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ABSTRACT We propose in this paper a new formulation for the stability of the Traveling Salesman
Problem (TSP) compared with its probabilistic version, the Probabilistic Traveling Salesman Problem
(PTSP). It is a real extension of the TSP, where the number of customers to be served each time is a random
variable. That is only a subset of customers will need its services, moreover this subset varies from day to
day. From the literature, several methods of resolution of the TSP have been proposed. In order to use these
methods as they are for the PTSP came the idea of the study of stability. It is interested in finding cases where
the solution for the TSP is also for the PTSP. First we survey and comment a number of easy TSPs. We also
present via the notion of ‘‘Master tour’’ the stable problems in the TSP-PTSP context. An exact Branch and
Bound is used for recognizing the TSPs that are not stable. Finally, we propose a new modification method,
-different from the usual method of PTSP-, called the method of Taxi Driver, it takes the structure of the tour
into consideration.

INDEX TERMS Stability, PTSP, exact algorithm, taxi driver strategy.

I. INTRODUCTION
The probabilistic traveling salesman problem PTSP is a gen-
eralization of the classical traveling salesman problem TSP
and one of the most important stochastic routing problems,
whose formulation explicitly contains probabilistic elements.
Several motivations have led researchers to take an interest
in studying the effects of the introduction of probabilistic
elements into TSP. The most evoked are, first the ability to
design and evaluate models that are more appropriate to real
problems. Second, the possibility of evaluating the stability of
optimal deterministic problems solutions when the instances
of problem are disrupted by the absence of certain data. The
first work on the PTSP study was initiated by Jaillet [29].
It has been used to model many practical applications since
its introduction [7], [8], [11], [21], [31].

The resolution of the PTSP by exact algorithm has proven
hard due to the hardness of the problem. A very limited num-
ber of works has been devoted to exact methods such as the
branch and cut algorithm [33], Branch and Bound algorithm
[3], [10], [46]. The PTSP is NP-Hard problem, therefore a
number of heuristic and meta-heuristic algorithms have been
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developed in order to find a suboptimal solutions such as the
local search heuristics 2-p-Opt and 1-Shift [12], [13], 3-opt
algorithm and some combinations with the last two were
investigated in [39]. Several metaheuristic algorithms were
proposed such as the simulated annealing [6], [17], ant colony
algorithm ACA [13], [14], genetic algorithm [37], [38] and
other hybrid methods [5], [36], [40], [51].

In the deterministic version, the problem is defined on a
graph G = (V ,E, n), of n nodes (customers) whose arcs are
valued. Consider a matrix Dst of distances between nodes of
the graph. In the probabilistic version PTSP, a demand at each
time occurs a distribution of probabilities P on the set of all
the subsets of V ( i.e. each instance ξ ⊆ V has a probability
of occurrences P(ξ )) [29]. The first idea coming to mind for
process this probabilistic version consists in optimally solv-
ing the various potential realizations, namely the customers,
who have a request for a given day. This approach is called
‘‘re-optimization strategy’’ [29]. The average cost obtained
under the re-optimization strategy is defined by the
equation 1.

E(Longopt ) =
2n∑
i=1

P(ξi)Longopt (ξi) (1)
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where Longopt (ξ ) is the cost of optimal solution of problem
through the subset of customers ξ ,V is the set of all customers
and P(ξ ) is the probability of presence of the ξ .
This strategy is certainly optimal but it presents several dis-

advantages. Indeed, we should individually solve 2n NP-Hard
problems, which is impossible even with high performance
resources. In addition, for many applications, it is neces-
sary to obtain a solution to each realization in real time.
It is therefore necessary to adopt another resolution strategy
which takes into account the variations in the initial instance
and which is less expensive in terms of calculations than
the re-optimization strategy. This strategy is called ‘‘a priori
strategy’’ [29].

Consider an a priori tour 0 across the n nodes of V
and for each subset of customers ξ , the method of modi-
fication µ to generate a solution through ξ . It consists in
‘‘skipping’’ the absent customers from the a priori tour 0.
Let Long(0,µ) be the real random variable which will assign
a given instance ξ ⊆ V to its induced length from a priori
tour 0 −Long(0,µ)(ξ )− using the skipping method µ. The
PTSP solution consists of searching an a priori tour0∗ which
minimizes the expected cost of Long(0,µ) ( [6], [29]). Then,
the PTSP is expressed as follows according to the equation 2.

min
0
E(Long(0,µ)) (2)

with

E(Long(0,µ)) =
2n∑
i=1

P(ξi)Long(0,µ)(ξi) (3)

Jaillet [29] proposed an approach to calculate the exact
value of E(Long(0,µ)) (equation 3) with O(n2) time. We are
concerned here with homogeneous version, it is presented as
follows.

Let dst (i, j) be a distance between the customers i, j, and
p = P(i) = P(j) ∀i, j ∈ 0, q = 1 − p, the expected cost is
then equal to

E(Long0) = p2
n−2∑
r=0

qr
n∑
i=1

dst (i, 0r (i)) (4)

0r (i) denotes the successor r of i in the a priori tour 0.
The figure 1 illustrates the principle of the a priori strat-

egy. Indeed, the figure 1(a) represents the a priori solution
that assumes all nodes (A,B,C,D,E,F) are present, the
figure 1(b) represents the solution after applying the modi-
fication method, which consists in skipping of the a priori
solution the absent nodes (C and F) in order to obtain a
solution restricted to the present data.

In the literature the notion of stability was approached
in the combinatorial optimization problems COPs according
to different aspects and for each problem separately. The
objective is to extract the relationship between a solution of
a given COP and its parameters when some data is absent
or unavailable. Indeed, several research focussed on the
study of stable problems compared with probabilistic version.

FIGURE 1. An a priori tour through 6 customers (a), and the sub-tour
solution when the customers C, F are absent, utilizing modification
method µ, by keeping the same order (b).

Here, we refer to Boria et al. [15], who has interested to
the stability in the probabilistic Minimum Spanning Tree
Problems for complete graph. In [16] Bouyahia et al. studied
the stability in the Probabilistic Scheduling Problems.

Our aim is to propose a formulation of the stability of
TSP compared with PTSP. In order to conduct it, we carry
out an overview of the different easy TSPs. Then, we ded-
icate two techniques, the search for a tour guaranteeing the
stability ‘‘master tour’’ [43], [44] and a branch and bound
algorithm developed in [3]. The rest of the paper has the
following structure. In the next section we explain the notion
of stability. In section 3 we present an overview of easy
TSP. Section 4 introduces unstable TSP under the skipping
method. The stable TSP under the skipping method will be
also proposed in Section 5. Section 6 introduces small stable
TSP under the method of Taxi Driver. Finally, Section 7
concludes the paper.

II. NOTION OF STABILITY UNDER TSP
In this section, we begin by giving our definition of the
concept of stability. We then discuss the problem of stability
as described in the literature. Finally, we unveil the link that
exists between the concept of stability and that of the Master
tour. Another challenge is to examine the stability of the
initial problem. The optimal solution of it can be reconsidered
despite the data perturbations of problem.

A. DEFINITION OF STABILITY
For the PTSP one defines the stability such that: one says
that the PTSP is stable if the random variable associated with
the strategy of re-optimization and this one of the a priori
strategy have the same real value. More formally, let µ be a
modification method for the PTSP, Longopt (ξ ) be the optimal
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length through the instance ξ , the stability can be formulated
as follows.
Definition 1: The TSP is called µ-stable if there exists

a solution 0∗ whose random variable of the a priori strat-
egy according to µ is equal to the random variable of the
re-optimization strategy.

Long(0∗,µ)(ξ ) = Longopt (ξ ) ∀ξ ⊂ {0, . . . , n} (5)

Based on the the article of Gabrel et al. [27], we start
and situate this concept of stability. Two aspects of stability
are identified. The first is when uncertainty influences the
feasibility of a solution, then a robust optimization consists
in searching for a solution that will be feasible for each
considered realization. The second is when the uncertainty
influences the optimality of solutions, and then in this case
the robust optimization consist of obtaining a ‘‘suboptimal’’
solution valid for each realization of initial problem. In light
of these elements, we want to improve the concept of stability
and we designed our own mathematical definition. Other
forms of ‘‘stabilities’’ have been mentioned, for example,
Montemanni et al. [42] which is an extension of the TSP.
However, when we compared our concept of stability, we find
a concept called ‘‘Master tour’’ [18]. It happens to be almost
identical to our vision of stability in certain cases.

B. MASTER TOUR
We mean by the stability the fact that the optimality remains
unchanged even if some data of the problem is random.
Indeed, a PTSP is stable if the random variables associated
with both re-optimization and a priori strategies have the
same real value, hence the need of the Master Tour.
Definition 2 [18]: A tour M0, for a set V of customers

called a master tour if it checks next property. For all ξ ⊂ V ,
the optimal tour for ξ is obtained by skipping in the tour 0
the absent customers.

The problem of the master tour is to see if V has a Master
tour or not. This problem has been formulated for the first
time by Papadimitriou [43], [44] and the research work on
this axis remains very limited. We present the theorem that
characterizes the stability for symmetric matrices.
Theorem 1 [See [18]]: For a symmetric matrixM = (mi,j)

of dimension n × n the tour (1, 2, . . . , n − 1, n) represents a
master tour if and only if the matrixM is a Kalmansonmatrix.

III. LITERATURE REVIEW OF EASY TSP
Here, we present a literature review of easy TSP. In this
sectionM denotes the distance matrix. We begin by recalling
the TSP framework. The TSP is a famous standard NP-Hard
problem. Formally, the TSP can be presented as follows.
Consider a graph (V ,E,M , n) where V is the set of nodes
(V = {1, . . . , n}), E denotes the set of edges andM = (mu,v)
the edge costs (M = (muv)1≤u,v≤n where muv is the distance
between the customers u and v). The problem consists in
searching a minimal length tour T = (t1, t2, . . . ., tn) across
a given number n of customers [24], [26] as shown in

equation 6.

min
T

((
n−1∑
i=1

mti,ti+1 )+ mtn,t1 ) (6)

The TSP is an NP-Hard problem, however the pyramidal tour
offers several easy cases. Indeed, the notion of pyramidal
tour is very interesting. Let us first define this concept.
A pyramidal tour through n customers, consists of visiting
a sequence of customers of increasing indices until the city n.
Then to visit the remaining customers in descending order of
indices. Finally to return to the first city of the cycle. The
interest of such a tour reside in the following two points.
The first is that the determination of the minimum cost of the
pyramidal tours it can be calculated in O

(
n2
)
time, whereas

the total number of pyramidal tours of size n customers
is exponential as a function of n. Therefore, the pyramidal
tours are a subset of the cyclic permutations on which we
aim to optimize it in real time. The second is that there are
certain structures on cost matrices that assure the existence
of an optimal pyramidal tour. In this case (ie where the cost
matrix has these combinatorial structures), the TSP consists
of finding the shortest pyramidal tour in polynomial time.

The TSP limited to the class ofM is said to be pyramidally
solvable if the matrix M admits an optimal pyramidal tour.
Since the 1970s, several pyramidal TSP have been studied.
In this section we examine typical examples on this subject.
Indeed, they are special type of matrices of which its struc-
tures ensures the existence of an optimal pyramidal tour.
• Monge matrices
• Supnick matrices
• Demidenko matrices
• Kalmanson matrices
• Van der Veen matrices
• Matrices of ‘‘general distribution’’.
Before examining these classes of matrices, we expose a

fundamental result which is at the origin of the success of
pyramidal TSP.
Theorem 2 [See [32]]: The problem of finding an optimal

pyramidal tour with respect toM , can be solved in complexity
equals O

(
n2
)
time, and that is for any distance matrix M of

dimension n× n.
The first paper that addressed the pyramidal tours in the

notion of TSP was that of Aizenshtat and Kravchuk [2].
It researched the TSP on ‘‘ordered product matrices’’ which
have the general term.
M = (mu,v) = (πu · σv) where 0 ≤ π1 ≤ π2 ≤ . . . ≤ πn

and σ1 ≥ σ2 ≥ . . . σn ≥ σ0.
Later, it turned out that this type of matrix was a sub-case

of the Monge matrices [22]. A matrixM of dimension n× n
represents a Monge matrix if it checks.

muv+mps≤mus+mrv for all 1≤u<r≤n, 1 ≤ v < s ≤ n.

Lawler et al. [34] note the matrices that verify this last
property, matrices of distribution, that indicates the construc-
tion of these matrices from certain non-negative matrices
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called density matrices. The name ‘‘MongeMatrix’’ has been
invented by Hoffman [28] who generalizes a suggestionmade
by Monge [41]. For more information on the matrices of
Monge (see the article of Burkard et al. [19]).

We present here the result of Aizenshtat and Kravchuk [2].
It is explicitly contained in the theorem 3.
Theorem 3 [See Lawler et al. [34]]: Let M be a Monge

matrix, there is certainly an optimal pyramidal tour.
We also present the result of Park [45] that exhibited that

the TSP on the Monge matrices is solvable in a complexity
of O(n). Indeed, in [45] the authors managed to accelerate
the dynamic program of Klyaus based on research techniques
treated by Aggarwal et al. [1], then later by Eppstein [25].
We recall that our goal in this section is to present easy cases
of TSP, precisely the class of ‘‘Pyramidal TSP’’, where we
already introduced ‘‘Monge matrices’’. The second case that
we present is that of ‘‘Van der Veen matrices’’. It is a sym-
metric matrix, so for the clarity of our report we divide our
inspection of these particular cases into two parts, symmetric
matrices and asymmetric matrices.

A. THE SYMMETRIC CASE
We review in the first part the ‘‘Van der Veen matrix’’. It is
defined as follows [50], a Van der Veen matrix is a symmetric
matrix M of dimension n ∗ n that checks.

muv + mv+1,l ≤ mul + mv,v+1
for all1 ≤ u < v � v+ 1 � l ≤ n.

A theorem is similar to that of Monge matrix is given as
follows.
Theorem 4 [See [50]]: The TSP on the Van der Veen

matrices is pyramidally solvable.
The third pyramidal TSP is called TSP on symmetric

Demidenko matrices that are a class of symmetric Monge
matrices.

Let M be a symmetric matrix of dimension n ∗ n. M is a
Demidenko matrix if it satisfies.

muv + mv+1,l ≤ mu,v+1 + mv,l
for all 1 ≤ u < v � v+ 1 � l ≤ n.

From this inequations, there is no order relationship
between the Van der Veen matrices class and the symmet-
ric Demidenko matrices class. In addition, by definition,
the symmetric Demidenko matrices themselves are included
in a general class, namely the class of asymmetric Demidenko
matrices. A similar theorem is formulated as follows.
Theorem 5 [See [48]]: The TSP on symmetric matrices of

Demidenko is pyramidally solvable.
We continuewith the fourth special case, Supnickmatrices.
Let n ∗ n M be a symmetric matrix. It is called a Supnick

matrix if

muv + mv+1,l ≤ cu,v+1 + mv,l ≤ mul + cv,v+1
for all 1 ≤ u < v � v+ 1 � l ≤ n.

In the [48] the authors are shown, for an arbitrary diagonal,
a Supnick matrices is a subclass of symmetric Monge matri-
ces. In addition, it is also subclass of Van der Veen matrices.
It follows that the TSP restricted to Supnick matrices is
pyramidally solvable. The result is shown in the theorem 6.
Theorem 6 [See [47]]: The tour (1, 3, 5, 7, . . . , 6, 4, 2). is

a solution of minimal length of TSP on the Supnick matrices.
The fifth and last case, we expose a type of matrix called

Kalmanson matrices.
LetM be a symmetric matrix of dimension n∗n. It is called

a matrix Kalmanson if it satisfies the inequalities:

muv + mkl ≤ muk + cvl for all 1 ≤ u < v � k � l ≤ n.

mul + mvk ≤ muk + mvl for all 1 ≤ u < v � k � l ≤ n.

From the results presented in [48], the Kalmanson matrices
are a subclass of the symmetric Demidenko matrices. Finally,
we give the theorem relating to this class of matrices.
Theorem 7 [See [30]]: The tour (1, 2, . . . , n − 1, n). is a

solution of the TSP on the Kalmanson matrices.
In the next section, we review the asymmetric cases of the

pyramidal TSP, as we have already done for the symmetric
case.

B. THE ASYMMETRIC CASE
Many types of asymmetric matrices have been studied in
scientific literature. In this section, we review two very spe-
cific classes. The class of Demidenko matrices and the class
of generalized distribution matrices. We present here some
pyramidally solvable cases of these two classes of matrices.

The first case that we approach is that of generalized
distribution matrices.

A generalized distribution matrix is a n ∗ n matrix M
of type (*) (respectively of type(**), (***), (***)) if the
following condition is verified.
muv + mkp + mpq ≤ mup + mpv + mkq for all u, v, k, p,

q ∈ S∗ (respectively S∗∗, S∗∗∗, S∗∗∗∗) where

S∗ = {u, v, k, p, q ∈ {1, . . . , n} :

u, v, k < p < q, u 6= v, u 6= k}

S∗∗ = {u, v, k, p, q ∈ {1, . . . , n} :

u, v, q < p < k, u 6= v, v 6= q}

S∗∗∗ = {u, v, k, p, q ∈ {1, . . . , n} :

k < p < u, v, q, u 6= v, v 6= q}

S∗∗∗∗ = {u, v, k, p, q ∈ {1, . . . , n} :

q < p < u, v, k, u 6= v, u 6= k}

In [20] the authors demonstrated that these four classes
of generalized distribution matrices include the Monge
matrices.
Theorem 8 [See [20]: The TSP on generalized distribution

matrices of type (*) (respectively of type (**), (***) and
(****) ) is pyramidally solvable.

The second case is the Demidenko matrices class.
A matrix M of dimension n ∗ n is called Demidenko if the
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four conditions are met. For all u, v, l ∈ {1, . . . , n} and
u < v � v+ 1 � l we have:

1) muv + mvv+1 + mv+1,l ≤ muv+1 + mv+1v + mvl
2) muv + mv+1v + ml,v+1 ≤ mv+1u + mvv+1 + mlv
3) muv + ml,v+1 ≤ muv+1 + mlv
4) muv + mv+1,l ≤ mv+1u + mvl

Demidenko matrix is the subject of the next theorem.
Theorem 9 [See [23]]: The TSP on the Demidenko matri-

ces is pyramidally solvable.
There are a significant number of articles in the literature

that were discovered many pyramidally solvable TSP. These
results are summarized in the paper of Demidenko [23].
In fact, these classes detected are only subclasses of the class
of Demidenko matrices. We cite as example, special class.
A matrixM of dimension n ∗ n is called Klyaus matrix if we
have, for all i < j � k

• muv + muv ≥ 0
• muv + mvk ≤ muk
• muv + mkv ≤ mku

Finally we can refer to the articles Van der Veen et al. [49]
and Baki and Kabadi [4], for more results on pyramidally
solvable TSP.

C. OTHER EASY TSPs
This list of TSP, is collected in the article [18], composed of
non-pyramidal TSPs that have been proven easy. We start by
introducing the product matrices.
Let M be a matrix of dimension n ∗ n. M is a product

matrix if for any two vectors u1 and u2 ofRn we have mu,v =
u1u ∗ u2v. The TSP restricted on symmetric product matrices
has been proven easy [18]. The second TSP that we cite from
this list is the TSP on the Brownian matrix. A matrix M of
dimension n ∗ n is Brownian matrix if the vectors u1 and u2
verifies:

mu,v =

{
u1u if u < v,
u2v else.

IV. UNSTABLE TSP UNDER THE SKIPPING METHOD
This section reflects the originality of our work.We have tried
to obtain ‘‘counter examples’’ via an exact Branch and Bound
algorithm. So we present here, the different TSP detected
unstable.

A. PROBABILISTIC BRANCH AND BOUND ALGORITHM
The Branch and Bound algorithm that we use here was pro-
posed by Amar et al. [3]. It consist in dividing the initial
problem into smaller subproblems based on a lower bound
associated with root of problem. This lower bound is based
on the expected length (equation 4) of a tour that introduced
by Jaillet [29].
Let M be the distance matrix between the customers 1, 2,

3 and 4.

TABLE 1. Matrix example.

The lower bound is calculated in equation 7

Ep−BoundR = EBoundTSP(n)(p2
n−2∑
r=0

qr )

= EBoundTSP(n)p(1− qn−1) (7)

with EBoundTSP(n) =
∑n

i=1minRi +
∑n

j=1minCj
Ri is the ith row and Mi is the jth column.
Then the same article proposed the two evaluations which

are represented by Ep−Bound12 and Ep−Bound12:
1) Choose the edge 12:

Ep−Bound12=Ep−BoundR+p2
n−2∑
r=1

qr [min(r)X 6=1d(1,X )]

+ p2EBoundTSPNext (8)

with EBoundTSPNext is the evaluation of TSP.
2) Not choose the edge 12:

Ep−Bound12 = Ep−BoundR + p2[min(1)K 6=2d(1,K )

+min(1)K 6=1(d(K , 2))]

+ p2
n−2∑
r=2

qr [min(r)X 6=Kd(1,X )

+min(r)X 6=2d(K ,X )] (9)

Ep−Bound12 is the probabilistic penalty cost of 12,
min(i)d(1,X ) is the ith minimum of row 1, n is the
number of customers.

These evaluations are represented on the distance matrix
MEvaluations.

TABLE 2. Probabilistic penalties.

If these two bounds are equal, then an optimal solution is
found, and we stop there. Otherwise, the set of solutions is
divided into two or more sub-problems, according to these
two probabilistic evaluationsEp−Bound12 andEp−Bound12. The
method is then applied recursively to these sub-problems by
generating a tree structure as shown in figure 2.

First, this algorithm allows us to carry out the relation-
ship between the TSP and its probabilistic version PTSP.
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FIGURE 2. Tree for the PTSP.

We selected from literature a bound introduced by Jaillet [29].

ELong0PTSP − ELong0TSP
E0TSP

≤
1− p
p2

(10)

where ELong0PTSP represented the expected length of optimal
tour for PTSP and ELong0TSP expected length of optimal tour
for TSP.

We propose in this section numerical results. Experimen-
tally, for each size n varying from 4 to 10, we generate
a matrix of order n which represents the distances matrix
between the customers. Then for each value of probability p
from 0,1 to 1 with an interval of 0,1 the optimal expected
length of tour is calculated. We seek an optimal solution and
its expected length, the results are represented in the Table 3.

The Table 3 clearly shows that the limit of Jaillet [29] has
been verified. For a low probability we have no idea about
the relationship between the two versions. But if p ∈ [0.9.1],
in the majority case we found that the TSP solutions and the
PTSP solutions are the same.

B. TSP ASSOCIATED WITH MONGE MATRICES
We recall the definition of a Monge matrix, it is a matrix M
of dimension n∗n which verifies: muv + mrs ≤ mus+mrv for
all 1 ≤ u < r ≤ n, 1 ≤ v < s ≤ n.

We generated the following Monge matrix:
∞ 9 12 14 17
9 ∞ 15 16 15
12 15 ∞ 10 9
14 16 10 ∞ 5
19 15 9 5 ∞


The exact resolution algorithm gives the results as shown

in Table 4:
We observe that 0PTSP 6= 0TSP, which breaks the equality

of the random variables Long(0,µ) and Longopt , which clearly
gives, the non-stability of TSP on the Monge matrices.

C. TSP ASSOCIATED WITH VAN DER VEEN MATRICES
The Van der Veen matrix as we presented, it is a symmetric
matrix M of dimension n ∗ n that verifies, muv + mv+1,l ≤
mul + mv,v+1 for all 1 ≤ u < v � v+ 1 � l ≤ n.

TABLE 3. Resolution for matrices of size 4-7-8-9-10. T opt is optimal tour,
p represents the probability, and E is the expected length.

TABLE 4. Non-stability of TSP on the Monge matrices.

For the following generated Van der Veen matrix.
∞ 6 13 8 18 9
6 ∞ 9 2 15 13
13 9 ∞ 11 4 2
8 2 11 ∞ 16 7
18 15 4 16 ∞ 2
9 13 2 7 2 ∞


The exact resolution algorithm provides the results as

shown in Table 5.

TABLE 5. Non-stability of TSP on the Van der Veen matrices.

We observe that 0PTSP 6= 0TSP, which breaks the equality
of the random variables Long(0,µ) and Longopt , which clearly
gives, the non-stability of TSP on the Van der Veen matrices.

D. TSP ASSOCIATED WITH SUPNICK MATRICES
A Supnick matrix is a symmetric matrixM of dimension n∗n
such that, muv + mv+1,l ≤ cu,v+1 + mv,l ≤ mul + mv,v+1 for
all 1 ≤ u < v � v+ 1 � l ≤ n.
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For the following generated Supnick matrix.
∞ 2 3 5 4 9
2 ∞ 6 8 6 8
3 6 ∞ 9 7 7
5 8 9 ∞ 9 5
4 6 7 9 ∞ 0
9 8 7 5 0 ∞


The exact resolution algorithm provides the results as

shown in Table 6.

TABLE 6. Non-stability of TSP on the Supnick matrices.

We observe that 0PTSP 6= 0TSP, which breaks the equality
of the random variables Long(0,µ) and Longopt , which clearly
gives, the non-stability of TSP on the Supnick matrices.

E. TSP ASSOCIATED WITH KLYAUS MATRICES
It is a matrixM of dimension n ∗ n that satisfies: for all
u < v � k
• muv + mvu ≥ 0
• muv + mvk ≤ muk
• muv + mkv ≤ mku
For the following Klyaus matrix:

∞ 1 9 12 17
1 ∞ 0 9 14
9 0 ∞ 2 4
13 9 2 ∞ 1
19 15 4 0 ∞


The exact resolution algorithm provides the results as

shown in Table 7.

TABLE 7. Non-stability of TSP on the Klyaus matrices.

We observe that 0PTSP 6= 0TSP, which breaks the equality
of the random variables Long(0,µ) and Longopt , which clearly
gives, the non-stability of TSP on the Klyaus matrices.

F. TSP ASSOCIATED WITH THE PRODUCT MATRICES
For two vectors u1 and u2 of Rn such as mu,v = u1u ∗ u2v.
For the next generated product matrix.

∞ 100 92 18 18 3 2
100 ∞ 117 23 22 3 2
92 117 ∞ 24 23 3 3
18 23 24 ∞ 23 4 3
18 22 23 23 ∞ 4 3
3 3 3 4 4 ∞ 3
2 2 3 3 3 3 ∞



The exact resolution algorithm provides the results as
shown in Table 8.

TABLE 8. Non-stability of TSP on the product matrices.

We observe that 0PTSP 6= 0TSP, which breaks the equality
of the random variables Long(0,µ) and Longopt , which clearly
gives: the non-stability of TSP on the product matrices.

G. TSP ASSOCIATED WITH BROWNIAN MATRICES
Recall that the definition of a Brownian matrix is, a matrixM
of dimension n ∗ n and for two vectors u1 and u2 of Rn such
as:

mu,v =

{
u1u if u < v,
u2v else.

For the next generated Brownian matrix.

∞ 3 3 3 3 3 3
3 ∞ 7 7 7 7 7
3 2 ∞ 9 9 9 9
3 2 10 ∞ 10 10 10
3 2 10 37 ∞ 11 11
3 2 10 37 45 ∞ 14
3 2 10 37 45 10 ∞


The exact resolution algorithm provides the results as

shown in Table 9.

TABLE 9. Non-stability of TSP on the Brownian matrices.

We observe that 0PTSP 6= 0TSP, which breaks the equality
of the random variables Long(0,µ) and Longopt , which clearly
gives, the non-stability of TSP on the Brownian matrices.

H. OTHER UNSTABLE TSPs
We give in this section the non-stable TSPs by the Demidenko
matrices and the matrices of generalized distributions of type
(*) (respectively of type (**), (***), (****)). These matrices
have been deduced non-stable by means of the order rela-
tions [18] which exist in all the matrices.

TheDemidenkomatrices are unstable because they contain
Supnick matrices as subclass. The matrices of generalized
distributions are unstable since they contain for its four types
the Klyaus matrices as subclasses.

V. STABLE TSP UNDER THE SKIPPING METHOD
We first expose the TSP that are stable under some conditions
or unconditionally by using the skipping method. We present
the TSP on the constant matrices and the Kalmanson
matrices.

VOLUME 8, 2020 108651



M. A. Amar, W. Khaznaji: Stability Analysis for the Modification Method

A. CONSTANT MATRICES
The matrices M of the form mu,v = u1u + u2v are
called constant matrices. The following theorem, due to
Berenguer [9] characterizes the TSP on such a matrix.
Theorem 10: Only the constant matrices check the prop-

erty, all the tours have the same length.
Proposition 1 [6]: The TSP on constant matrices is stable.
Remark: For the proof of this proposition it suffices to

remark that every submatrix of a constant matrix is a constant
matrix, and therefore every sub-tour is an optimal.

B. KALMANSON MATRICES
The TSP on the Kalmanson matrices is the second type
of TSP that displays the stability without any additional
constraint.
Proposition 2: The TSP on Kalmanson matrices is stable.
The definition of a master tour in section II-B is equivalent

to our definition of stability. The theorem 1 asserts the exis-
tence of a master tour for Kalmanson matrices, which gives
the stability for Kalmanson matrices.

C. UPPER-TRIANGULAR MATRICES
We provide here examples of TSP which are stable under
the additional conditions. We first introduce the TSP on the
upper-triangular matrices. A matrix M is upper-triangular if

∀(u, v)/u ≥ v mu,v = 0.

Lawler et al. [35] showed that the TSP corresponding to the
upper-triangular matrices is easy. Bellalouna [6] showed- in
the following propositions- that the TSP on this type of matrix
is stable under some conditions.
Proposition 3 [6]: Let M be a positive upper-triangular

matrix. We suppose that the nodes 1 and n are present and
that the minimal length between 1 and n is (1, n) so the TSP
is stable.
Proposition 3 [6]: Let M be a positive upper-triangular

matrix. We suppose that for u < v we have mu,v ≤ mk,v ∀
u+ 1 ≤ k ≤ v− 1, so, the TSP is stable.

D. SMALL MATRICES
In this section we suppose that a = u1 = a1, a2, . . . an and
b = u2 = b1, b2, . . . bn.
Definition 3: A small matrix M can be defined as, for two

vectors a and b of Rn we have

cuv = min {au, bv} .

We establish the stability for the small TSPs (associated
with small matrices) by imposing some conditions.
Proposition 5 [35]: LetM be a small matrix such asmuv 6=

mpq∀u 6= p and v6= p, we suppose that D2 = {1} ,D0 = {n}
and Db = ∅. Without loss of generality, it will be supposed
that: a1 < a2 < . . . < an−1 < an. So:

The small TSP is stable if and only if an−1 < b1 and
an < min {bu}

2≤u≤n−1

In the following proposition, we remove (an−1 < b1 and
an < min {bu}

2≤u≤n−1
) and we are looking for the solution0PTSP.We

suppose that the au and bv are arranged in ascending order and
we will note 0∗ = {1, 2, . . . , n− 1, n} (0∗ is an optimal tour
in the deterministic sense).
Proposition 6: We suppose that D2 = {1} ,D0 = {n} ,

Db = {}. Without loss of generality, it will be supposed
that, a1 < a2 < . . . < an−1 < an. We suppose more than
b2 < . . . < bn−1, so the small TSP is stable and we have

0PTSP = 0
∗

Remark: In this study, we limited it to the case D2 = {1} ,
D0 = {n} ,Db = {}. Our attempt of the generalization appears
very complex under the method of modification ‘‘skipping
method’’. It motivates us to look for a new method of modi-
fication that is effective without being complex.

VI. SMALL STABLE TSP UNDER THE METHOD OF TAXI
DRIVER
This method is interesting when D2 6= ∅. One of the remark-
able peculiarities of small TSP is the possibility of group-
ing all customers into four sub-sets or four ‘‘governorates’’,
which are none other than D2,D0,Da,Db.
Having this ‘‘map’’ (we designate by map the distribution

of customers in governorates) the tour 0TSP takes the below
‘‘structure’’

0TSP = 1D2 ,Da, 1D0 ,Db, 1D2 , 1D0 , 1D2 , . . . , 1D0 , 1D2 .

We define the structure of a tour as the given order of traffic
through the customers. For example we say that a tour 0 has
the following structure (we note 0 = 1D2 ,Da, 1D0 ) if and
only if we start from a node of D2 then we visit all the nodes
of Da in any order, finally we visit a node of D0.

Two aspects characterize this method. The first is the fact
that the induced tour through ξ of the a a priori tour by
Taxi driver method adopts the same structure of the 0TSP (or
each induced tour ‘‘try to adopt’’ the structure of Hamiltonian
tour, 0TSP). The second is that the traffic through the present
customers is no longer systematic as was the case in the
skipping method. But rather the traffic is guided according
to a ‘‘map’’,the merit of such a circulation is that we try
every time, to go from one city to another, to cash an absolute
minimum cost (ie muv ∈ D).
Remark: The ideal, of course, is that the muv ∈ Dξ . The

‘‘map’’ is fixed from the beginning, it is the same for all ξ (the
map is the given sets (D2,D0,Da,Db)). If the map depends
of ξ (Dξ2,D

ξ
0,D

ξ
a,D

ξ
b) we have therefor 2

n relative maps and
our method is transformed into a method of re-optimization.

A. DESCRIPTION OF METHOD
Having any a priori tour and a subset of nodes ξ , this method
consists of modifying this tour so that it tends, in structure,
towards the tour 0TSP.
Let ξ be present sub-nodes. To generate the induced tour

through ξ , we will apply the skipping method as long as the
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order of passage between the customers conforms to the 0TSP
structure, namely

0TSP = 1D2 ,Da, 1D0 ,Db, 1D2 , 1D0 , 1D2 , . . . , 1D0 , 1D2

If this order (after skipping the absent customers) is not
respected, then we rectify or force the tour in order to adopt
the structure above.
• This method can be conceived as the skipping method
• Adjustment of the new tour.
Remark: For the uniqueness of the induced tour, we opt

for the following convention, when we find the taxi driver
is obliged to rectify the trajectory of the tour (and this
happens when, applying the skipping method, we lose the
structure of the tour 0TSP or we lose this order of cir-
culation across customers, namely 1D2 ,Da, 1D0 ,Db, 1D2 ,

1D0 , 1D2 , . . . , 1D0 , 1D2 ), we then choose the node that not yet
visited, the smallest in its governorate.

B. PERFORMANCE OF THE METHOD
• Preliminary results lead us to consider that this method
is more efficient than the skipping method.

• Wefind the stability of the PTSPwhen we use the condi-
tional probability. Indeed, this method coincides with th
re-optimization strategy if the probability is conditioned
such as, if a node is absent from D2, then there is a node
ofD0 is absent. Also if k nodes are absent fromD2, then
there are k nodes of D0 disappear, and vice versa.

VII. CONCLUSION
In this paper, we proposed a new formulation for the stability
of the TSP-PTSP. This concept of stability led us to make the
link with the problem of the Master Tour. We first presented
a summary of easy TSPs via the notion of pyramidal tour
which is likely to contain stable TSPs. Then we showed that
the small TSP is a stable problem for the skipping method
under certain conditions. And in order to better pinpoint the
problem, we removed these last conditions and we submitted
another modification method, more appropriate to the small
TSP, which we called method of Taxi Driver, for which we
reestablished the stability. The proposed notion of stability
depends on the modification method. Thus, for the majority
of TSP, the study of stability remains difficult and the TSP
rather goes to the non-stability. Moreover, several TSPs is
unstable, by means of counter examples treated by an algo-
rithm of exact resolution. Therefore, as a future work we
plan to design appropriate modification methods that goes to
the value of re-optimization strategy Longopt with real time,
and can be extended to the case where size of problems is
important.
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