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ABSTRACT In order to ensure the normal operation of the power system, it is an essential concern for
optimizing inspection path based on limited human andmaterial resources. Despite a wide body of literatures
for path planning, however, a framework to optimize grouping and inspection path with minimum number
of inspection teams is still lacking. Given the target transmission lines and constrained work hours for each
inspector, we study the theoretical solution of the minimum number of inspection teams for task assignment.
Furthermore, we develop an improved k-means algorithm, and combine with heuristic intelligent algorithms,
such as ant colony algorithm and simulated annealing algorithm, we put forward a universal framework
for optimizing grouping and inspection path with minimum number of inspection teams. By applying our
framework to both synthetic transmission line and the real transmission lines in Jinhua city, the results
verify the theoretical solution of the minimum number of inspection teams. In addition, experimental results
demonstrate that our framework can provide quasi-optimal inspection paths and balance work hours for each
team. By comparison of the results with different algorithms, we find that the simulated annealing algorithm
works the best. Our work paves a new way to solve the vehicle routing problem, travelling salesman problem
and some other related problems.

INDEX TERMS Network science, inspection of transmission lines, optimize grouping and path, balancing
work hours.

I. INTRODUCTION
Transmission line is the backbone of power grid, where
the safe and reliable operation is crucial to national eco-
nomic development and social livelihood. For example,
subtle perturbations could cause huge losses in the power
system [1], [2]. Due to the long-term exposure of the trans-
mission line to the harsh environment of nature, it bears not
only the internal pressure of normal mechanical and elec-
tric load, but also the damage of external environment such
as lightning strike, strong wind, earthquake, bird damage.
Hence, routine inspection of transmission lines is a basic
and important work to ensure reliable power supply [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jin-Liang Wang.

At present, the inspection of the transmission line is mainly
based on the experience, and then assign a few vehicles and
inspection teams to inspect the transmission lines and pylons
one by one, resulting in some inspection teams working over-
time while others getting off work for a long time. In other
words, the work hours of each inspection team are very
uneven. Therefore, it is of great significance to provide an
effective approach for the optimal grouping and path planning
for pylon inspection with the minimum number of inspection
teams.

For the task of inspecting transmission lines and pylons,
the inspectors must travel to the target pylons before inspect-
ing. Thus, the total spending time for inspection contains
both travel time and inspection time. As some transmission
lines span mountains, rivers and other complex landforms,
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to efficiently inspect the transmission lines, unmanned aerial
vehicles (UAVs) have been used instead of human in recent
years [3]–[8]. UAVs have the characteristics of flexible oper-
ation, good expansibility and adaptability to various harsh
environments. For example, UAVs can adaptively find the
optimal flight path to avoid collision and take photos for
diagnosis. However, UAVs are always limited by the control
range and endurance of remote control, which results in that
they cannot conduct for ultra-long distance and inspect for
a long time. Meanwhile, it needs controllers to manually
control the UAVs. As the inspection task can be completed by
UAVs, in this paper, we investigate the spending time about
the optimal path by setting the inspection time as a constant.

Optimal inspection path planning refers to the shortest
distance or time of inspecting all the target pylons and
transmission lines starting from a certain location, under
the condition that each pylon can be visited only once and
the inspector(s) must return to the origin. It belongs to the
classic travelling salesman problem (TSP) or vehicle rout-
ing problem (VRP) in combinatorial optimization, and it
is NP-hard [9], [10]. There were many research methods
for optimal path planning [11], such as integer program-
ming [12], dynamic programming [13], branch and bound
algorithm [14], [15]. However, one disadvantage of exact
algorithms is that the computational complexity is too high,
which leads to inapplicability to the large-scale data. To deal
with this situation, many heuristic intelligent algorithms have
been proposed, for example, genetic algorithm [16], [17], bee
colony algorithm [18], ant colony algorithm [19], simulated
annealing algorithm [20], [21], and particle swarm algo-
rithm [22]. These heuristic intelligent algorithms have their
own advantages and disadvantages based on various con-
straint conditions. Thus, better optimization results may be
achieved by hybrid algorithms [23]–[25]. The survey ofmeth-
ods on TSP and VRP can be found in literatures [26]–[28].
In order to cope with different tasks, multi-objective opti-
mization algorithms have been developed, such as a heuris-
tic hybrid multi-objective evolutionary algorithm with local
search [29]. To further reduce the running time of the com-
puter, it is effective to divide the task into multiple sets or
clusters, and then independently optimize the path for each
set [30]–[37].

Because the large workload for one single inspection
team, it is more common to assign multiple inspection teams
to complete the task. The problem of optimal inspection
path with multiple inspection teams can be transformed into
the multiple travelling salesman problem (MTSP), which
is a generalization of the TSP. Instead of only one inspec-
tion team, each inspection team must inspect at least one
pylon, and all inspection teams start from the same loca-
tion and return to the starting point. The constraint con-
ditions are that each pylon can be visited only once and
the total distance or spending time is the minimum. The
problem is also NP-hard [38]. The above algorithms or
improved hybrid algorithm can also be used to solve the
MTSP [11], [17], [39]–[45]. For example, with the help

of k-means clustering, the path planning is carried out for
each cluster [46]–[48]. Nevertheless, due to the imbalance
workload, recently, the problem associated with balancing the
workload forMTSP has attracted increasing attention, such as
minimizing the maximum journey or balancing the number
of destinations of travel agents [49]–[51]. Comparing with
balancing the journey or the number of travel destinations,
it is fairer to balance the work time. Although Lee et al. inves-
tigated the balance of the travel time, the travel time among
each pair of destinations is linear with the distance [52].
Vandermeulen et al. studied the MTSP with balanced time
by translating the task assignment problem into the minimum
Hamiltonian partition problem [53]. Despite this innovative
work, a better way to quantify the time cost is to use real
data instead of simulated data or the cost reflected by other
types [54]. What’s more, before assigning task to each team,
the optimal inspection path should take both travel time and
inspection time into consideration.

Our goal is to minimize work hours and balance the work
hours of each inspection team with the minimum number of
inspection teams. The main contributions of our work are as
follows:
• As work hours of workday for individual is limited,
we study the theoretical solution of the minimum num-
ber of inspection teams for fulfilling the inspection task.
The theoretical solution is verified by both synthetic and
real transmission lines.

• To balance the work hours of inspection teams, we pro-
pose an improved k-means algorithm. The algorithm is
very different from k-means algorithm except for the
first step of initialization, in which the time among
each pair of pylons can’t be quantified by centroid.
The core of our algorithm is to move one pylon from
the inspection team with the maximal spending time
to the inspection team with the minimal spending time.

• Combine the proposed algorithmwith greedy algorithm,
ant colony algorithm and simulated annealing algorithm,
we put forward a framework for optimizing grouping
and inspection paths with the minimum number of
inspection teams.

• Different from others work, we study the inspection path
planning with real transmission lines. Making full use of
the longitudes and latitudes of pylons on transmission
line No. 5876 (line-5876 for short) and No. 5803 (line-
5803 for short) in Jinhua City, Zhejiang Province of
China, we excavate the travel time between each pair of
pylons with the help of the API interface of Baidu Map
and web crawler. To a great extent, the crawled travel
times from office to pylons agree well with the real ones.
What’s more, we successfully obtain the quasi-optimal
inspection paths under the balanced workload for each
inspection team by our framework.

The rest of the paper will proceed as follows. In section II,
we describe our model. In section III, we explore the theo-
retical solution of the minimum number of inspection teams,
and propose the improved k-means algorithm for balancing
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the workload of each inspection team. It is the key of the gen-
eral framework for optimizing grouping and path planning.
In section IV, the experimental analysis about grouping and
path planning on both synthetic and real transmission lines
under our framework are shown. Finally, we conclude and
discuss this paper in Section V.

FIGURE 1. (Color online) One simple example of model of optimal
grouping and path planning. (a) The optimal inspection path for single
inspection team to fulfill the task. The working time is ttra + 9tins. (b) The
optimal inspection paths for two inspection teams with balanced work
hours. The spending times are t1

spe and t2
spe for the two teams,

respectively. tdiff = |t1
spe − t2

spe|, where | · | is the absolute value of ·.

II. SYSTEM MODEL
The office (depot) and target pylons can be constructed as
a complete graph G = (V,E,T), where node set V =

{v0, v1, . . . , vN } is consist of the office (depot) v0 andN target
pylons, see Fig 1. The edge set E = {evivj = (vi, vj)|vi, vj ∈
V, i 6= j} denotes the edges among each pair of nodes.
T ∈ R(N+1)×(N+1) is the travel time matrix, where the entry
tvivj in T stands for the travel time starting from vi to vj, thus
the matrix may be not symmetric. In order to analyze our
problem, we further define the following variables:
ttra, the travel time for a single inspection team to visit all

the pylons and return to the office.
tins, the inspection time of each pylon and the transmission

line connected to the pylon, which can be completed byUAVs
and can be set to a constant. Thus, the spending time for a
single inspection team to complete the task is ttra + tinsN .
tmax, the maximum work hours for workday. Generally,

tmax is 8 hours or 28800 seconds.
trspe, the spending time of r-th inspection team, which

includes both travel time and inspection time on the pylon
set. Here r = 1, 2, . . . , k and k is the number of inspection
teams. So the spending time for each inspection team should
satisfy trspe ≤ tmax.
tdiff, the maximum difference of the spending time among

inspection teams, which can be expressed as max{tr1spe} −
min{tr2spe} with r1, r2 = 1, 2, . . . , k .
The objective is to minimize the total work hours and

balance the work hours of each inspection team, see Fig. 1,
which can be expressed by

min Z =
N∑
i=0

N∑
j=0

tvivjxvivj , (1)

Subject to
N∑
j=1

xv0vj = k (2)

N∑
i=1

xviv0 = k (3)

N∑
i=0,i 6=j

xvivj = 1, ∀j = 1, 2, . . . ,N (4)

N∑
j=0,i 6=j

xvivj = 1, ∀i = 1, 2, . . . ,N (5)

uvi − uvj + pxvivj ≤ p− 1,

∀i, j = 1, 2, . . . ,N , i 6= j (6)

1 ≤ uvi ≤ p, ∀i = 1, 2, . . . ,N (7)

trspe ≤ tmax, ∀r = 1, 2, . . . , k (8)

tdiff ≤ δ (9)

where

xvivj =

{
1, if the pylon vi precedes pylon vj on a travel
0, others

for vi, vj ∈ V and uvi = visiting rank of pylon vi in order,
∀i = 1, 2, . . . ,N , and 2 ≤ p ≤ N + 1 − k denotes the
maximum number of pylons that can be inspected by any
inspection team. The term δ is a threshold to show fairness.
For example, let us set δ to one quarter, which means the
maximum difference of work hours among all inspection
teams is less than one quarter.

Constraints (2) and (3) ensure that exactly k inspection
teams depart from and return to the office(depot). Constraint
sets (4) and (5) are the assignment constraints requiring that
each pylon should be preceded by and precedes exactly one
another pylon. Constraint sets (6) and (7) are the Miller-
Tucker-Zemlin subtour elimination constraints [12]. Con-
straints (8) and (9) are weak and are also our optimization
objectives.

Note that the optimization objective or weak constraint (9)
is from the perspective of balancing work hours, also called as
minmax. The objective (1) is to minimize the total spending
time, also called as minsum. However, there is a contradictory
between the two objectives [55], [56]. For the challenging
problem, we first use ant colony algorithm (antcol) and sim-
ulated annealing algorithm (SA) to optimize the inspection
path and calculate the spending time when assigning a single
inspection team to complete the task. Then we provide a theo-
retical solution for the minimum number of inspection teams.
At last, we explore the quasi-optimal paths with balanced
workload for inspection team by the improved clustering
algorithm.

In order to compare with antcol and SA, we also present
a greedy algorithm. The greedy algorithm is described as
follows: Assumed the current visited pylon is vi, and the pylon
set containing all the pylons that has been visited is defined
as Vc, the next pylon vj that will be selected to visit should
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satisfy the condition minvj∈V\Vc tvivj . Here V \ Vc is the pylon
set in V but not in Vc.

III. THEORETICAL ANALYSIS
In this section, we will give the framework for optimizing
grouping and path planning with the minimum number of
inspection teams.

A. THE THEORETICAL SOLUTION OF MINIMUM NUMBER
OF INSPECTION TEAMS
Theorem 1: The minimum number of inspection teams k is
the integer from Eq. (10)

k ∈ {
ttra + tinsN − tave

tmax − tave
− 1,

ttra + tinsN − tave
tmax − tave

,
ttra + tinsN − tave

tmax − tave
+ 1}, (10)

and satisfies Eq. (11) at the same time

k ≥ (ttra + tinsN )/tmax. (11)

The condition for the equality in Eq. (11) is that (ttra +
tinsN )/tmax = 1. Here ttra is the travel time of the optimal

path for a single inspection team and tave =
∑

vi∈V
(tv0vi+tviv0 )
N

is the average round-trip time from the office to each pylon.
Proof: Let’s define that the minimum number of inspec-

tion teams is k , ignoring the round-trip time of k−1 inspection
teams, we have

k ≥ (ttra + tinsN )/tmax,

where the numerator ttra + tinsN is the spending time
for a single inspection team to complete the task. There-
fore, the condition that the equal sign is established is
(ttra + tinsN )/tmax = 1.

For the round-trip time of k inspection teams, we approxi-

mately use the average round-trip time tave =
∑

vi∈V
(tv0vi+tviv0 )
N

from the office to all pylons to replace. Thus, the total spend-
ing time for all teams is ttra+N×tins+(k−1)×tave, where the
term k − 1 instead of k is because that there is one round-trip
time in ttra. Therefore, the minimum number of inspection
team should satisfy

ttra + tinsN − tave
tmax − tave

≤ k.

Then k is the smallest integer and not less than ttra+tinsN−tave
tmax−tave

.
Because the total spending time of multiple inspection teams
must be larger than that of a single inspection team to com-
plete the task, and the round-trip time here is an estimated
value, so the conditions for the minimum k should be relaxed,
which yields

k ∈ {
ttra + tinsN − tave

tmax − tave
− 1,

ttra + tinsN − tave
tmax − tave

,
ttra + tinsN − tave

tmax − tave
+ 1}.

In conclusion, the minimum k can be obtained by combining
Eq. (10) with Eq. (11).

B. THE ALGORITHM FOR OPTIMIZING GROUPING AND
PATH WITH k INSPECTION TEAMS
The last section presents the theoretical solution for the
minimum number of inspection teams, here we will give a
clustering algorithm to partition the target pylons to balance
the work hours. As the number of inspection teams is known,
so k-means algorithm can be used to offer an excellent classi-
fication [57]. But the original k-means algorithm can’t cope
with the balance situation. Although some literatures stud-
ied the balanced k-means algorithms, their attentions were
on balancing the size or some other constraints [58]–[62].
One challenging problem is that it is different between time
and space, leading to infeasibility for us to use the average
travel time in each group as the new centroid of its group.
In order to deal with this problem, here we will present the
improved k-means clustering algorithm to optimize grouping
to balance the work hours, and show the quasi-optimal path
by combining greedy algorithm, antcol and SA, respectively.
The algorithm is as follows:

1) Initialization. There are k empty sets and the total
spending time

∑k
r=1 t

r
spe is infinity. The maximum iterations

is Nmax
ite .

2) The initial classification. Select k pylons from the pylon
set V \ v0 by random, and assign the other pylons to one of the
k sets like the first step of k-means algorithm. For example,
for the unassigned pylon vi, we assign it to the pylon set vj if
tvivj is the minimum among the k pylons.
3) Computing the total spending time

∑k
r=1 t

r
spe and opti-

mizing inspection paths of each inspection team by greedy
algorithm, antcol and SA, respectively.

4) If the maximum difference of the spending time of
the inspection teams tdiff is not more than a certain value,
for example one quarter (900s), and the spending time of
each team is not more than a certain value, say max{trspe} ≤
28800s, and the total spending time

∑k
r=1 t

r
spe is smaller than

that of the last iteration. Then we replace the optimization
result of the last iteration by the current one, and go to step 7.

5) Otherwise, if one of the twoweak constraints is satisfied,
and the total spending time

∑k
r=1 t

r
spe is smaller than that of

the last iteration. Then the last optimization result is replaced
by the current one, and go to step 7.

6) If step 5 is not satisfied. If the current
∑k

r=1 t
r
spe is

smaller than that of the last classification, at the same time,
the standard deviation of trspe is smaller than that of the last
classification, then the last optimization result is replaced by
the current one.

7) Move one pylon from the pylon set with the maximum
spending time to the pylon set with the minimum spending
time, by random. Repeat the steps 3-6. This step is the key for
balancing the work hours.

8) If the maximum iterations Nmax
ite is satisfied, the current

grouping and inspection path is the final optimization result.
We also show the flow chart of the algorithm in Fig. 2.
In this paper, the maximum iterations Nmax

ite is set to
1000. For antcol, the iterations N antcol

ite and the number of
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FIGURE 2. The algorithm flow chart.

ants Nant are set to 50 and N/3, respectively. For SA, the iter-
ations NSA

ite is set to 1000, and the range of temperature is
from 1 to 100 with 1 as the temperature increment. Thus,
the computation complexity for theworst case isO((N−k)k+
Nmax
ite N (N − 1)/2), O((N − k)k +N 2NantcolN antcol

ite Nmax
ite ) and

O((N − k)k + NNSA
t NSA

ite N
max
ite ) for greedy algorithm, antcol

and SA, respectively. Here O((N − k)k) is the computation
complexity for step 2 in the algorithm, andNSA

t is the number
of different temperature in SA.

IV. EXPERIMENTAL ANALYSIS
In this section, we will apply our framework of optimal
grouping and path planning to synthetic and real transmission
lines.

A. RESULTS OF SYNTHETIC TRANSMISSION LINE
1) SINGLE INSPECTION TEAM OF SYNTHETIC
TRANSMISSION LINE
Assumed that the target pylons are uniformly distributed in
a two-dimensional plane in the range from 100 meters to

FIGURE 3. (Color online) (a-c) The quasi-optimal path planning results for
the three algorithms. Here the coordinate (0, 0) is the starting point,
namely, the office. (d) The cumulative travel time tcum

tra (s) for the
quasi-optimal inspection paths of each step for the three algorithms. The
number of pylons N is 50 and the coordinates of the pylons are randomly
scattered in the range [100m, 5000m], the velocity is set to 1m/s.

5000 meters, and the office is at coordinate (x = 0, y = 0).
Without loss of generality, let’s define the velocity as a con-
stant, say 1m/s, which indicates that the Euclidean distance
among each pair of nodes, taking vi and vj for instance, quan-
tifies the corresponding travel time tvivj . Figure 3 (a-c) show
the optimization result of inspection paths under greedy algo-
rithm, antcol, and SA, respectively. As the inspection time
of each pylon and the corresponding transmission line con-
nected to the pylon, tins, is assumed to be equal, in Fig. 3 (d),
we present the cumulative travel times tcumtra of each inspection
step on quasi-optimal inspection paths with the three algo-
rithms. We can see that the greedy algorithm performs well
at the beginning, but SA takes the shortest time in the end,
followed by antcol. Besides, from Fig. 3 (a-c), we can find
that the path for greedy algorithm is a bit confused, while
the one of SA is regular and orderly. The travel times ttra of
visiting all the pylons by the three algorithms are 34798s,
32512s and 31839s, respectively. Assumed that tins is 600s,
then the total spending times for this task is 64798s, 62512s
and 61839s, respectively. Normally, the work time for each
person is about 28800s one day, so it is necessary to assign
this task to multiple inspection teams.

2) OPTIMIZE GROUPING AND PATH PLANNING OF
SYNTHETIC TRANSMISSION LINE
Here we study the grouping and path planning of the last
example with our framework. Because of the symmetry of
the matrix T in this example, the average travel time tave
from office to each pylon is

2
∑

vi∈V
tv0vi

N = 7768.12s. With
Eq. (10), the minimum number of inspection teams is one of
the values in {2, 3, 4}. With Eq. (11), the minimum number of
inspection teams satisfies k > 2 for all the three algorithms.
Therefore, the optimal value of k is 3 or 4 by combining
Eqs. (10) with (11).
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FIGURE 4. (Color online) (a-c) The quasi-optimal inspection paths and
(d) the total spending times t r

spe for each inspection team under the three
algorithms. The coordination (0, 0) stands for the office, and the value of
k is 3. The difference of the maximum and minimum spending time for
inspection teams satisfies tdiff ≤ 900s. The red line is the upper bound of
the spending time for each inspection team, and the black line is only
used for comparison.

The quasi-optimal inspection paths and the total spending
times for each team by the three algorithms are shown
in Fig. 4. We find that when k equals to 3, the total spending
time for each inspection team does not exceed 28800s, and
the workload of each team is well balanced. From Fig. 4 (d),
it can be seen that SA performs the best, and antcol is the
second, and greedy algorithm is the worst. The spending time
of the three algorithms (greedy, antcol, SA) for each team are
{27748s, 27790s, 28145s}, {26824s, 27866s, 27951s} and
{26407s, 27243s, 27272s}, respectively. It takes more 2760s
for greedy algorithm comparing with SA, and more 1719s for
antcol comparing with SA.

B. RESULTS OF REAL TRANSMISSION LINES
In this section, we test our framework to real transmission
lines. Nevertheless, the incomplete data prevents us from
using the framework immediately. Thus, one key of this
section is to mining the necessary data.

1) ANALYSIS OF REAL DATA
The real data contains the following details:

(i) Longitudes and latitudes of all pylons and office in
Jinhua City, Zhejiang Province.

(ii) Longitudes and latitudes of drop off points of each
pylon.

(iii) The driving times tdv0vi from the office to drop off points
of each pylon.

The optimal path should start from the office, after inspect-
ing all the target pylons and transmission lines, and finally
return to the origin, as shown in Fig. 5. Therefore, apart from
the driving times from office to the drop-off points of pylons,
we need the following data:

FIGURE 5. (Color online) A schematic diagram of one office and two
pylons. The term td

v0vi
is the driving time from vi to vj . t

wup
vi

stands for the

walking time from the drop-off point to the pylon vi . t
wdown
vi

represents
the walking time from vi to the picking up point of the next destination.

(i) The walking time t
wup
vi from the drop-off point to the

pylon vi.
(ii) The walking time twdown

vi from the pylon vi to the picking
up point of the next destination.

(iii) The driving time tdv0vi among each pair of pylons.
The t

wup
vi and twdown

vi may be different, which can be obtained
by mobile devices when going to inspect the pylons, but it
is impractical to collect the driving times tdv0vi by driving
along the paths for each pair of pylons. However, we have
an alternative method. Given the longitudes and latitudes of
all pylons and office, we use the API interface of Baidu
Map and web crawler to excavate t

wup
vi , twdown

vi and tdv0vi . Thus
we can obtain travel times tdv0vi + t

wup
vi from the office to

each pylon and travel times between each pair of pylons
twdown
vi + tdv0vi + t

wup
vi , so the travel time matrix T is available.

FIGURE 6. (Color online) Maps of the paths from the drop-off points to
the pylons with three different sites in the line-5876.

To test our method, in this paper two transmission lines,
the line-5876 and line-5803, are selected by random. Note
that some pylons are on the road that vehicle can reach
directly, so the walking time is 0s. For example, pylon 3 on
the line-5876 in Fig. 6. Besides, there is another case that
the pylon is on a mountain, such that it takes long time
for walking even though the straight distance is short. For
example, pylon 11 on the line-5876 in Fig. 6, there are no
routes outlined on the map. The straight distance from the
drop-off point to pylon 11 is only about 600m, however,
it takes 2300s for walking. Pylon 40 on the line-5876 is a
normal case. The distance of the path is 179m, and it takes
153s for walking.
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FIGURE 7. (Color online) The coordinates of the transmission lines,
the line-5876 and line-5803. Only the first two pylons and the last two
pylons, as well as the location of office, are marked.

Figure 7 shows the projection of the longitudes and lati-
tudes of all pylons on the two transmission lines into x and y
coordinates. The x and y coordinates here are the result from
Miller cylindrical projection [63]. For example, the longitude
and latitude of the office is (119.705681, 29.133654) and the
projected coordinate is (x = 33379472m, y = 7743785m).

FIGURE 8. Comparison of real driving time t
v0vi
d and the one from

crawled data for two transmission lines.

As we only have the real driving time tv0vid from the office
to the drop-off point of each pylon, we should explore the
reliability of the crawled data from our method. From Fig. 8,
we can find that the real data is some larger than the crawled
data, and the difference is about 198.5s and 236.7s on the
average for the two transmission lines, respectively. To a
great extend, the crawled data are coincided with the real
data. Therefore, we can approximately use the crawled data
to replace the lack of real data, and then use the framework to
show the optimization result of grouping and path planning.

2) SINGLE INSPECTION TEAM FOR REAL
TRANSMISSION LINES
Firstly, we analyze the case that the task is assigned to a single
inspection team. In Fig. 7, we can see that the pylons are close
to each other, so it is not convenient to present the inspection
trajectory as Fig. 3. Here we present it in an alternative way,
as shown in Fig. 9, which contains the results of quasi-optimal
path and the cumulative travel times tcumtra of each inspection
step under three algorithms for the line-5876 and line-5803.
The results in Fig. 9 indicate that the SA algorithm is the best,
and the greedy algorithm is the worst, which is similar to the
result of Fig. 3.

In Fig. 10, we further study the fluctuation of the travel time
for the three algorithms. It can be found that SA has the best

FIGURE 9. (Color online) (a, c) Quasi-optimal inspection paths under the
three algorithms. (b, d) The cumulative travel times tcum

tra of each
inspection step under the three algorithms. (a, b) The results for the
line-5876. (c, d) The results for the line-5803.

performance and little fluctuation. The antcol has a greater
fluctuation and the greedy algorithm works the worst.

FIGURE 10. (Color online) The total travel time of the two power
transmission lines under the three algorithms with 20 independent
simulations.

3) OPTIMIZE GROUPING AND PATH PLANNING OF REAL
TRANSMISSION LINES
In this section, we verify the theory of minimum number of
inspection teams and give the optimization result of grouping
and path planning for the two transmission lines. For the line-
5876, the average of travel time ttra for the three methods
is 77419s, 74926.25s and 70475.7s, respectively, as shown
in Fig. 10. The average travel time tave from the office to each
pylon is 5668.64s and N is 48. From Eq. (10), the optimal
value of k is in the set {3, 4, 5}. By using Eq. (11), we have
(ttra + 600N )/28800 > 3. Thus, the optimal value is 4 or 5.
For the line-5803, the travel time ttra for the three methods is
39828s, 37313.5s and 34626.65s, respectively. The value of
tave is 6712.8s andN is 72. Combining Eq. (10) with Eq. (11),
the optimal k is in the set {3, 4, 5}.

Figure 11 shows that when k equals to 4, the spending
time trspe for each team is about 30000s, which exceeds the
upper bound 28800s. When k is 5, trspe for each team is about
25000s. Thus, the optimal k is 5. For the line-5803, it is found
that when k equals to 3, trspe for each team is about 35000s,
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FIGURE 11. (Color online) (a, b) The spending times t r
spe of each team

under the three algorithms when the number of inspection teams is
4 and 5 for the line-5876, respectively. (c, d) The spending times t r

spe of
each team under the three algorithms when the number of inspection
teams is 3 and 4 for the line-5803, respectively. Here the inspection time
tins for each pylon and the corresponding transmission line is 600s.

which is far more than 28800s. When k equals to 4, trspe for
each team is about from 25500s to 27500s, and it satisfies all
the constraint conditions. When k equals to 5, trspe for each
team is about 24000s, resulting in wasting human resources,
so the optimization result of the line-5803 for k = 5 is not
presented in the paper. Thus, for the line-5803, the optimal
number of inspection teams is 4. Furthermore, we find that
the workload of inspection teams are well balanced, and SA
has the best performance. An interesting result is that the
spending time for antcol and greedy algorithm is nearly the
same.

FIGURE 12. (Color online) The quasi-optimal inspection paths of each
inspection team for the two transmission lines under the three
algorithms. (a-c) Greedy, antcol and SA algorithms for the line-5876.
(d-f) Greedy, antcol and SA algorithms for the line-5803.

In Fig. 12, we show the optimization result of inspection
paths for each team under the three algorithms, respectively.
It can be seen that, for the line-5876, there are two inspec-
tion teams only visit one or two pylons. The reason is that

pylon 19 and 20 are on the mountain, and the straight distance
from the drop-off point to pylon 19 or 20 is about 1200m.
On the map there aren’t any roads to the pylons, and it
takes about 9300 seconds for walking, which is similar to
the case of pylon 11 in Fig. 6. However, for the line-5803,
the number of pylons in each team is relatively balanced,
which is between 13 and 24.

Finally, we study the time consuming for convergence to
the quasi-optimal result under the three algorithms. From
Fig. 13, we can find that the greedy algorithm is the fastest,
and the running time is about 0.05s. SA is the slowest, but it
only needs several hundred seconds. For this optimal prob-
lem, we can also solve it with the help of Google OR-Tools
or Concorde TSP solver. In conclusion, it is efficient of our
framework for optimal grouping and path planning with the
minimum number of inspection teams.

FIGURE 13. (Color online) The running time (seconds) of the three
algorithms which is implemented by Python program language and
running on a 3.6 GHz workstation with 8GB of RAM, Intel(R) Core(TM)
i7-7700 CPU. The number of inspection teams is 5 and 4 for the
line-5876 and line-5803, respectively. The horizontal ordinate represents
the iteration times of convergence to the optimal result.

V. CONCLUSION
Task assignment and optimal path has practical applica-
tions. However, with constrained work hours, there are few
researches on the optimal inspection path for the following
objectives: (i) The minimum number of inspection teams.
(ii) Balancing the work hours of inspection teams. (iii) The
minimum work hours. In this paper, we have proposed a gen-
eral framework for optimizing grouping and path planning
with the minimum number of inspection teams, by taking into
account both travel time and inspection time. The framework
is composed of an improved k-means algorithm and intelli-
gence algorithms. At first, we analyze the case of synthetic
transmission line. Furthermore, we explore two real power
transmission lines in Jinhua, one city in Zhejiang province,
China. With the longitudes and latitudes of pylons and the
drop-off points of pylons, the travel time is obtained by the
API interface of Baidu Map and web crawler. The results
on both synthetic and real transmission lines have suggested
that the minimum number of inspection teams is agreed well
with our theory. Besides, the work hours are well balanced.
In addition, comparing with greedy algorithm and ant colony
algorithm, the simulated annealing algorithm performs the
best.
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In this paper, we estimated theminimum number of inspec-
tion teams based on the average round-trip time. Except
for some optimal methods we mentioned, there are several
general approaches can be used to optimize the number of
vehicles, which can be referred for optimizing the number of
inspection teams [64], such as greedy algorithm [65], inte-
ger programming [66], lagrangian Relaxation Method [67].
We assume that inspection time tins of each pylon and the
corresponding transmission line is the same, which can be
replaced by heterogeneous inspection time. This paper pro-
posed a general framework for the optimal grouping and
path planning. For step 3 in our algorithm for optimizing
path, some other approaches can also be introduced, such
as hybrid algorithms [68], [69] and neural network algo-
rithm [70], which may present a better performance. Besides,
the question about how to balance the workload andminimize
the consumption of vehicle fuel to reduce environmental
pollution is worthy of further exploration.
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