we can see that the time to construct the cell
and inverted indexes increases almost linearly as the number
of new tuples increases. Note that this result is consistent with
our analysis in Section IV.

Finally, we can see that the time taken to construct the cell
and inverted indexes increases slightly as 2x , 2y, and 2t
increase, for a fixed number of new tuples. This is because
when a tuple d generated by oi is inserted, the joinable space
of d increases so oi can be inserted into c.N of more cells.
However, because such cases do not occur very often, the
time taken to construct the cell and inverted indexes does not
increase significantly. Hence, we can set 2x , 2y, and 2t to
values that are sufficiently larger than the expected values
of θx , θy, and θt . Note that because the user can freely set
the values of θx , θy, and θt as desired by the application, the
expected values of θx , θy, and θt are application dependent,
not system dependent.

VI. CONCLUSION
In this paper, we propose a newmethod for processing spatio-
temporal joins on IoT data. Compared with the previous
spatio-temporal join methods, the proposed method has the
following advantages, especially in the IoT environment: (1)
Even when the size of IoT data increases, its processing cost
does not increase directly. (2) Even if the number of things
being joined increases, its processing cost does not increase
rapidly. (3) It can be easily implemented on top of existing
IoT storage (i.e., RDBMS and NoSQL) without modifying
their internal implementation.

To achieve these advantages, the proposed method parti-
tions the 3D spatio-temporal space into equal-sized cells and
maintains the information about which thing’s tuples are in
which cells. When a spatio-temporal join is requested, the
proposed method first identifies cells that have tuples of all
the specified things inside or near them and retrieves only
those tuples that are inside or near the identified cells. It
then performs the join only between those retrieved tuples.
As a result, the processing cost is greatly reduced because
only tuples close to each other in the spatio-temporal space
are efficiently accessed. In addition, the proposed method
eliminates duplicate results by performing a simple filtering
step before outputting the results.

We also provide a theoretical analysis of the correctness
and time complexity of the proposedmethod. Finally, through
the extensive experiments on a real IoT dataset, we show
that the proposed method outperforms the existing methods
significantly in terms of the execution time. From these
results, we can conclude that the proposed method is more
efficient and scalable than the existingmethods, especially for
performing spatio-temporal joins on IoT data. As futurework,
we are investigating how to efficiently support continuous
spatio-temporal joins over continuous IoT data streams.

REFERENCES
[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet

of Things (IoT): A vision, architectural elements, and future direc-
tions,’’ Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660,
Sep. 2013.

[2] (2020). AWS IoT. [Online]. Available: https://aws.amazon.com/iot/
[3] (2020). Microsoft Azure IoT. [Online]. Available: https://azure.

microsoft.com/overview/iot
[4] (2020). Oracle IoT. [Online]. Available: https://www.oracle.com/internet-

of-things/
[5] (2020). Google Cloud IoT. [Online]. Available: https://cloud.google.

com/solutions/iot
[6] (2020). IBM Watson IoT. [Online]. Available: https://www.ibm.

com/internet-of-things
[7] N. Jiang, Y. Deng, X. Kang, and A. Nallanathan, ‘‘Random access anal-

ysis for massive IoT networks under a new spatio-temporal model: A
stochastic geometry approach,’’ IEEE Trans. Commun., vol. 66, no. 11,
pp. 5788–5803, Nov. 2018.

[8] S.-H. Jeong, N. W. Paton, A. A. A. Fernandes, and T. Griffiths, ‘‘An
experimental performance evaluation of spatio-temporal join strategies,’’
Trans. GIS, vol. 9, no. 2, pp. 129–156, Mar. 2005.

[9] L. Alarabi, M. F. Mokbel, and M. Musleh, ‘‘ST-Hadoop: A MapReduce
framework for spatio-temporal data,’’ GeoInformatica, vol. 22, no. 4,
pp. 785–813, Oct. 2018.

[10] R. T. Whitman, B. G. Marsh, M. B. Park, and E. G. Hoel, ‘‘Distributed
spatial and spatio-temporal join on apache spark,’’ ACM Trans. Spatial
Algorithms Syst., vol. 5, no. 1, pp. 1–28, Jun. 2019.

[11] (2020). SAP Leonardo IoT. [Online]. Available: https://www.sap.
com/products/leonardo-iot-data-services.html

[12] (2020). GE Predix Platform. [Online]. Available: https://www.ge.com/
digital/iiot-platform

[13] (2020). Bosch IoT Suite. (2020). [Online]. Available: https://www.bosch-
iot-suite.com/

[14] (2020). Siemens MindSphere. [Online]. Available: https://
siemens.mindsphere.io/

[15] (2020). Cisco IoT. [Online]. Available: https://www.cisco.com/c/en/us/
solutions/internet-of-things/overview.html

[16] (2020). PTC ThingWorx. [Online]. Available: https://www.ptc.com/
products/iiot/thingworx-platform

[17] J. M. Patel and D. J. DeWitt, ‘‘Partition based spatial-merge join,’’ ACM
SIGMOD Rec., vol. 25, no. 2, pp. 259–270, Jun. 1996.

[18] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter, ‘‘Scalable
sweeping-based spatial join,’’ in Proc. VLDB, Aug. 1998, pp. 570–581.

[19] E. H. Jacox and H. Samet, ‘‘Iterative spatial join,’’ ACM Trans. Database
Syst., vol. 28, no. 3, pp. 230–256, Sep. 2003.

[20] S. Nobari, F. Tauheed, T. Heinis, P. Karras, S. Bressan, and A. Ailamaki,
‘‘TOUCH: In-memory spatial join by hierarchical data-oriented partition-
ing,’’ in Proc. SIGMOD Int. Conf. Manage. Data, 2013, pp. 701–712.

[21] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduc-
tion. New York, NY, USA: Springer-Verlag, 1985.

[22] J. A. Orenstein, ‘‘Spatial query processing in an object-oriented database
system,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD),
1986, pp. 326–336.

[23] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, ‘‘Hadoop-
GIS: A high performance spatial data warehousing system over MapRe-
duce,’’ Proc. VLDB Endowment, vol. 6, no. 11, pp. 1009–1020, 2013.

[24] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu, ‘‘SJMR: Parallelizing
spatial join with MapReduce on clusters,’’ in Proc. IEEE Int. Conf. Cluster
Comput. Workshops, Aug./Sep. 2009, pp. 1–8.

[25] X. Xu, J. Han, andW. Lu, ‘‘RT-tree: An improved R-tree indexing structure
for temporal spatial databases,’’ in Proc. Int. Symp. Spatial Data Handling,
Jul. 1990, pp. 1040–1049.

[26] Y. Theodoridis, M. Vazirgiannis, and T. Sellis, ‘‘Spatio-temporal indexing
for large multimedia applications,’’ in Proc. 3rd IEEE Int. Conf. Multime-
dia Comput. Syst., Jun. 1996, pp. 441–448.

[27] M.A. Nascimento and J. R. O. Silva, ‘‘Towards historical R-trees,’’ inProc.
ACM Symp. Appl. Comput. (SAC), 1998, pp. 235–240.

[28] Y. Tao and D. Papadias, ‘‘MV3R-Tree: A spatio-temporal access method
for timestamp and interval queries,’’ in Proc. Int. Conf. Very Large Data
Bases, Sep. 2001, pp. 431–440.

[29] O. Gunther, ‘‘Efficient computation of spatial joins,’’ in Proc. IEEE 9th Int.
Conf. Data Eng., Apr. 1993, pp. 50–59.

VOLUME 8, 2020 108385

K. Y. Lee et al.: Efficient Processing of Spatio-Temporal Joins on IoT Data

[30] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, ‘‘Efficient processing of spa-
tial joins using R-trees,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data (SIGMOD), 1993, pp. 237–246.

[31] Y.-W. Huang, N. Jing, and E. A. Rundensteiner, ‘‘Spatial joins using
R-trees: Breadth-first traversal with global optimizations,’’ in Proc. 23rd
Int. Conf. Very Large Data Bases, vol. 1997, pp. 396–405.

[32] N. Mamoulis and D. Papadias, ‘‘Multiway spatial joins,’’ ACM Trans.
Database Syst., vol. 26, no. 4, pp. 424–475, Dec. 2001.

[33] E. H. Jacox and H. Samet, ‘‘Spatial join techniques,’’ ACM Trans.
Database Syst., vol. 32, no. 1, pp. 7–45, 2007.

[34] H. Hayashi, A. Asahara, N. Sugaya, Y. Ogawa, and H. Tomita, ‘‘Spatio-
temporal join technique for disaster estimation in large-scale natural disas-
ter,’’ in Proc. 6th ACM SIGSPATIAL Int. Workshop GeoStreaming (IWGS),
2015, pp. 49–58.

[35] K. Xie, K. Deng, and X. Zhou, ‘‘From trajectories to activities: A spatio-
temporal join approach,’’ in Proc. Int. Workshop Location Based Social
Netw., 2009, pp. 25–32.

[36] P. Mohan, S. Shekhar, J. A. Shine, and J. P. Rogers, ‘‘Cascading spatio-
temporal pattern discovery,’’ IEEE Trans. Knowl. Data Eng., vol. 24,
no. 11, pp. 1977–1992, Nov. 2012.

[37] H. Lu, B. Yang, and C. S. Jensen, ‘‘Spatio-temporal joins on symbolic
indoor tracking data,’’ in Proc. IEEE 27th Int. Conf. Data Eng., Apr. 2011,
pp. 816–827.

[38] W.-S. Han, J. Kim, B. Suk Lee, Y. Tao, R. Rantzau, and V. Markl, ‘‘Cost-
based predictive spatiotemporal join,’’ IEEE Trans. Knowl. Data Eng.,
vol. 21, no. 2, pp. 220–233, Feb. 2009.

[39] M. F. Mokbel and W. G. Aref, ‘‘SOLE: Scalable on-line execution of
continuous queries on spatio-temporal data streams,’’ VLDB J., vol. 17,
no. 5, pp. 971–995, Aug. 2008.

[40] J. Sun, Y. Tao, D. Papadias, and G. Kollios, ‘‘Spatio-temporal join selec-
tivity,’’ Inf. Syst., vol. 31, no. 8, pp. 793–813, Dec. 2006.

[41] (2020). Oracle Spatial Graph. [Online]. Available:
https://www.oracle.com/database/technologies/spatialandgraph.html

[42] (2020). The Internet Things | MongoDB. [Online]. Available:
https://www.mongodb.com/use-cases/internet-of-things

[43] L. Xiang, J. Huang, X. Shao, and D. Wang, ‘‘A mongodb-based manage-
ment of planar spatial data with a flattened R-tree,’’ ISPRS Int. J. Geo-Inf.,
vol. 5, no. 7, pp. 119–135, 2016.

[44] (Oct. 2017). Mobile Urban Sensing Dataset. KISTI. [Online]. Available:
http://220.123.184.109:8080/KISTI_Web/

KI YONG LEE (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in computer science from
KAIST, Daejeon, South Korea, in 1998, 2000, and
2006, respectively. From 2006 to 2008, he worked
for Samsung Electronics Company Ltd., Suwon,
South Korea, as a Senior Engineer. From 2008 to
2010, he was a Research Assistant Professor with
the Department of Computer Science, KAIST. He
joined the Faculty of the Division of Computer
Science, Sookmyung Women’s University, Seoul,

in 2010, where he is currently a Professor. His research interests include
database systems, query processing, data mining, data streams, and scientific
data processing.

MINJI SEO received the B.S. degree from
the Division of Computer Science, Sookmyung
Women’s University, South Korea, in 2018, where
she is currently pursuing the master’s degree in
computer science. Her research interests include
databases, data mining, deep learning, and graph
embedding.

RYONG LEE received the B.S. degree from the
School of Electronics, Telecommunication and
Computer Engineering, Korea Aerospace Univer-
sity, South Korea, in 1998, and the M.S. and
Ph.D. degrees from the Department of Social
Informatics, Kyoto University, Japan, in 2001 and
2003, respectively. From 2003 to 2008, he was
a Research Staff Member with the Samsung
Advanced Institute of Technology (SAIT), South
Korea. Since 2013, he has been with the Korea

Institute of Science and Technology Information (KISTI), South Korea. He
is currently a Senior Researcher of Research Data Sharing Center, KISTI.
His research interests include spatial data analysis, the Internet of Things,
smart city, and artificial intelligence.

MINWOO PARK received the B.S. and M.S.
degrees from the Division of Computer Con-
vergence, Chungnam National University, South
Korea, in 1992 and 2004, respectively. Since 1996,
he has been with the Korea Institute of Science and
Technology Information (KISTI), South Korea.
He is currently a Team Manager of the Research
Data Sharing Center, KISTI. His research interests
include system architecture, information security,
the Internet of Things, smart city, and artificial
intelligence.

SANG-HWAN LEE received the B.S. degree from
the Department of Electronic Computing, Univer-
sity of Ulsan, South Korea, in 1992, and the M.S.
degree in software engineering from Korea Uni-
versity, in 2004. Since 1995, he has been with
the Korea Institute of Science and Technology
Information (KISTI), South Korea. He is currently
the Director of the Research Data Sharing Center,
KISTI. His research interests include big data
analysis, large research data, data governance, data

ecosystems, and artificial intelligence.

108386 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	QUERY PROCESSING IN IoT PLATFORMS
	SPATIO-TEMPORAL JOINS

	PROPOSED METHOD
	PROBLEM DEFINITION
	ALGORITHM OVERVIEW
	CELL INDEX CONSTRUCTION
	JOIN
	STAGE 1: FINDING JOIN OCCURRENCE CELLS
	STAGE 2: RETRIEVING CANDIDATE TUPLES
	STAGE 3: PERFORMING JOINS

	DUPLICATE FILTERING

	ANALYSIS OF THE PROPOSED METHOD
	PERFORMANCE EVALUATION
	EXPERIMENTAL SETUP
	VARYING THE SIZE OF RELATIONS
	VARYING THE NUMBER OF RELATIONS
	VARYING THE JOIN THRESHOLDS
	VARYING THE CELL SIZE
	INDEX CONSTRUCTION TIME

	CONCLUSION
	REFERENCES
	Biographies
	KI YONG LEE
	MINJI SEO
	RYONG LEE
	MINWOO PARK
	SANG-HWAN LEE

