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ABSTRACT Defect detection is an essential requirement for quality control in the production of printed
circuit boards (PCBs) manufacturing. The traditional defect detection methods have various drawbacks, such
as strongly depending on a carefully designed template, highly computational cost, and noise-susceptibility,
which pose a significant challenge in a production environment. In this paper, a deep learning-based image
detection method for PCB defect detection is proposed. This method builds a new network based on Faster
RCNN. We use a ResNet50 with Feature Pyramid Networks as the backbone for feature extraction, to better
detect small defects on the PCB. Secondly, we use GARPN to predict more accurate anchors and merge the
residual units of ShuffleNetV2. The experimental results show that this method is more suitable for use in
production than other PCB defect detection methods. We have also tested in other PCB defects dataset, and
experiments have shown that this method is equally valid.

INDEX TERMS Defect detection, deep learning, residual network, feature pyramid, ShuffleNetV2.

I. INTRODUCTION
As the electronic device parts are shrinking down to minute
sizes, printed circuit boards (PCB) as a support for electronic
components is becoming more and more sophisticated and
delicate. PCB defects are one of the critical factors for a
high defect rate of electronic equipment. Therefore, defect
detection is an important quality control technique for printed
circuit boards (PCBs) industry. Different PCB defects can be
generated in various production processes, such as missing
values, lacking components, mistaken open circuits, and short
circuits, causing the yield to drop. Therefore, it is necessary to
achieve non-contact, accurate, and efficient automatic defect
detection in the PCBs production process.

In recent years, an automated optical inspection (AOI)
technique has been using to detect the defect during the
PCB manufacturing process [1]. Compared with traditional
manual detection, it has a series of advantages such as
high-speed detection, cost reduction, and accuracy. In the
evolution of AOI technology in the past decade, the methods
are mainly divided into three categories: reference compari-
son methods, non-reference inspection methods, and hybrid
inspection methods. The most widely used method is the ref-
erence inspection methods. In this defect detection method,
the correlation between the scene images and the two window
portions of the reference image is calculated. The difficulty of
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this method is the precise alignment of the reference image
and the testing image. Performing the alignment operation
requires a complicated configuration process. At the same
time, the detection process is susceptible to light and noise,
and even small shadows can cause false alarms.

Compared with traditional machine vision methods, deep
learning-based methods can automatically extract image
features, simplify the image pre-processing process, and
can effectively improve the accuracy and efficiency of
object detection, which has attracted the attention of many
scholars.

In this paper, we propose an effective learning-based
method to detect PCB defects in run-time in the Surface-
mount technology (SMT) generation line, which belongs to
the non-reference category. It can be used to identify six
types of defects in the PCB production process. Base on the
experiment on our database, it is more accurate and faster
than other learning-based methods for detecting PCB defects.
We focus on three challenges:

a) Deep learning methods are more capable of detect-
ing large targets. In our scenario, the detect is always
present with a small part of the image, so it is nec-
essary to revamp the network structures to get a good
performance.

b) When using high-resolution pictures, the speed of the
convolution detection method is slow and cannot meet
the speed requirements of real-time detection, so it
needs to be improved.
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c) For the traditional AOI detection method, correspond-
ing fixtures and cumbersome parameter settings are
required, which entails a high cost. We need a new
inspection process and abandoned expensive acces-
sories to make it more suitable for production line use.

The rest of this paper is organized as follows. Section 2
reviews previous related research. Secondly, the associated
methods used in this paper are described. In Section 3,
we introduce the characteristics of defects and describe the
overall structure of the network. And detail the improvements
to the original Faster-RCNN in the feature extraction stage
and the RPN stage. In Section 4, we evaluate the proposed
network and compare it with other networks. Finally, we give
conclusions about our proposed network and the direction of
our future work in Section 5.

II. RELATED WORKS
In this section, we review the relevant methods of PCB defect
detection and introduce two methods applied in our proposed
network, which is used to extract the PCB features.

A. PCB DEFECTS DETECTION
The elimination-subtraction method is the mainstream detec-
tion method as a PCB defect detection technology before
using machine learning. This method calculates the pixel
distance between the target image and the template image
to detect obvious defects such as open circuit, short circuit,
magnetic flux leakage, etc [2], [3]. Hagi et al. [4] proposed
a new method to improve the classification accuracy of elec-
tronic circuit boards. The method first calculates the differ-
ence between the test image and the reference image and
then performs high-precision detection on the defect candi-
date region, and finally, it extracts the feature recognition
authenticity defect. Xie et al. [5] proposed a method using
statistical appearance modeling technology (SAM), which
obtains a more advantageous template than a rigid template.
Wang et al. [6] proposed the partial information correlation
coefficient (PICC) method to improve the traditional normal-
ized cross-correlation coefficient (TNCCC). These methods
are advantageous for detecting certain defects and computa-
tionally efficient. Therefore, it is widely used in production.
In thesemethods, it is necessary to control the deviation, color
change, and reflectance change of the target image from the
template. And even minor changes in the PCB design require
reconfiguration of the template. It increases production costs.
Therefore, feature matching is proposed as an improved
classic reference method. It extracts more robust features
from the entire image and establishes a registration mapping
relationship. Malhi and Gao [7] proposed a feature selec-
tion method based on principal component analysis (PCA).
It uses supervised and unsupervised methods to classify the
defects of the bearings. Local binary patterns (LBPs) are also
one of the methods commonly used for feature extraction.
Tajeripour et al. [8] proposed a fabric defect detectionmethod
based on LBPs. The method is divided into training and
detection stages. The pixel-by-pixel LBP operator is applied

to defect-free fabric images to calculate the reference feature
vector. By comparing with the reference feature vector, a
threshold suitable for defect-free windows is found. Then, a
defective window can be detected using this threshold. The
method has multi-resolution and grayscale invariance and can
be used for defect detection of pattern fabrics and non-pattern
fabrics. Ibrahim et al. [9] proposed an image difference algo-
rithm based on wavelet transform. The algorithm uses the
Haar wavelet and considers several different layers. One con-
clusion of this article is that in the application of PCB visual
inspection, the second stage Haar wavelet transform should
be selected. The common of these methods is uses a large
amount of prior information on features for object detection.
Because these features rely on hand-crafted features, there
are two shortcomings. (a) It may not be possible to describe
complex image scenes and objects structure. (b) cannot adapt
to new views and objectives, and its generalization ability
is reduced. Therefore, object detection based on traditional
feature extraction methods falls into a bottleneck period.

In recent years, some scholars have used Convolutional
Neural Networks (CNNs) [10] as a feature extraction method
for defects detection. CNN has obtained better results
compared with traditional feature extracts methods. It can
accurately capture defects regions without using any extra
information. Besides, even if there are shadows or reflec-
tions, it can still work well to locate the boundary of the
detected object area as it uses multi-level features as refer-
ence. Because of these advantages, the CNN-based object
detection method refreshes the historical record on almost
all existing data sets and becomes the mainstream method
in object detection. Su et al. [11] proposed a neural-network
approach for semiconductor wafer post-sawing inspection.
They introduced and tested three types of neural networks:
backpropagation, radial basis function network, and learning
vector quantization. This method can effectively shorten the
detection time to 1s per slice. Heriansyah et al. [12] manually
designed various defect patterns representing corresponding
defect types for training and testing. The results show the
effectiveness of neural network-based defect classification
technology. Ding et al. [13] proposed an approach is based on
Faster-RCNN to detect tiny defects of PCB and achieved high
precision. His method solves the shortcomings of deep con-
volutional networks in detecting small defect areas, obtains
good experimental results on an open PCB defect database,
and the method provides us with a good idea. Some scholars
have used the method based on Faster-RCNN [14]–[16] in
defect detection and achieved excellent results. However,
in some studies, more attention has been paid to improving
the accuracy of detection and ignoring the detection effi-
ciency, so that real-time detection cannot be achieved in
production.

Compared to traditional visual inspection methods using
neural networks to detect PCB defects do not have many
related types of research. One of the reasons is, the collection
of the PCB defect database requires a long-time accumula-
tion, which requires a lot of workforce andmaterial resources.
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In this article, we used a real PCB defect database that we
collected from the production line as the training set and
test set. The following section will introduce how we do the
collection in detail.

B. GROUP CONVOLUTION AND CHANNEL SHUFFLE
Group Convolution was first proposed in AlexNet [10].
Due to limited hardware resources at the time. The author
distributed feature maps to multiple GPUs for processing and
finally merged the results. As shown in Fig.1 (a), the tra-
ditional convolution performs convolution operation on the
input data’s whole. For example, the input data size is:
H1 ×W1 × C (H is the height, W is the width, and C is the
number of the channel) and there are N convolution kernels,
each of which has a size of K × K , the number of channels
is the same as the input, then the output data obtained by
convolution is H2×W2×N , so the total parameter amount is
K×K×N×C . As shown in Fig.1 (b), the input data is divided
into 3 groups (g= 3), and each group size is:H1×W1×C1/g,
the convolution kernels size is K ×K×C1/g, and the number
of convolution kernels per group is N/g, and the total parame-
ter amount isK×K×N×C1/g. The total parameter amount is
reduced to 1/g of the original. However, there is a significant
shortage of this method, which is that the connection between
groups is ignored, whichmeans the operation ofmerging only
happens inside an individual group. In a bid to solve this,
Xception [17], MobileNet [18], and other similar networks
add an extra convolution layer with the size of 1 × 1 to
merge the output from different groups. Similarly, some other
networks, such as ShuffleNetV2, proposed a more advanced
method called ‘channel shuffling.’ As shown in Fig.2 (b),
the ‘reorganization’ of the feature map after group convolu-
tion ensures that the next group convolution input is from a
different group so that information can be exchanged between
different groups. Fig.2 (c) shows this ‘‘uniformly disrupted’’
process. The results show that the method effectively solves
the problem of insufficient fusion of the features map without
reducing the performance.

FIGURE 1. Comparison between the traditional convolution and the
group convolution.

C. CHANNLE SPLIT AND DEPTHWISE CONVOLUTION
ResNet [19] is a residual learning framework, which ismainly
used to solve a series of problems such as the deep neural

FIGURE 2. Channel Shuffle with two stacked group convolutions. (The
figure is modified from [29]).

network gradually saturates and then rapidly degenerates
with the increase of network depth, including gradient dis-
sipation and gradient explosion. It fundamentally breaks the
symmetry of the network, thereby improving the ability of
the representation network. The ShuffleNetV2 uses a resid-
ual block structure, such as ResNet. Instead of using group
convolution, it splits the feature into two branches. The left
branch is mapped equally, and the right branch contains three
consecutive convolutions.

Depthwise Separable convolution (DWconv) contains two
steps, Depthwise Convolution, and Pointwise Convolution.
The first step is to convolve the input data with the convo-
lution of the number of the same filters as the depth of the
input data, while the second step is to convolve the input data
with convolution kernel size 1 × 1. For example, in contrast
to a traditional convolution operation, the input data size is
64× 64×3, and the convolution kernel size is 3× 3×4. The
output feature map size is 64× 64×4 (assume that the input
and output sizes are the same), the number of parameters of
the convolutional layer can be calculated by the following
formula N1 = 3×3×3×4 = 108. After using the ‘DWconv’
operation, the number of convolution layer parameters is
N2 = 3×3×3+3×1×1×4 = 39. The same input also output
4 feature maps, the number of parameters of DWconv is about
1/3 of the conventional convolution. Therefore, under the
premise of the same number of parameters, the number of
neural network layers using ‘DWconv’ can be made deeper.

III. PCB DEFECTS AND DETECTION NETWORK
In this section, we observed and analyzed the characteristic
of PCB defects and proposed a novel defect detection net-
work for these characteristics. We will introduce the overall
architecture of the network and detailed the core components:
residual units and multi-scale regional proposal. Finally,
we will introduce the industrial deployment of the network.

A. PCB DEFECTS
We focus on six common types of PCB defects in our
research: (a) open circuit, (b) short course, (c) mouse bite,
(d) spur, (e) pinhole, (f) solder ball, as shown in Fig.3. First,
defects often only account for a small part of the PCB.
Second, different mechanisms cause these defects, thus show-
ing different characteristics, mainly including (color char-
acteristics, shape characteristics, regional characteristics).
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FIGURE 3. Example images of six types of PCB defects.

For example, compared with the normal mode, the short-
circuit mode reduces the number of areas contained in the
image. Similarly, for the open-circuit mode, the number of
zones will increase. Mouse bite refers to the irregular notch
on the edge of the line after etching, just like the bite by a
mouse. Pinhole is due to the adsorption of hydrogen on the
surface of the plated article, and it will not be released slowly.
The plating solution cannot wet the surface of the plated parts
so that the electroplating layer cannot be electrolyzed. As the
thickness of the coating around the hydrogen evolution point
increases, a pinhole is formed in the hydrogen evolution point
and characterized by a shiny round hole, sometimes with
a small upward tail. Solder balls will narrow the distance
between the wires due to the protrusion. We need to design a
reasonable network for these characteristics.

B. ARCHITECTURE OVERVIEW
Compared with the traditional convolutional neural network,
which only uses strong semantic information, our proposed
method also takes advantage of detailed information that
contains weak features due to the PCB defects often appear
with different properties. Therefore, we adapt the multi-scale
features to fuse information from a multi-scale context.

The overall network framework is shown in Fig.4. The
input of the model is an image in RGB format. We adopt
Faster RCNN as the detector and ResNet50 [19] as the back-
bones. We applied the feature pyramid network (FPN) to the
feature extraction part to merge deep features and shallow

features, which can also improve the accuracy of small defect
detection. Since a deeper network ResNet50 is used, we use
Shuffle V2 residual units to replace the basic residual units to
decrease the computation of the whole network. Further, we
use the GARPN to gain a more accurate region proposal and
reduce unnecessary anchor points, and then use ROI pooling
to get object proposals. After that, use the fully connected
layer to classify and bounding box regression to achieve the
final defect detection results.

C. FEATURE EXTRACTION
FPN generates feature pyramids with robust semantic infor-
mation at various scales to get more useful details on small
objects without increasing the amount of calculation and
the occupied memory significantly so that the accuracy of
detecting minor defects can be dramatically improved. It uses
convolutional neural networks to generate a set of hierar-
chical features that encode semantic information at different
scales in the pyramid. The different levels of features in
this hierarchical pyramid represent the objects in the image
and their contextual information from different views. In our
network, we use conv2, conv3, conv4, and conv5 blocks to
build the pyramid model’s feature map from the backbone.
The reason why conv1 is not included is that it is too close
to the input data, and a vast memory footprint. We choose
the output of the last residual unit of each block as the
bottom-up feature map, and constructed the top-down feature
map by up-sampling the spatial resolution by 2×, which
is expressed as M2, M3, M4, M5, corresponding to conv2,
conv3, conv4, conv5. After the corresponding bottom-up fea-
ture map is convoluted by 1× 1 to reduce the channel size
and add the up-sampled map to the corresponding bottom-up
map element by element. The shallow feature map contains
more accurately localized information because it has not been
down-sampledmany times, [2]. Finally, a 3× 3 convolutional
layers are appended on each merged map to generate the final
feature map. With purpose of eliminating the aliasing effect
of up-sampling. The last sets of feature maps are denoted as
P2,P3,P4, and P5 corresponding to conv2, conv3, conv4,
and conv5, which are of the same spatial sizes but with more
semantic information, as shown in Fig.5. Unlike the original
RPN [20], where classification and bounding box regres-
sion is performed only on a single-scale signal scale, in our
network, RPN takes multi-scale features as input. We will
discuss it in the following subsections.

FIGURE 4. The overview of the network architecture.
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FIGURE 5. The feature pyramid structure used in this paper.

D. RESIDUAL BLOCK
The ResNet results on the ImageNet dataset [21] show that
the classification performance of the residual structure is sig-
nificantly better than the traditional convolution framework.
This is because ResNet has a deeper convolutional layer.
The small objects are unable to obtain salient features due
to the downsampling effect in the traditional convolutional
neural network. Furthermore, ResNet uses residual learning
to connect the deep feature map and the previous shallow
one. The high-level and low-level features are effectively
utilized to combine their advantages, which can better adapt
to the detection of small targets. In this paper, we use the
residual unit structure based on ShuffleNetV2 to accelerate
the network. In the network, each block consists of several
basic units and a spatial down-sampling unit. As shown
in Fig.6(a). At the beginning, ‘‘Channel Split’’ divides the
channel dimension of the input data into two branches. One
branch remains unchanged, while the other is add three extra
convolutional operations. After merging the output of the
two branches by the ‘‘Concat’’ operation, they can exchange
information by ‘‘Channel Shuffle’’. In Fig.6(b), ‘‘channel
splitting’’ is removed, and spatial down-sampling is per-
formed with stride = 2.

FIGURE 6. Residual units. (a) is basic residual units (b) is spatial
down-sampling residual.

E. MULTI-SCALE RPN
Rather than setting different scale anchors on the final map in
Faster-CNN, out proposed network assigns multi-ROI of sim-
ilar size on different levels of the feature map. These anchors
will interfere with choosing the right ROI to get the necessary
information. So, it does not have to set multi-scale anchors at
each feature level. It is common practice to use a single scale
anchor on each feature map. For example, the corresponding
scale of anchors on P2,P3,P4,P5 is 82, 162, 322, 642 and
the multiple aspect ratio remains 1 : 2, 1 : 1, 2 : 1. Therefore,
each level feature map pixel will generate 3 anchors in the
original picture. However, most of these anchors are still
wrong and do not contribute to ROI.

In this paper, we used ‘‘Guided anchor,’’ which was pro-
posed by Wang et al. [22]. It consists of two branches and
a ‘‘feature adaption as shown in Fig.7. This method can
produce a small number of useful anchors. Firstly, In the
position prediction branch, on the feature map at each level,
the area corresponding to the center of the ground truth box
is divided into the object center area, the ignored area, and
the negative area according to the distance from the center.
To make the feature map of each level only valid for target
objects with a fixed scale range, the same area of adjacent
levels is defined as the ignored area. Then at the process of
position prediction, a small part of the region can be selected
as the candidate center point position of the anchor, which
significantly reduces the number of anchors. After predicting
the position, masked Conv is used instead of Conv. The calcu-
lation is only performed at the anchors, which can accelerate
the network.
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FIGURE 7. Agriculture of GARPN.

The purpose of the shape prediction branch is to predict
the w and h of each anchor at a given center point using IoU
as supervision. Different from original RPN, w and h here
are variable and not predefined. However, the search range of
w, h, for the anchor is too extensive, and it is challenging to
predict directly. Therefore, use the following formula ‘‘(1),’’
for conversion.

w = σ · s · edw, h = σ · s · edh (1)

The dw and dh output from the shape prediction branch
can be mapped to (w, h), where s is the stride, and σ is
a hyperparameter, which is set to 8 in this paper. With
s = 32 down-sampling feature map, dw and dh in the range
of [−1, 1] can search for objects in the range of [94, 696], and
other levels of feature layers are similar. Finally, the anchor
shape of each position of each levels of feature layers is
obtained (one position has only one anchor).

After predicting the anchors’ shape of each position,
we use deformable convolution to transform it and integrate
the shape information into the feature map, so that the new
feature map can be adapted to the shape of the anchors
at each position. The offset field is predicted in the shape
prediction branch. Then the original featuremapwith offset is
subjected to deformable convolution to obtain adapted feature
maps, and then classification and bounding box regression are
implemented on this basis.

F. INDUSTRIAL DEPLOYMENT
In this work, we use a deep learning-based method for PCB
defect detect system. One of the most significant advantages
is that it cuts off the effort in designing pre-templates and pre-
configurations, and it also eliminates the reliance on jacks and

fixtures that make them tightly aligned. In Fig.8, we com-
pare the traditional system flow with the flow of the system
proposed in the paper. We omitted the most time-consuming
template configuration process and did not use costly fixtures
to align them. After the industrial camera capture the PCB
image to be tested, it is sent to the defect detect program. The
type of defect is classified by the frozenweight file and finally
output to the display terminal for manual inspection.

We apply the detection algorithm proposed in this paper
to the industrial production environment. The programmable
logic controller (PLC) drives the industrial camera to move
quickly on the PCB and sends a part of the PCB image
captured each time to the inspection unit. After the test, the
system outputs the results containing the original image and
the coordinates and types of defects to the center console,
which is manually reviewed to distinguish the qualified and
unqualified products and then flow to the next process.

To ensure that the details of the acquired images are rich
enough to avoid unrecognized defects due to low resolution.
The resolution of our industrial camera is 2592× 1944, and
the camera’s field of view is 50mm× 40mm. Therefore, the
size of each pixel is 0.02mm× 0.02mm.We control the cam-
era to move horizontally and vertically, capturing six images
per PCB. Furthermore, there is a 10% overlap between each
adjacent picture, to avoid distortion caused by the edges of the
image and not to capture the complete defect information. So,
our system is suitable for detecting PCBs with a maximum
size of 120mm× 100mm. Then we sent each picture to the
distributed detection system to perform parallel processing of
multiple model detection using multiple processes. In each
detection task, we use our proposed network that has been
trained and frozen.

IV. EXPERIMENTS AND DISCUSSION
We performed the above method to the PCB pro-
duction environment to validate whether the expected
goals can be achieved. All experiments were imple-
mented in Python3.6 using a model developed based on
Tensorflow2.0 [23], which provides a library for building an
architecture for deep learning models. The experiment was
performed on an Intel Core i7-8700K CPU @ 3.70 GHz,
NVIDIA GeForce GTX 1080 GPU, and 16G RAM on
Windows10.

A. DATA COLLECTION AND ANNOTATION
The data set was retrieved from a LED electronics factory in
Wuxi, China, 2019. We use a CCD camera to take pictures
for each PCB and manually screen out the pictures contain-
ing defects. We collected 1750 images with a resolution of
2592× 1944, which includes multiple defects in them. Since
this high resolutionmay cause a large amount of computation,
we picked up all the defects in each picture and resized them
into 600× 600.
To balance the data samples of various types of defects,

we removed some of the defects at the edges and unclear pic-
tures to avoid adverse effects on training and finally cropped
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FIGURE 8. Traditional defect detection process and our propose system flow. (a) traditional system, (b) our system.

out 1500 defect pictures. However, in the production process,
defects are generated as low-probability events, the labor and
time costs of collecting defect data are high, so we use data
enhancement methods to increase the number of PCB defect
images. Rotation and brightness adjustment were introduced
to our dataset to wrap the original data. Finally, 12000 defect
pictures in our dataset.

In the process of labeling data, we use the image anno-
tation tool called LabelImage [24] to mark every defect in
the image. After labeling each defect has a ground-truth
bounding box and a class label. The tool will generate an
XML file containing information about the annotation object
and the bounding box of each image, and the XMLfile is used
as the ground-truth label for the detection model. Each defect
on the picture is labeled (x1, y1), (x2, y2) and type, where are
the upper left and lower right corners of the defect bounding
box, and the defect type. The type is an integer ID that follows
the match: 0-open, 1-short, 2-mouse bite, 3-spur, 4-pinhole,
5-solder balls.

B. EVALUATION METHOD
The detection of the defect area is performed by the greedy
overlap criterion of the ground truth bound (area(G)) and the
candidate bound (area(C)), that is, cross-over-union (IoU),
as shown in Eq.(2). It ranges from 0 to 1, where 0 means no
intersection between the area(G) and the area(C), and 1means
they are identical. In this paper, the defect area detection

acceptable threshold is 0.5.

IoU =
area(C) ∩ area(G)
area(C) ∪ area(G)

(2)

The Mean Average Precision (mAP) is our primary indica-
tor for evaluating model performance our main indicator for
evaluate model performance. It is the average of the Average
Precision (AP) values of C different defects, and it reflects the
accuracy of defect detection

mAP =

∑C
i=1 APi
C

(3)

The AP value is calculated by the precision rate and the
recall rate. The general definition for the Average Preci-
sion (AP) is finding the area under the precision-recall curve
above.

AP =
∫ 1

0
p(r)dr =

∑N

k=1
P(k)1r(k) (4)

Accuracy measures the number of samples correctly clas-
sified cent of all proportion the number of samples.

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(5)

The Recall measures the ability of the model detection for
positives.

Recall =
TP

TP+ FN
(6)
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The Precision measures the accurate of the model
prediction.

Precision =
TP

TP+ FP
(7)

TP, TN, FP, and FN denote true positive, true negative, false
positive, and false negative, respectively.

C. RESULTS AND EVALUATION
In the experiment, we use the cross-validation method, which
aims to extract as much information as possible from the
limited data and avoid local extreme values [25]. In this
process, both the training samples and the test samples are
learned as much as possible. We randomly selected 10%
samples of each subset as test data. The remaining 90% of
the pictures were equally randomly divided into six parts.
In each round of training, five parts were used as training
sets, and 1 part was used as a validation set. The number
of each defect in the database are shown in Table 1. A total
of 40,000 iterations are trained, to avoid training time is too
long, we set the learning rate to 0.1 when the training step
is less than 5000, and if the training step is less than 20000,
the learning rate is set to be 0.01. The larger learning rate
can speed up network convergence in early training. In the
remaining 20,000 training sessions, we used 0.0001 as the
learning rate.

TABLE 1. Number of defects in the training, validation, and testing sets,
respectively.

Like the ShuffleNetV2, our proposed network can also set
the complexity scale factor by changing the number of chan-
nels of each unit, so we evaluate the impact of using different
values on the performance of the model by calculating the
accuracy and training speed of the algorithm. For example,
when s = 1, the standard network structure, when s = 0.5,
the output and input channels of each stage are half of the
number of channels in the standard network, and others are
similar. The experimental results are shown in Table 2.

TABLE 2. The network with different complexity.

By comparing the results of the network under different
complexity, we conclude that as the complexity of the model
increases, the parameters involved in the calculation will
increase, and with a lower complexity of the model. At the

same time, the accuracy of the model will increase. In dif-
ferent object detection tasks, it is often necessary to make
various choices in terms of faster speed and higher accuracy.
In the industrial environment, reliability is paramount, so in
the subsequent experiments, we chose our network with a
complexity factor of 1.0 as the detection model.

Here we compared our method with state-of-the-art
defect detection algorithms, including the FasterRCNN,
RetinaNet [26], and YOLOv3 [27] with different backbones,
table 3 lists details of varying performance indicators (mAP,
recall, Efficiency).

As we can see from table 3, deeper networks with com-
bined FPN contributemost to the performance of the network.
For Faster RCNN with Resnet101-FPN as the backbone net-
work, our proposed network improved the mAP and recall
increased by 3.4% and 3.3%, respectively, which verified that
GARPN had a small backbone could achievemuch better per-
formance than RPN with larger backbones. Although, when
using Resnet101 as the backbone of our proposed network
can increase mAP by 1.4%, we did not use it, because, in an
industrial production environment, we must make a balance
between detection accuracy and detection efficiency. Yolo3+
MobileNet [18] has faster detection speed, which is also bene-
fited from its use of the depthwise separable convolution, and
the backbone network has only 28 layers. Still, it cannot meet
the industrial requirements in terms of detection accuracy.
Therefore, our network is more suitable in general.

We also obtained the precision and recall values
under different confidence thresholds by calculating the
precision-recall curve, as shown in Fig.9, our proposed net-
work is better than the Faster RCNN and RetinaNet with
the same ResNet50-FPN backbone. However, all of the net-
works we proposed cannot get a good result of detecting the
defects with type ‘‘open’’, there are some false positives.
We found that due to the different causes of the ‘‘open’’
defect, the image defects in the training set show different
characteristics. The reasons for the formation of this defect is
as the follows, (a) An Open circuit is produced by damage
to the copper sheet and scratches, (b) Uncoppered in the
production process due to poor plating or other reasons,
(c) Open circuit at a specific location due to film damage.
For (a), (c), the edge of the ‘‘open’’ position is rough, and the
position forming the ‘‘open’’ is occasionally accompanied
by trachoma or bubbles. These characteristics are available
for learning. For (b), the resulting ‘‘open’’ tends to be edge
smooth, so that it cannot be distinguished from the normally
open path by feature learning. Therefore, we remove all the
images belonging to the (b) type and re-add new (a), (c) type
pictures to the defect data set, and then re-train. For (b),
we detection by assisted non-deep learning method. After
testing from the new training, the detection accuracy and
recall rate was improved, and the false positive rate was also
significantly reduced. The overall result was acceptable.

To verify that using GARPN can effectively reduce
low-quality anchors while still being able to high-precision
detection, we compare it with the traditional RPN method.
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TABLE 3. Detection results on PCB data set.

FIGURE 9. Precision-recall curve for each class drawn in different color. (a) Faster RCNN. (b) RetinaNet. (c) Our proposed.

FIGURE 10. Examples of RPN proposals (middle) and GARPN proposals
(right).

As shown in Fig.10, the anchors generated by GARPN can
generate anchors around the defect location more accurately
than the anchors generated by RPN+9 anchors (three scales
and three ratios). Anchors generated by GARPN are densely
distributed around the defect and sparsely distributed in other
non-target areas.

We use ablation experiments to verify the advantages of the
network proposed in this article. We designed 4 experiments.

a) The original Faster-Rcnn based on ResNet as the
backbone.

b) The addition of FPN on faster-Rcnn+ ResNet50.
c) Added APRPN based on previous design.
d) The addition of ShuffleNetV2
Table 4 shows the ablation experiment results. The addition

of the FPN has better accuracy in detecting small defects

TABLE 4. Ablation experiment on our network.

FIGURE 11. Precision-recall curve for different detector.

than the first network. After adding GARPN, the detection
accuracy has been improved significantly, and the detection
speed has also been improved. It can reduce 90% unnecessary
anchors then RPN and generate more accurate proposals [22].
After using ShuffleNetV2, the network’s detection efficiency
is improved, which can meet the needs of real-time detection.

To verify the robustness of the method, we apply this
method to an open PCBdefect database (http://robotics.pkusz.
edu.cn/resources/dataset/) [28]. The database contains
639 PCB images and 2953 defects that have been correctly
labeled. It contains six types of defects. (missing hole, mouse
bite, open circuit, short, spur, and spurious copper). We only
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FIGURE 12. Detection results. (a) and (c) are the original pictures, (b) and (d) are test results.

used the same four types of defects as in our defect database.
We first selected 400 images for each defect dataset for
testing. We used three networks for comparison, the results
are shown in Fig.11 (a). The results show that our proposed
network has higher accuracy and recall than other networks,
but the results are not as good as expected from the original
test set. Although the defect characteristics context informa-
tion of the defect caused by the different PCB, meanwhile the
model is trained from a single data set, so the detection effect
is not good.

In another experiment, we cropped 400 sub-images for
each defect type in the dataset because one imagemay contain
multiple defect types. A total of 650 images were collected
and resize to 600 × 600. The collected pictures are added
to the training and test data sets. As shown in Fig.11(b),
the result is better than the above experiment. This may be
because the model trained by adding a new defect picture to
the training set incorporates more defect information, so it
has better robustness in defect detection. The number of new
effect pictures added in the new training set is too small
compared to the original data set, the results are not as good
as those in Experiment 2. However, they are still available.
Some detection results of our method in Fig.12.

V. CONCLUSION
In this paper, a PCB automated inspection method based
on a convolutional neural network is proposed. In response
to the characteristics of PCB defects, we modified the
original Faster RCNN. Firstly, we use a deeper backbone
ResNet50 for feature extraction, and we used a Feature
Pyramid Networks method to detect smaller defects better.
We replace RPN with GARPN to generate anchors adap-
tively. To speed up the network, we also use the residual unit
in ShuffleNetV2. In our method, no external mechanical fix-
tures needed and strict template alignment operations, which
reduced testing cost. The experimental results show that the
mAP of the improved model is 94.2, and the detection speed

is 0.08s/img, which is improved by 9% and 0.042 s/img in
accuracy and speed compared to the original Faster R-CNN
with ResNet50, respectively. And it performs better than
other detection networks for our database.

We also use other defect data sets for testing our network.
When we use our pre-trained model, the detection perfor-
mance has declined, which because even the same type of
defects will show different characteristics due to different
materials and processes in PCB production. When we join
these pics to our training set, the result was as good as we
expect. In the future, we will collect more defect samples
to join the training set and fine-tune the network to adapt to
defects detection of more types.

LIST OF ABBREVIATIONS
PCB Printed Circuit Boards
AOI Automatic Optical Inspection.
SMT Surface-Mount Technology
FPN Feature Pyramid Network
RPN Region Proposal Network
SAM Statistical Appearance Modeling
PICC Partial Information Correlation Coefficient
TNCCC Traditional Normalized Cross-Correlation

Coefficient
PCA Principal Component Analysis
LBPs Local Binary Patterns
CNNs Convolutional Neural Networks
GPU Graphics Processing Unit.
DWconv Depthwise Separable convolution
RGB Red, Greeb, Blue.
ROI Regions of Interest.
PLC Programmable Logic Controller
CPU Central Processing Unit.
LED Light-emitting Diode.
CCD Charge-Coupled Device.
XML Extensible Markup Language
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IoU Intersection over Union.
mAP Mean Average Precision
AP Average Precision
TN True Negative.
TP True Positive.
FN False Negative.
FP False Positive.
MB Mouse Bite
SB Solder Balls
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