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ABSTRACT Analyses of sleep-related movement disorders have gained importance due to an increase
in life expectancy. The present approaches for measuring movements are based on electromyography or
accelerometry and provide only local or specific results from muscles/limbs to which sensors have been
attached. The motivation of this work was to investigate the detection of a more complete spectrum of sleep-
related movements using a three-dimensional (3D) camera instead of the current conventional methods.
In contrast to most of the previously published literature, this method allows for the detection of movements
even when patients are covered with a blanket. This is the first work to evaluate movement detection with
a clinical dataset and replicate the clinical environment in a laboratory setup. The laboratory setup allowed
for the characterization of detectable movements through the determination of speed and amplitude limits.
We used the Kinect One time-of-flight sensor to record 3D videos. Movements were quantified based on the
temporal depth change in these 3D videos. A computer-controlled lifting table allowed for the controlled
simulation of movements. Our algorithm detected movements with amplitude values>3.0 mm and velocity
values >3.5 mm/s with an F1 score ≥ 95%. The shortest reliably detected duration of movement was
350 ms. In an ethically approved clinical study including 44 patients, 93.1% of electromyography-detected
leg movements were also found in 3D. A significant correlation (ρ = 0.86) was found between movements
detected by the 3D system and polysomnography. The 3D system detected 31.2% more movements than
electromyography. In addition to obtaining a broader spectrum of movements not limited to local and
muscle/limb-specific movements, the usage of a contactless 3D camera simplifies the recording setup and
preserves natural sleeping behavior. The presented 3D system may become useful for diagnostic purposes
during sleep studies.

INDEX TERMS Computer vision, infrared image sensor, medical information system, motion detection,
patient monitoring.

I. INTRODUCTION
Reliable and sensitive detection of movements during sleep
is relevant for clinics to correctly estimate the severity
of sleep-related movement disorders such as periodic limb
movements (PLM) or REM-sleep behavior disorder (RBD).

The associate editor coordinating the review of this manuscript and

approving it for publication was Huazhu Fu .

PLM and RBD are becoming increasingly common due to the
increased prevalence in the aging population [1].

This study is the first to evaluate a method for detecting
and quantifying movements occurring during sleep in an
experimental and clinical setup using a three-dimensional
(3D) camera. Our method allows for the patients/test-objects
to be covered with a blanket. We characterize detectable
movements by determining the speed and amplitude limits.

109144 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3150-8961
https://orcid.org/0000-0002-2194-7418
https://orcid.org/0000-0002-3177-3159
https://orcid.org/0000-0001-9282-1591
https://orcid.org/0000-0001-6304-0243
https://orcid.org/0000-0002-2583-5835
https://orcid.org/0000-0002-3266-8967
https://orcid.org/0000-0002-1228-3859
https://orcid.org/0000-0002-9702-5524


M. Gall et al.: Automated Detection of Movements During Sleep Using a 3D Time-of-Flight Camera

The presented 3D system is also evaluated based on data from
clinical routines. This work is based on our previous work
by Garn et al. [2], in which periodic leg movements detected
by the 3D system were compared to periodic leg movements
annotated by PSG using a dataset of 10 patients.

The clinical state-of-the-art technology to assess move-
ments during sleep is polysomnography (PSG) [3]. In a
PSG scan, movements are detected using electromyogra-
phy (EMG), where electrodes placed on muscles, such as
the tibialis anterior muscles, measure their activity [4]. The
signals obtained are then either manually annotated [5] or
processed using automatic algorithms [6], [7]. Attached sen-
sors and connecting cables are inconvenient for the patient
and disturb his or her natural sleep behavior [8]. In addi-
tion, the complex setup, high cost, and limited availability
in sleep laboratories of PSG limit its utility [5]. Moreover,
sensors tend to detach upon contact; hence, data quality is
frequently diminished by artifacts [9]. Questions have been
raised as to whether it is sufficient to monitor only the tibialis
muscles [4]. EMG detects only the activity of muscles where
electrodes are applied, making it difficult to obtain the other
movements when monitoring only one muscle. Actigraphy
has been successfully introduced as an alternative in the
medical domain [10]–[14]. Activity localization is, how-
ever, restricted since only specific limb movements to which
the sensors are attached are provided. Contactless solutions
would be most desirable.

Today, most sleep laboratories apply video PSG using
2D near-infrared cameras. The contactless approach is
comfortable for the patient [15] and preserves natural sleep
behavior. Infrared videos of sleep environments can be auto-
matically analyzed by image processing software [16]–[19].
However, these works evaluated their systems only with a
small number of healthy volunteers and/or did not allow for
the usage of a blanket. To the best of our knowledge, no work
using 2D infrared video on a representative sample of data
obtained from a clinical routine in which participants were
allowed to use a blanket to detect movements during sleep
has been conducted.

2D infrared images allow only scene analysis in two
dimensions. This limitation has been addressed by methods
based on 3D videos that even allow for the detection of
movements along the camera’s viewing direction.

Numerous studies using 3D sensors, such as Microsoft
Kinect One (Microsoft corp., Redmond, Washington, USA),
in healthcare applications have been published [20]–[23]. The
way 3D technology is presently used in the sleep environment
was proposed by Grimm et al. [24], who suggested a method
to estimate four classes of body postures. Lee et al. [25]
and Yu et al. [26] estimated body postures and derived full
body movements from posture changes using 3D cameras.
However, both works relied on patients sleeping without a
cover. The performance is still unknown when patients use a
blanket. A method for using 3D videos to detect respiratory
events was recently shown in our work by Coronel et al. [27]
and by Yang et al. [28]. Most recently, a system using the

FIGURE 1. A) Clinical setup in which a patient lies in bed with the Kinect
TOF camera mounted on the ceiling above his or her head at a distance
of 1.8 m. The camera obtains the depth and infrared images of the
patient lying in bed covered with a blanked. This setup allows the
simultaneous application of synchronized PSG recordings. B) In the
experimental setup, the patient is replaced by a lifting table actuated by a
computer-controlled stepper motor. The lifting table is also covered with
a blanket.

Microsoft Kinect One time-of-flight (TOF) sensor to record
sleep apnea, periodic leg movements and detect sleep was
published [29]. A significant moderate correlation between
3D-detected periodic leg movements and those obtained by
PSG was found.

To the best of our knowledge, no literature quantified limits
of detection in terms of amplitude and speed of vertical
movements. With the 3D system presented in this work,
we aim to simplify the recording setup, preserve natural
sleep behavior, and improve results by detecting a more
thoroughmovement spectrum than the currently usedmuscle/
limb-specific methods.

This paper first describes the design of the 3D system for
the detection of movements of a patient lying in bed. Next,
in an experimental setup the 3D system was evaluated based
on movements executed by a computer controlled lifting
table to characterize speed and amplitude limits of detectable
movements. Finally, we describe the clinical study where
PSG and 3D depth videos were recorded simultaneously and
time-synchronized. Using the collected data, the 3D system
was evaluated based on ground truth EMG leg movement
annotations.

II. DESIGN OF THE 3D SYSTEM TO DETECT MOVEMENTS
A. EXPERIMENTAL AND CLINICAL RECORDING SETUP
The recording setup used at clinical sites consisted of a
Kinect One v2 time-of-flight camera (Microsoft corp., Red-
mond, Washington, USA) [30], [31] mounted on the ceiling
above a patient lying in bed (Fig. 1A). A single camera
recorded 3D depth and 2D infrared videos simultaneously.
The distance between the surface of the bed and the sen-
sor was approximately 1.8 meters. Pöhlmann et al. [32]
evaluated the Kinect v2 and stated that accurate operation
starts at a distance of 0.7 m; available room architectures
and previous findings (supplementary material, Kinect One
noise distribution) made this distance a plausible choice. The
clinical setup also allowed the simultaneous application of
time-synchronized PSG.
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FIGURE 2. Overview of the 3D video processing pipeline. (A) Raw 3D data recorded with the Kinect v2 camera at 30 frames
per second and a resolution of 512× 424 pixels. Resampling with a 4× 4 kernel and pixel verification resulted in preprocessed
depth images (B). We used a convolution filter with a window size w = 30 frames approximating the first derivative to indicate
temporal depth change per pixel in false color representation stored in the motion map (C). Next, a one-dimensional signal
indicating the movement strength (D, black line) at each frame was calculated. This signal was then classified into segments of
movements and nonmovements using proprietary thresholding (D, red lines).

We replicated the clinical setup in our laboratories,
allowing for experimental evaluation of the presented
3D-movement detection system. The patient was replaced by
a custom-built mechanical lifting table to simulate the body
movements of a patient lying in bed, Fig 1B. The Kinect
camera was used to obtain 3D depth and 2D infrared videos.
Pöhlmann et al. [32] also found that the camera’s recording
characteristics depend on the surface color being recorded.
This led to a color-dependent depth precision (= difference
of each individual 3D point to a fitted plane, max. 0.05 mm
difference between colors), whereas color did not have any
influence on the accuracy (= position measured by the
Kinect camera compared to physical ground truth position,
4.0 ± 3.8 mm). We therefore covered the lifting table with
white fabric similar to the sheets used in sleep laboratories.
The movements of the actuator were controlled via a com-
puter connection by setting the amplitude and speed. The
speed was limited to a range from 0.8 to 8.5 mm/s, and
the amplitude was limited to 35 mm (limited by the actu-
ated table design). The experiments were performed in com-
plete darkness. Temporal synchronization between the lifting
table movements and measurements using the camera-based
method was achieved manually using a triplet of predefined,
clearly detectable marker movements with a 35 mm ampli-
tude and a speed setting of 6 mm/s.

B. 3D VIDEO PROCESSING PIPELINE OVERVIEW
In the sleep laboratories, the 3D time-of-flight (TOF) camera
was mounted on the ceiling above the patient lying in bed
(Fig. 1A). For the experiments that used the lifting table,
the camera was mounted on the ceiling above the lifting
table (Fig. 1B). Each pixel of the recorded 3D depth images
encodes the distance between the camera and the nearest
surface of an object e.g. bed, patient lying in bed, lifting table.
The time-of-flight principle measures the distance between
the camera and a surface by determining the time it takes for
infrared light, emitted by the camera, to return to the camera
after being reflected by the surface of an object. For this
measurement amplitude-modulated incoherent near-infrared
light at a wavelength of 860 nanometers was emitted. The
radiation intensity is far below current safety standards
(BS EN 14255-1 2005) for optical radiation.

A pipeline was implemented in Python 3.4 to process these
raw 3D depth data to retrieve annotated movements. First,
raw depth data (Fig. 2A) were preprocessed using resam-
pling and pixel value verification. Fig. 2B shows color-coded
depth images of a person lying in bed and covered by a
white blanket of about 3 cm thickness standardly used in the
sleep laboratories. A more intense red indicated a smaller
distance from the sensor. Next, the motionmapwas generated
(Fig. 2C), indicating the temporal depth change per pixel in
false color representation. Here, blue indicated no change,
while red and yellow indicated motion. Highlighted areas of
the motion map — see the white circle in Fig. 2B & 2C —
show pixels with higher temporal depth changes, indicat-
ing local movements. With this information, selected areas
(e.g., leg area) were analyzed to derive a 2D signal repre-
senting the movement strength for each frame (movement
strength, Fig. 2D blue line). This signal was then classified
into movements and nonmovements using two thresholds
(Fig. 2D red line). During this first cycle, parameters were
set to detect clear and strong movements.

We found that smooth, reflective surfaces, such as bed bars
or the floor, accounted for strong noise in the recorded depth
images. To counteract this effect and enhance the signal-to-
noise ratio, we implemented a two-cycle approach. After gen-
erating the motion map, calculating the movement strength
and obtaining annotated movements in the first cycle,
we obtained a value indicating noise by calculating the pixel-
wise mean of the standard deviation between two annotated
movements based on equation (1):

f vi,j = mean
t∈s

(mi,j(t)) (1)

where f is the noise value for the pixel at the (i,j)-position
obtained from all frames t over the segment v ranging from
the end of an annotated movement to the start of the subse-
quent one; m indicates the motion value stored in the motion
map of the first cycle.

Then, the motion map was normalized by pixelwise divi-
sion with the obtained noise values f . The resulting motion
map shows normalized noise, setting the basis for obtain-
ing the movement strength with an enhanced signal-to-
noise ratio in a second cycle. The normalized motion map
enabled thresholds to be set for selected areas (e.g., leg area).
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The threshold levels could then be set to lower levels than in
the first cycle, as the different noise levels prevalent in the
motion map did not cause false positive movement detection,
allowing the presented algorithm to classify the movement
strength signal in periods of movements and nonmovements
with a higher sensitivity.

C. PREPROCESSING
The raw 512 × 424 pixel-sized images with a frame rate
of 30 Hz are resampled using the mean of 4 × 4 kernels.
If the Kinect could not compute depth values from the TOF
measurements, the API (application programming interface)
outputs a zero-value. Resampled pixels were set to zero by
our algorithms if the kernel included a zero-valued pixel.

D. GENERATING THE MOTION MAP
Independent of the direction of movement, if a pixel’s depth
value changed to a certain degree, this was thought to be a part
of a movement. We put this idea into practice using a convo-
lution filter to obtain a signal representing the pixel’s motion
(motion signal). A predefined window was convolved with
the depth value to detect changes in the pixel’s depth value.
Each pixel was rated individually per frame. Equation (2)
shows themathematical formulation applied to obtain a single
pixel’s motion signal mi,j.

mi,j (t) =

∣∣∣∣∣
s∑

k=1

di,j (t − k)
s

−

s∑
l=1

di,j (t + l)
s

∣∣∣∣∣ (2)

where (i, j) denotes the pixel’s position in the image,
t denotes the frame in which to calculate the motion value and
d represents the pixel’s depth value. The calculation of the
absolute value is indicated by two vertical bars. We chose
a window size of 31 frames (s = 15 frames) to incorporate
the preceding and subsequent 0.5 s of the depth signal d .
This window size was thought to be a reasonable choice
considering the shortest movement this work was developed
to detect were periodic leg movements that have a minimum
duration of 0.5 s (=15 frames) [33], [34]. The implications of
a 31-frame window are discussed in detail in the discussion
section. Fig. 3 illustrates the process of calculating the motion
signal. The obtained value approximates the first derivative of
the depth signal for each pixel. The calculated motion signal
is stored in the motion map (Fig. 2C).

E. OBTAINING THE MOVEMENT STRENGTH
We defined four criteria, C1 to C4, for a pixel to be included
in the calculation of the movement strength.
C1: The pixel must be part of the predefined region of

interest.
C2: The pixel’s motion signal must exceed a threshold with

the aim of excluding small depth value fluctuations caused by
noise.
C3: The pixel’s depth value must be between 1.0 m and

2.5 m to exclude pixels not belonging to the target area
(e.g., augmented noise from bed bars and the floor).

FIGURE 3. The motion signal of a single pixel (bottom) was calculated
(equation 2) via convolution of a predefined window (cyan, with size of
31 frames) with the pixel’s depth signal (center) at each frame.

C4: The corresponding infrared signal of the pixel must
reach at least an intensity of 700 per frame to exclude pixels
that show excessive noise due to reflective surfaces.

We then computed the movement strength as a
one-dimensional signal S according to

S (t) =
∑
i,j

mi,j (t) : mi,j fullfills criteria l = C1, . . . ,C4

(3)

where mi,j is the motion signal of a pixel at frame t and
position (i, j) fulfilling all four criteria l = C1 to C4 for a
pixel to be included in the calculation.

We applied the invalid depth mask to mute all pixels influ-
enced by a Kinect API output for undetermined depth values.
Thus, all pixels having a zero value, the Kinect API output for
undetermined pixels, within the range of ±15 frames were
muted. Muting this value was adequate due to the applied
convolution filter, which uses a window size of 31 frames.
Each zero value thus influences the preceding and subsequent
15 frames.

F. MOVEMENT CLASSIFICATION
We classified signal periods into movements and nonmove-
ments based on the movement strength using two static
thresholds (Fig. 2D). The first threshold thmin was set imme-
diately above the baseline noise. This was the movement
strength amplitude height during the resting state. The start
and stop of periods with elevated signal peaks were thus
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defined by crossing the thmin threshold. The definition of
the start and stop times were necessary since the movement
strength was a positive signal hardly any time reaching a zero
value. This method was based on the latest rules defined for
the scoring of sleep and related events [33], [34]. The rules
defined the resting baseline as right above baseline noise. The
start and stop times of leg movements were defined by the
EMG amplitude crossing a threshold. For this study, we used
the same thmin value across recordings. This was possible
since baseline noise remained the same across recordings due
to equal recording site configurations.

The second threshold thmax checked for the maximum
height of previously identified peaks. Peaks not exceeding
the thmax value were defined as noise-induced augmenta-
tion, whereas those exceeding thmax were classified as real
movement periods and were annotated as such. The best
threshold thmax was empirically determined by maximizing
the F1 score.

We observed that noise-induced augmentations could also
exceed the thmax threshold, leading to false annotations.
Thus, we developed a filter allowing for the removal of such
noise-induced annotations. These augmentations showed
characteristic patterns, with the motion map indicating a
movement equally distributed over the whole image. A met-
ric constructed of the maximum, mean and standard devi-
ation values of all motion signals included in an annotated
movement determined whether the annotation was marked as
noise-induced movement.

III. EVALUATION
A. EXPERIMENTAL DATA ACQUISITION
For the experimental setup the camera was mounted above
the lifting table, Fig 1B. In 4 experiments a total of 100 move-
ments were carried out for each pair of speed and amplitude
settings. Table 1 summarizes these experiments. Each experi-
ment was conducted twice. Once, the lifting table movements
were performed in the center (experiments x.1) and once the
lifting table movements were performed in outer regions of
the camera’s field of view (experiments x.2). Experiment 1
tested for detectable speeds. Therefore, the lifting table exe-
cuted movements with amplitudes of 30 mm and speeds in
the range of 1.5 mm/s to 5.5 mm/s in steps of 0.5 mm/s.
Experiment 2 tested for detectable amplitudes. Therefore,
the lifting table executed movements with amplitudes in
the range of 1.0 mm to 5.0 mm in steps of 1.0 mm and
speeds in the range of 3.0 mm/s to 4.5 mm/s in steps
of 0.5 mm/s. Experiment 3 evaluated the shortest possible
durations detectable by the TOF camera-based approach.
Therefore, the lifting table executed movements with ampli-
tudes in the range of 1.0 mm to 4.0 mm in steps of 1.00 mm
and speeds of 8.5 mm/s. Experiment 4 recorded the lift-
ing table while not performing any movement for several
hours. This experiment aimed at testing whether noise is
capable of inducing 3D annotations falsifying the number
of 3D-detected movements.

TABLE 1. Experiment overview.

Camera noise was not equally distributed across the
camera’s field of view—increasing from the center to the
outer pixels (see supplementary material, Kinect One noise
distribution)—which is why we first tested movements
located in the image center (experiments x.1) and then tested
movements located in the outer regions where, for example,
leg movements would occur (experiments x.2). The camera
was therefore shifted by 800 mm so that movements of the
lifting table occurred in the outer image regions.

B. CLINICAL DATA ACQUISITION
We additionally evaluated the proposed 3D movement
detection system on data recorded during a clinical study.
Leg movement annotations obtained by the 3D system were
compared with those obtained by PSG.

A study approved by the Ethics Committees of the Medi-
cal University of Vienna (EK-No. 1091/2014) and the state
of Upper Austria (EK-No. 254) was conducted collecting
polysomnographic and 3D data of patients presenting with
various sleep complaints to theDepartment of Neurology II of
the KeplerMedical University of Linz.Written informed con-
sent was obtained from all patients participating in the study.
Participants were recorded during one night of at least 8h in
bed. Time-synchronized PSG and 3D depth and 2D videos
were recorded in accordance to the setup described in Fig. 1A.
3D depth videos and 2D infrared videos were recorded
time-synchronized using one Kinect One V2 (Microsoft
Corp, Redmond, Washington, USA).

Clinicians performed the patients’ PSG testing accord-
ing to the American Academy of Sleep Medicine (AASM)
standards [33]. Leg movements were detected using sur-
face electrodes placed over the tibialis anterior muscles.
The Somnoscreen Plus PSG with Domino Software (Som-
nomedics, Randersacker, Germany) was used to record elec-
trooculography; electroencephalography (F3, F4, C3, C4,
O1, O2, M1 and M2 electrodes); cardiorespiratory record-
ings (single channel electrocardiography); recordings of nasal
air flow (thermocouple); nasal pressure cannula data; tho-
racic and abdominal respiratory movements (piezo); transcu-
taneous oxygen saturation; electromyography, including at
least the mental, submental and both tibialis anterior mus-
cles; Leg movement recording used surface electrodes placed
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longitudinally and symmetrically around the middle of the
tibialis anterior muscle, 2–3 cm apart. Bipolar surface EMG
was recorded with a low-pass filter at 100 Hz, a high-pass
filter at 10 Hz, and a sampling rate of 500 Hz. Amplifica-
tion was set at 10 µV per mm. The impedance of surface
EMG electrodes had to be lower than 10 k�.

Ground truth leg movements were derived from recorded
EMG signals, which have been manually annotated by
the somnologists SS and MB according to the American
Academy of SleepMedicine (AASM) standards [33]. Periods
of recordings were excluded if data were incomplete or tech-
nical problems such as artifacts or loss of sensors made the
signals unusable. The 3D system annotated movements based
on the 3D depth videos recorded during this study. Regions
of interest (ROIs) were set manually and covered only the
patients’ legs. Periods of recordings were also excluded if
movements of other body parts extensively interfered with the
ROI or the legs exited the bed. Full-body movements were
marked to be muted for the analysis of PSG and 3D data.
Ground truth and 3D-annotated movements were compared
by a software written in Python 3.4.

C. REPORTED METRICS
Reported metrics indicated the performance of the 3D system
in detecting movements when compared to the ground truth
lifting table movement or EMG activation. Both the ground
truth movements and the 3D-detected movements were anno-
tated continuously. Annotations thus might start and stop at
any time. We reported the following metrics:

• True Positive (TP): A ground truth annotation tempo-
rally overlapping with exactly one 3D annotation, inde-
pendent of the overlapping time.

• Multiple True Positives (MTPs): A ground truth anno-
tation temporally overlapping with more than one
3D annotation.

• False Positive (FP): A 3D annotation not overlapping
with any ground truth movement.

• False Negative (FN): A ground truthmovement not over-
lapping with any movement detected by the 3D system.

We counted a true positive if the ground truth overlapped
with a 3D annotation, independent of the overlapping time.
This was thought to be a reasonable choice as the 3D system,
and the frequently compared EMG annotations relied on
different methods of detection (muscle stimuli in PSG vs.
depth change in 3D). For example, a movement could result
from a body part falling back into its steady position after
muscle activation ended. In such a scenario, the detection
between methods might only overlap for a short time. EMG
would have detected muscle activation, while the 3D system
would have detected the actual movement of the leg falling
back in its initial positions. However, the EMG and the
3D system targeted the same movement.

We introduced the MTP metric to gain further insight
into the detection characteristics of our algorithm. The MTP
measure aimed at investigating the number of ground truth

TABLE 2. Detection levels.

annotated movements split into several shorter movements
by the 3D system. For MTPs, we reported the occupation
as the percentage of the ground truth movement occupied by
3D system detections.

The F1 score (4) shows how accurate the 3D-based detec-
tion was when compared to the ground truth.

F1 =
2 · (TP+MTP)

2 · (TP+MTP)+ FP+ FN
(4)

We defined four detection levels based on the F1 score.
To account for reliable detection even though ground truth
movements were split into several shorter movements by the
3D system, the MTP occupation was incorporated in the
detection levels. Table 2 shows the defined detection levels.
Detection level 1 was achieved when the F1-score was equal
to 100 % and no MTP was scored. Detection level 2 was
achieved when the F1-score was equal to 100% but MTPs
were scored with a mean MTP occupation ≥ 95%. Detection
level 3 was achieved when the F1-score ≥ 95% and <100%
without the occurrence of MTPs. An F1-score < 95% or a
mean MTP occupation < 95% resulted in detection level 4.
In experiment 4, we stated the number of falsely annotated

3D-detected movements induced by noise and the number
of noise-induced but correctly filtered annotations (see filter
in ‘‘II. F Movement Classification’’).
Clinical evaluations compared the 3D-system-obtained leg

movement detection result to the result obtained by PSG. For
each method, we stated the number of detected leg move-
ments. We were interested in the ratio between leg move-
ments detected by the 3D system (LM3D) and PSG-detected
leg movements (LMPSG) calculated by equation (5):

R3D/PSG =
LM3D

LMPSG
(5)

The percentage of annotated PSG leg movements also
detected by the 3D systemwas determined using equation (6):

TPR =
TP+MTP

TP+MTP+ FN
(6)

Similarly, we provide the percentage of PSG-detected LMnot
detected by the 3D systems equation (7):

FNR =
FN

TP+MTP+ FN
(7)

We were also interested in whether a human scorer could
visually recognize movements detected only by PSG but that
were missed by the 3D system. Two scorers analyzed relevant
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FIGURE 4. Threshold optimization based on the F1 score. The plot shows
the F1 score (y-axis) for different settings for thmax. A threshold of 20 mm
was reported to achieve the highest F1 score.

movements and annotated whether the missed movements
were:

� not observable in the motion map or in the infrared
video,

� only observable in the motion map,
� only observable in the infrared video or
� observable in the motion map and the infrared video.

Pearson’s correlation coefficient determined whether the
number of 3D-detected movements correlated with the num-
ber of PSG-determinedmovements. The same coefficient was
used to determine the relationship between R3D/PSG and other
PSG parameters (age, sleep efficiency, arousal index, periodic
leg movement index, apnea-hypopnea index).

IV. RESULTS
A. EXPERIMENTAL RESULTS
We determined the best threshold thmax empirically by opti-
mizing the F1 score, as shown in Fig. 4. A threshold of 20mm
was reported to achieve the highest F1 score = 0.83.
Fig. 5 compares the results obtained from the experi-

ments separated for movements executed in the image center
(Fig. 4A) and outer image regions (Fig. 4B). The figure shows
the detection levels according to Table 2 for the different
speed and amplitude settings in different colors. Experiment
1.1 tested for speeds detectable by the TOF camera-based
system using amplitudes of 30 mm and speeds ranging from
1.5 to 5.5 mm/s. The experiment demonstrated that for move-
ments with speeds > 4.0 mm/s, the camera-based method
achieved detection level 1 (F1= 100%, MTP= 0). At slower
speeds of 4.0 and 3.5 mm/s, 3 MTPs and 19 MTPs were
detected, respectively. However, the F1 score reached 100%,
and more than 95% of ground truth movement durations were
occupied by camera-based detections (MTP occupation ≥
95%), resulting in detection level 2. For slower speeds, MTP
occupation fell below 75%, and the majority of movements
were either split by the camera-based method or were not
detected at all (detection level 4). For speeds≤ 2mm/s, hardly
any movement was detected.

Experiment 1.2 was based on the same protocol as
Experiment 1.1 but tested movements in outer regions of

FIGURE 5. Results of experiments for movements occurring in the image
center (A) and outer image regions (B).

the field of view of the TOF camera. The detection met-
rics of the camera-based method slightly improved com-
pared to those of Experiment 1.1, especially for movement
speeds ≤ 2 mm/s. However, this did not cause a shift in
the detection levels obtained in Experiment 1.1. The mean
number of true positives increased by 3.1%, the mean number
ofMTPs increased by 3.7%, and themean number of detected
false negative counts decreased by 6.7% (mean TP: +3.1%,
mean MTP: +3.7%, mean FN: −6.7%). No false positives
were scored throughout Experiment 1.

Experiment 2 tested for the smallest movement ampli-
tude detectable by the image-based method. The movements
ranged from amplitudes of 1 to 5 mm and speeds from 3.0 to
4.5 mm/s. No ground truth movement was split into shorter
ones by the camera-based method, nor was any false posi-
tive movement recorded during any setting of Experiment 2.
Experiment 2.1 involved movements in the center of the
camera’s field of view and revealed that, according to the
speed limits determined in Experiment 1.1, movements with
an amplitude≥ 3 mm achieved detection level 1 (F1= 100%,
MTP = 0). In contrast to Experiment 1.1 involving higher
amplitudes, the camera-based method detected movements
with speeds as low as 3 mm/s according to detection level 1
(using an amplitude of 4 mm). Amplitudes ≤ 2 mm only
scored F1 ≤ 95% (detection level 4).
Experiment 2.2 simulated movements in outer regions of

the image recorded by the TOF camera and showed lower
detection rates than those detected in Experiment 2.1. The
mean number of true positive counts decreased by 6.9%,
while the mean number of false negative values increased
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by 6.8% (mean TP: −6.9%, mean FN: +6.8%). With ampli-
tudes of 3 mm, camera-based detection reached detection
level 3 for speeds ≥ 3.5 mm/s with F1 ≥ 95%. Amplitudes
of 4 mm resulted in detection level 1 (F1 = 100%) only
for a speed of 4.5 mm/s and detection level 3 (F1 ≥ 95%)
for all other speeds. Only movements with amplitudes
of 5 mm resulted in detection metrics similar to the results
obtained for movements in the image center. Movements with
amplitudes ≤ 2 mm were detected according to level 4
(F1 < 95%) by the camera-based system.

Experiment 3 tested for detectable minimal durations. All
settings used the highest possible speed of 8.4 mm/s, and
amplitudes ranged from 1 to 5 mm. Movements with ampli-
tudes > 3 mm/s were detected with an F1 score of 100%
by the camera-based method (detection level 1). Movements
with 3 mm amplitudes were detected according to detection
level 3 (F1 ≥ 95%) and movements with amplitudes ≤ 2 mm
were detected according to detection level 4 (F1 < 95%).
Using a speed of 8.4 mm/s and an amplitude of 3 mm resulted
in 0.35 s, which were the shortest movements detected with
a reasonable F1 score in our experiments.

Experiment 4 showed that 49.81 hours of recording the lift-
ing table, without any movement performed, resulted in only
one false annotation by the 3D system. On the other hand, our
algorithm correctly filtered 17026 noise-induced movements
using the filter described in II. F Movement Classification.

B. CLINICAL RESULTS
PSG and synchronized 3D depth and 2D videos of
44 different patients (18 female, 28 male) were recorded
overnight according to the clinical evaluation described in
III.B. Patient age ranged from 17 years to 77 years of age
(53.43± 14.5 years).Diagnoses included patients with hyper-
somnia (2), insomnia (5), narcolepsy (3), obstructive sleep
apnea (23), restless legs syndrome (5) and no specific sleep
disorder (6). In total 79.62 h (mean: 1.81 h, standard devia-
tion: 1.23 h) of sleep were analyzed.

The results revealed that a relationship between the num-
ber of 3D-detected leg movements and PSG-detected leg
movements was observable (Fig. 6). This relationship was
confirmed by Pearson’s correlation coefficient stating a corre-
lation of ρ = 0.86 between the 3D system and PSG-detected
leg movements. The 3D system found 31.2% more leg move-
ments than annotations based on PSG (total 3D: 4620, total
PSG: 3694). A total of 93.1% of PSG-annotated movements
were also detected by 3D. PSG-annotated movements where
the 3D system missed a movement comprised 6.9% of the
total PSG detections. Investigations on these missed move-
ments showed that 4.5% of completely detected PSG move-
ments (165 LM) did not show any visually recognizable
deflection in either the infrared video or the motion map.
For 1.7% (61 LM) of completely detected PSG movements,
the scorer would have scored a movement based on the
deflection in the motion map, of which 8 were also clearly
visible in the infrared video. Noise-induced but filtered anno-
tations comprised 3146 annotations in the clinical data.

FIGURE 6. Leg movement scatter plot comparing the number of
PSG-detected leg movements LMPSG(y-axis) with the number of leg
movements detected by the 3D system LM3D(x-axis) per patient. The red
line indicates the linear trend. The methods show significant correlation
ρ = 0.86.

No significant correlations between the percentage of
additionally detected 3D-leg-movement R3D/PSG values and
obtained sleep parameters were found (age: ρ = 0.06, sleep
efficiency: ρ = 0.24, arousal index: ρ = 0.07, periodic
leg movement index: ρ = 0.00, apnea-hypopnea index:
ρ = −0.03).

V. DISCUSSION
We designed and examined a new method for detecting body
movements during sleep using a 3D-TOF camera. The pro-
posed method aims to overcome several issues of currently
used methods. Namely, automated surveying of the scene
in 3D allowed all body movements to be monitored indepen-
dent of the source muscle. Therefore, the 3D system allowed
for the detection of a more complete movement spectrum
than EMGwith electrodes affixed to certain muscles or actig-
raphy with sensors affixed to certain limbs. The presented
contactless approach also aims to facilitate usage and pre-
vent interference with the patient’s natural sleep behavior
while recording. This is in line with other clinical applica-
tions of 3D-TOF cameras, which have been described in our
previous works. In these previous works we demonstrated
how to detect leg movements using TOF cameras [2] and
how to use the same method to detect rhythmic movements
in children [35]. Furthermore, previous works showed that
a 3D-TOF camera can also be used for the assessment of
respiratory efforts [27], [36].

Following we present separate discussions of experimental
results (laboratory setup) and clinical results (comparison to
the gold standard polysomnography).

The experiments in the laboratory were designed to char-
acterize movements detectable by the 3D system. We found
that for movement speeds > 4.0 mm/s and amplitudes
> 3.0 mm, movements detected by the presented method

VOLUME 8, 2020 109151



M. Gall et al.: Automated Detection of Movements During Sleep Using a 3D Time-of-Flight Camera

exactly matched those executed by the lifting table. Even
speeds as low as 3.5 mm/s and amplitudes of 3.0 mm were
detected with high sensitivity, showing an F1 score ≥ 95%.
Amplitudes < 3 mm were not reliably detected by the
camera-based system, irrespective of the movement speed.
This limit in resolution was attributed to the base noise profile
of the Kinect One v2 (supplementary material, Kinect One
noise distribution) having a standard deviation of∼1.5 mm at
the image center and increasing up to 4.0 mm at the periphery.
Thus, for a limb movement to be reliably detected, it must
exceed the amplitude of approximately 3.5 mm.

Another aim of this paper was to show that the presented
approach using a TOF camera would be sensitive enough to
detect movements relevant to sleep-related movement disor-
ders. Guidelines define the strengths of sleep-related move-
ments in terms of their duration rather than by amplitude or
speed. For example, according to the ICSD [37], relevant limb
movement durations occurring in periodic leg movements are
in the range of 0.5 to 10 s, while myoclonic jerks have the
shortest durations ranging from 50 ms to 150 ms. Using the
highest possible speed in our experiment (8.5 mm/s, limited
by the construction of the lifting table) and the smallest
detectable amplitude change of 3 mm, the shortest detectable
movement (Experiment 3) had a duration of 350 ms. This
duration is suitable for the detection of PLM but is not suffi-
cient to resolvemyoclonic jerks of shorter duration. However,
this limitation results from the lifting table not allowing for
the simulation of faster movements. It is expected that even
shorter durations can be reliably detected by the 3D system.
In detail, the convolution filter averages the 15 frames to the
left and the 15 frames to the right of the central frame to
estimate the gradient of the movement strength (window size
= 31 frames). Thus, movements longer than 0.5 s are not
affected by averaging. The filter perhaps affects movements
having a duration shorter than 0.5 s depending on whether
the movement ends in its initial position. Movements lasting
less than 0.5 s ending in their initial position might not be
recognized when having a small amplitude. Due to averaging,
this peak might not have sufficient power to elevate the
average value into detectable limits. However, movements not
ending in their initial position result in a prolonged change
in the depth map and thus cause a change in the depth
values no matter how short the duration of the movement
is. Thus, it is expected that movements independent of their
duration are recognized by the presented 3D system if their
ending position differs from their initial position. Moreover,
the delocalization of a body part or a finger by at least 3 mm
is thought to be easily exceeded during sleep. Hence, it could
be hypothesized that even myoclonic jerks could be reliably
detected using the automated 3D detection system.

The results showed that movements carried out with the
same speed of 3 mm/s but different movement amplitudes
were split into several shorter movements (MTPs). MTPs
exclusively occurred when the lifting table executed higher
amplitudes (30 mm, Experiment 1.1, 29 MTP), whereas
no MTPs occurred when executing smaller amplitudes

(5 mm, Experiment 2.1, 0 MTP). A possible explanation
is that control inaccuracies or mechanical force delays of
the motor occurred when performing prolonged movements,
leading to nonlinear movements of the lifting table.

Furthermore, the results showed differences between
movements within the image center and outer regions.
Interestingly, Experiment 1 revealed that detection scores
improved for movements made in the outer image regions,
primarily for settingswhere a high number ofMTPs occurred.
However, reliability levels did not change. These variations
could be explained by measurement uncertainties. The out-
come of experiment 2 was as expected, and movements in
the outer image regions were detected with slightly lower
sensitivity due to augmented noise levels.

The evaluation of the 3D system based on data derived
from the clinical routine showed that 93.1% of PSG-detected
leg movements were also detected by the 3D system. The
two methods showed a significant correlation of r= 0.86 (an
example video of a scene in the clinical environment where
a movement is detected by the 3D system and PSG can be
found in the supplementary materials, video 1). Even though
this result suggests a better performance than that presented in
the recently published work by Veauthier et al. [29] (72.8%
of PSG-detected leg movements were also detected by the
proposed 3D system with moderate correlation), this may
not be the case since the cohort composition differed from
the one that we used. Additionally, reported results of the
same literature were based on the detection of periodic leg
movements, while reported numbers in our work were based
on all leg movements performed.

Movements not detected by the 3D system but by PSG
accounted for 6.9% of the total PSG annotations. Visual
investigation showed that 4.5% of total PSG annotations
were not visible in the infrared video or the motion map.
Most likely, such missed movements were caused by induced
artifacts due to poor electrode contact or muscle contractions
not being accompanied by visible movements on the surface
(supplementary material, video 2). On the other hand, 1.7%
of total PSG annotations were visible in the motion map
and 0.2% were visible in the infrared video, suggesting that
movement deflection was not in the detectable limits of our
method. Notably, the motion map provided a useful tool to
better detect movements not observable by infrared video
alone.

We found that the 3D system detected 31.2% more move-
ments than PSG. Although we did not inspect all anno-
tated movements visually, Experiment 4 confirmed that
noise-induced annotations were filtered by our algorithms.
The PSG setup only detected movements activating the
electrode-attached tibialis anterior muscles, while move-
ments not activating this muscle were simply not detectable
by PSG. On the other hand, the presented method using
3D recordings allows for the detection of all movements
independent of the activating source muscle (supplementary
material, video 3 and 4). Few additional detected movements
might have resulted from the blanket moving in the leg region
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initiated by movements of other body parts. However,
the number of such false positive detections is expected to
constitute only a small portion of the data since interference
with the leg region of other body parts or full body move-
ments were excluded by manual annotations. The augmented
number of leg movements detected by the 3D system com-
pared to the number of PSG movement detections is in accor-
dance with the work of Provini et al. [38], who investigated
periodic leg movements and stated that only three-fourths
of all detected movements included activation of the tibialis
anterior muscles. In Veauthier et al. [29], a number represent-
ing movements only detected by their proposed 3D method
was not found, thus not allowing for further comparison.

This work used the static threshold thmin as the definition
of the start and stop of peaks standing out from baseline noise.
In this study, using the same threshold across recordings was
reasonable due to identical setups and similar baseline noise
levels. However, to allow for slight changes between record-
ing sites, an adaptive threshold based on the resting base-
line standard deviation would be most desirable. We chose
a thresholding approach to decide between movements and
nonmovements, as it is most similar to techniques commonly
used in the field of sleep-related movement analysis. The
standard rules for the scoring of sleep and related events
define the onset and offset of leg movements based on the
crossing of the EMG amplitude and two thresholds [33], [34].
Learning algorithms as opposed to the threshold approach
should be considered in future studies.

The best threshold thmax was determined by optimizing the
F1 score (Fig. 4). Even the best reported F1 score of 0.83 sug-
gested only moderate classification performance. However,
this score was based on all data recorded during the laboratory
experiments, even those that were not detectable movements
were executed.

Both the ground truth movements and the 3D-detected
movements were annotated continuously. Thus, annotations
might start and stop at any time. Even though discretization
of the signals into fixed epochs was previously considered,
the following points supported our decision of using contin-
uous signals. First, PSG analyses use discretization only for
the definition of sleep stages. The latest rules defining how
sleep and related events should be scored rely on continuous
signals [33], [34]. The onset and offset of leg movements
are defined by the EMG amplitude exceeding a threshold
value. Discretization would thus elongate or trim annota-
tions when compared to standard methods. Additionally, dis-
cretization would have led to an additional parameter being
necessary for evaluation. This parameter had to be used to
determine whether an epoch would be scored as positive or
negative depending on the amount of overlap with a posi-
tive/negative annotation. With the measures provided in this
study, we aimed to best represent the agreement between
methods.

The lack of evaluation of the detection limits of horizontal
movements is a limitation of this work. However, we believe
that a simulation of horizontal movements would not result

in a profound assessment of the detection limits of the
3D system due to the following considerations. Measuring
horizontal motion relies on an indirect measure of the result-
ing changes in vertical depth as the leg moves in this plane.
When objects move horizontally, the resulting depth changes
depend on the angle of the measured surface to the image
plane. The flatter the surface (small angle), the more the
object must move to evoke a detectable depth change in the
3D system. In sleep-related movement analysis, the object
most frequently measured is the blanket. The blanket covers
the moving body parts. Many factors have an impact on the
resulting surface geometries. As an example, when a body
part moves, the effect of this movement on the surface of
the blanket relies on the textile characteristics, namely, its
propensity to stretch and clinch. As a result, with regards to
the scope of this paper, the resulting surface geometry of the
blanket is too complex to be considered for simulations.

Another limitation of this work is the manual compo-
nent still required for excluding full-body movements from
the analysis. However, the required manual effort dimin-
ishes with the use of the 3D system as only detected move-
ments have to be checked for being part of full body move-
ments. Future studies should incorporate the automatic detec-
tion of such full body movements to provide more robust
results without the necessity of manual annotating full body
movements.

VI. CONCLUSION
We designed a method for the automated detection of move-
ments during sleep and evaluated its performance in terms of
the limits of movement speed and amplitude. The experimen-
tal investigation showed that within these limits, the system
exhibited sufficient sensitivity to provide a reliable detection
of sleep-related movements. There were no false positive
detections. We evaluated the performance of the method
using 3D video data obtained from the clinical routine.
We found the method to be sensitive and reliable, and the
fact that detection considers movements of all body parts
could make the presented 3D system an interesting method
for the detection of movements during sleep. By overcoming
the current issues and thus improving day-to-day movement
analysis, our approach might offer benefits for the clinical
routine in sleep diagnosis.
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