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ABSTRACT The rapid increase in network traffic has recently led to the importance of flow-based intrusion
detection systems processing a small amount of traffic data. Furthermore, anomaly-based methods, which
can identify unknown attacks are also integrated into these systems. In this study, the focus is concentrated
on the detection of anomalous network traffic (or intrusions) from flow-based data using unsupervised deep
learning methods with semi-supervised learning approach. More specifically, Autoencoder and Variational
Autoencoder methods were employed to identify unknown attacks using flow features. In the experiments
carried out, the flow-based features extracted out of network traffic data, including typical and different types
of attacks, were used. The Receiver Operating Characteristics (ROC) and the area under ROC curve, resulting
from these methods were calculated and compared with One-Class Support Vector Machine. The ROC
curves were examined in detail to analyze the performance of the methods in various threshold values. The
experimental results show that Variational Autoencoder performs, for the most part, better than Autoencoder
and One-Class Support Vector Machine.

INDEX TERMS Flow anomaly detection, intrusion detection, deep learning, variational autoencoder,
semi-supervised learning.

I. INTRODUCTION
With the rapid growth of the Internet, cyber-attacks on
networks and computer systems have also increased expe-
ditiously. As a precaution against these attacks, Intrusion
Detection Systems (IDS) are deployed in networking sys-
tems. Although IDSs have gained considerable significance
in counteracting increased network attacks, payload-based
IDSs lack the scalability due to high-speed of networks
and increase in network traffic. Consequently, flow-based
detection approaches have recently been a potential candidate
for IDS. Flow-based IDSs are preferred over traditional
IDSs that are based on deep packet inspection, for two
reasons: firstly, they process noticeably smaller amount of
data, and secondly, the flow-data is easily gathered out of
network forwarding devices that utilize standard protocols
(such as Cisco NetFlow, IETF IPFIX), without installing
additional software and data is gathered from each computer
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on the network [1]. Intrusion detection approaches are
basically divided into two categories [1]: misuse-based and
anomaly-based. Misuse-based techniques work in a way that
the signatures of previously known attacks are compared.
This technique, which works well against known attacks,
is insufficient in the detection of the unknown attacks.
Conversely, anomaly-based intrusion detection methods have
the ability to identify unknown or zero-day attacks. Because
of the extreme change in normal behavior of the network,
it is hard to obtain the exact definition of normal behavior.
Therefore, false alarms of anomaly-based techniques are
higher than that of others.

Recently, deep learning methods have also been applied
in network intrusion detection systems, as it has been seen
that the deep learning methods could successfully solve
many problems faced in the research areas such as text
classification, object recognition and image classification
etc. In this active research area, the studies using deep
learning approaches mostly focus on dimensionality reduc-
tion [2]–[6] and anomaly-based intrusion detection [7]–[10].
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The KDDCUP99 dataset [11], which includes packet-based
features, too, is used to evaluate the methods in the
studies [6], [12]. The NSL-KDD dataset [13], which is a
revised version of KDDCUP99, is used for evaluating the
methods proposed in the studies [3], [4], [6]–[8]. Main
drawbacks of these studies could be listed as follows: a) These
studies focus on the detection of intrusions in content-based
features. b) Dataset used is very outdated and does not reflect
the real network traffic [14].

As the flow-based data contains less information on
the network traffic compared to payload-based data, it is
much harder to detect both known and unknown attacks.
In this study, the goal is to detect anomalous network traffic
(or intrusions) from flow-based data, which also contain
statistical properties of the flows using deep learning meth-
ods. Furthermore, Autoencoder (AE) andVariational Autoen-
coder (VAE) methods are employed to detect unknown
attacks, which mean the attacks are not used in training
phase by using the flow features extracted from network
traffic.

The main contributions of the study are summarized as
follow:

• This study concentrates on detection of network attacks
from flow-based features, based on anomaly-based
approach.

• AE and VAE, which are unsupervised deep learn-
ing methods, are employed together with OCSVM
as anomaly detectors and they are trained in a
semi-supervised learning manner. In addition, unlike the
previous studies mentioned above, this study is unique
as it uses deep learning methods for detecting intrusions
based on flow-based data.

• It is shown that VAE-based anomaly detection system
performs much better compared to others based on the
detailed discussion of ROC and AUC results.

The article is organized as follows. In the next section, the
studies carried out on flow-based intrusion detection in the
literature are summarized. In the third section, the theoretical
information on the techniques and evaluation metrics are
provided. The experimental methodology and results are
presented in the fourth section. The final remarks are
provided in the last section.

II. RELATED STUDIES
The flow-based intrusion detection is on the rise and research
made in this field are gathering pace. In recent years,
numerous methods have been proposed, which used flow
data for identifying intrusions. In this section, a review
of recent trends and particular state-of-the-art algorithms
that detect intrusions from flow-based data are summarized.
These include Artificial Neural Networks (ANN), Support
Vector Machines (SVM), K-Nearest Neighbor (KNN), Deci-
sion Trees, clustering and statistical techniques. A more
comprehensive and detailed analysis of flow-based intrusion
detection can be found in studies of [15] and [16].

The objective of ANNs is to model the human brain,
by mimicking neurons, which are small interconnected input
units. Each neuron in ANN participates in decision making,
and the results are combined. Behaviors of users are modelled
by ANNs to find a way to detect anomalies. Numerous
ANNs used for anomaly-based IDSs were discussed by
Beghdad [17]. Sui et al. [18] proposed an anomaly detection
system that used a back-propagation neural network classifier
and statistical feature vectors. They considered three scenar-
ios of resource depletion, DoS attacks, bandwidth attack and
a combination of bandwidth attack and resource depletion
using network flow records with DoS attacks. Tran et al. [19]
proposed a hybrid detection engine, which used block-based
neural network (BBNN) as the detection method. In order to
generate a real-time IDS, which was supplied by NetFlow
data, it was added in a high-frequency FPGA board.
Abuadlla et al. [1], proposed an IDS to detect and classify
certain intrusions in flow-based data, which consisted of two
phases. In the first phase, significant changes are monitored
to identify potential attacks. In the second phase, if an attack
is known, multi-layer and radial basis function networks
are used to classify the attack. Jadidi et al. [20] proposed a
method that was based on Multi-Layer Perceptron (MLP)
in order to detect abnormal traffic in flow-based data. The
interconnection weights of MLP are optimized by using
Cuckoo and particle swarm optimization with a gravitational
search algorithm (PSOGSA). Mirsky et al. [21] proposed
Kitsune, which was an online anomaly detection system that
identified the attacks on a local network by employing a group
of ANNs named AEs, to cooperatively distinguish between
normal and abnormal traffic patterns with a performance
comparable to offline anomaly detectors. Marir et al. [22]
presented a novel distributed method for identifying abnor-
mal behavior utilizing a group of multi-layer SVMs together
with a deep feature extraction in largescale networks. In the
approach proposed, a non-linear dimensionality reduction
was initially performed with a distributed deep belief
networks on network traffic data and then the features
extracted were provided as inputs to the multi-layer group of
SVMs which were constructed through the iterative reduce
paradigm based on Spark. Vinayakumar et al. [23] explored
a deep neural network (DNN) to create a useful and flexible
IDS, named ‘‘scale-hybrid-IDS-AlertNet’’, and to identify
unforeseen and unpredictable intrusions via supervised
learning approach. They selected the network topologies and
optimal network parameters for DNNs by applying various
hyperparameter settings with KDDCup99 and the best
performed DNN model was also applied on other contents-
and flow-based public datasets to carry out benchmarks.

The SVM is a classification method, which transforms
an n-dimensional input data into classes by generating
vectors in the space. In the research area of intrusion
detection, SVM is the method preferred as it provides results
in lower false positive rates and higher accuracies [74].
Winter et al. [24] proposed an inductive network IDS, which
functioned on network flows and used OCSVMs for analysis.
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Instead of benign flows, the IDS proposed was trained
with malicious data, as opposed to the previous approaches.
Wagner et al. [25] presented an anomaly detection method
by processing large volumes of Netflow records based on
SVM. The method in which the quantitative and contextual
information of Netflow data was considered was carried
out by feeding the Netflow records into kernel function
and forwarding the calculated results to an OCSVM.
Umer et al. [26] proposed an intrusion detection model,
which handled the flow data. The two-stage model developed
used OCSVM method in order to identify malicious flows
efficiently and then forwarded the malicious traffic to
the second phase of the detection process. The detailed
analysis of malicious flows was conducted in the second
phase.

K-Nearest Neighbor (KNN) takes into account the knowl-
edge of adjacent points to perform classification in the
example given. Shubair et al. [27] suggested a flow-based
IDS exploiting the benefits of KNN method with the
combination of fuzzy logic. The study used Least Mean
Square method to perform error reduction and KNN to pick
out the best matching class and fuzzy logic for selecting
the flow class label. Costa et al. [28] proposed an intrusion
detection method employing Optimum-path forest clustering
(OPFC), which was a KNN graph utilizing probability
density function for weighing of nodes. The authors made use
of enhanced nature inspired techniques (Gravitational Search,
Bat Algorithm, Particle Swarm Optimization, and Harmony
search) to decide the value of k in the optimization of OPFC.

Clustering methods are used to detect unique and ben-
eficial patterns in the dataset. The aggregation of the
similar examples in different clusters is performed using
these patterns. In order to detect network flow anomalies,
Lakhina et al. [29] employed the clustering methods by
analyzing the feature distributions. Casas et al. [30] presented
an anomaly-based IDS, which collected packets from the
network and gathered these packets together into flows
randomly by employing multiple unsupervised clustering
techniques. In this study, a change detection algorithm, which
utilized sub-space and density-based clustering that produced
subsets of data in each sub-space, was employed to take
apart the malicious flows. Hosseinpour et al. [31] proposed a
distributed IDS based on unsupervised clustering combined
with Artificial Immune System. The method proposed
used DBSCAN clustering method to label traffic data as
malicious or non-malicious and made available real-time and
online data in order to train the immune response detectors
located around hosts of the networks. The Ward Clustering
approach was recommended by Satoh et al. [32] to identify
simple and malicious attacks from the SSH dictionary. The
detection process was performed based on ‘‘the existence
of a connection protocol’’ and ‘‘the inter-arrival time of
an authentication-packet and the next’’ by identifying ‘‘the
transition point of each sub-protocol’’ through flow features.

Decision Trees (DTs) generate a tree model by building
rules based on the attribute value of each node of the

tree. Thaseen and Kumar [33] discussed application of
different DT-based classification algorithms for intrusion
detection. Zhao et al. [34] proposed a simple and efficient
flow-based approach to identify both known and novel
botnets by employing a DT approach with Reduced Error
Pruning method to build a model for classifying the botnets.
Haddadi et al. [35] suggested an alternative approach for
identifying the behaviors of botnets based on genetic
programming and DTs. The suggested method used two
different sets, which were common flow attributes and
TCF flags attributes, extracted from the datasets. Stevanovic
and Pedersen [36] presented an effective botnet detection
approach using flow records of a 39-feature set employing a
collection of supervised machine learning methods. Accord-
ing to results, the overall best performance was achieved by
Random Forest method.

The statistical methods used in literature can be summa-
rized as follows. Kanda et al. [37] suggested an anomaly
detection method, called ADMIRE, based on random pro-
jection and Principal Component Analysis (PCA) to identify
abnormal network flows. The assessment was carried out
using the traffic traces from a transpacific connection.
Haghighat and Li [38] proposed a novel entropy-based
method, called as Edmund, to identify abnormal behavior and
mitigate network intrusions by using NetFlow traffic data.

III. BACKGROUND
A. AUTOENCODER
Autoencoder (AE) [39], [40] is a neural network method,
which has an operating logic that trains the input vectors
to reconstruct as output vectors with an unsupervised
approach [41]. Its architecture is basically constructed by an
encoder and a decoder. A single layer of AE has an encoder
and a decoder as in (1) and (2), respectively. In this context,
σ is the nonlinear transformation function and b and W
are called the bias and the weight of the neural network,
respectively [42].

h = σ (Wxhx + bxh) (1)

z = σ (Whxh+ bhx) (2)

r = ‖x − z‖ (3)

By using an affine mapping resulting in a nonlinearity, the
transformation of the input vector x to a hidden representation
h is performed using the encoder. The transformation
operation is applied to hidden representation h to reconstruct
the initial input space using a decoder. The reconstruction
error r is obtained by taking the difference between the
reconstructed vector z and the original input vector x. In order
to minimize reconstruction error r , unsupervised training
procedure is accomplished in AE. The flow chart of the AE
training algorithm can be illustrated as in Fig. 1.

AE-based anomaly detection is accomplished using the
reconstruction error (RE) as the anomaly score. The input
data with high RE are assumed to be anomalies. The training
of AE is performed by feeding the network input with only
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FIGURE 1. The flow chart of AE training algorithm.

normal examples. The trained AE model will reconstruct
normal input data with very low RE, where it is unsuccessful
to do so with anomalous data it has not confronted before.
The flow chart of AE-based anomaly detection algorithm can
be illustrated as in Figure 2.

B. VARIATIONAL AUTOENCODER
Variational Autoencoder (VAE) [43] is defined as a directed
probabilistic graphical model, which is obtained by approx-
imation of an artificial neural network to its posterior [42].
In VAE, the latent variable z in which the generative
process begins, is the highest layer of the graphical model.
The complicated procedure of data generation, which leads
to the data x, is represented by g (z) that is modeled
in the formation of an artificial neural network. Because
the marginal likelihood is intractable, the variational lower
boundary of the marginal likelihood of input data is the
objective function of VAE. The marginal likelihood is
obtained by summing of the marginal likelihood of distinct
data points in (4). Equation (5) is obtained if the marginal
likelihood of distinct data points are reformulated [42].

log pθ
(
x(1), . . . , x(N )

)
=

∑N

i=1
log pθ

(
x(i)
)

(4)

log pθ
(
x(i)
)
≥ L

(
θ, φ; x(i)

)
(5)

= Eqφ(z|x(i))
[
−log qφ (z|x)+ log pθ (x|z)

]
(6)

= −DKL(qφ(z|x(i))||pθ (z))+ Eqφ (z|x(i) [log pθ (x|z)] (7)

FIGURE 2. The flow chart of AE-based anomaly detection algorithm.

In Equation (7), DKL is the Kullback–Leibler divergence
between the approximate posterior and the prior of the latent
variable z. The likelihood of the input data x given the latent
variable z is represented as pθ (x|z).

FIGURE 3. VAE architecture [42].

The parameters of the approximate posterior qφ (z|x)
is achieved with a neural network by VAE. The directed
probabilistic graphical model pθ (x|z) is the decoder and the
approximate posterior qφ (z|x) is the encoder as illustrated
in Fig. 3. In this context, it must be emphasized that the
purpose of VAE is to model the distribution parameters
instead of actual value. That is, f (x, φ) in the encoder
produces the parameter of the approximate posterior qφ (z|x)
and to achieve the actual value of the latent variable z,
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sampling from q (z, f (x, φ)) is needed. The common choice
is the isotropic normal for the distribution of latent variable z,
which are pθ (z) and qφ (z|x), since the relationship included
in variables in latent variable space is expected to be a lot
simpler than the original data space. The distributions of
the likelihood pθ (x|z) vary according to the nature of the
data. More specifically, multivariate Gaussian distribution is
applied when the input data is in continuous form. If it is
binary, Bernoulli distribution is used [42]. The flow chart of
VAE training algorithm can be illustrated as in Fig. 4.

FIGURE 4. The flow chart of VAE training algorithm.

The training of VAE is executed by using the backpropa-
gation algorithm [42]. The second term on (7) is computed
using Monte Carlo gradient techniques in conjunction with
a reparameterization approach, which employs a random
variable from a standard normal distribution rather than a
random variable from the original distribution. The random
variable z ∼ qφ (z|x) is reparametrized by a deterministic
transformation hφ (ε, x) where ε is from a standard normal
distribution.

z̃ = hφ (ε, x) with ε ∼ N (0, 1) (8)

The reparameterization operation is supposed to guarantee
that z̃ follows the distribution of qφ (z|x).

The anomaly detection task is performed in a semi-
supervised way, meaning that just normal data examples
are used to train VAE [42]. The probabilistic decoder gθ
and encoder fφ both parameterizes an isotropic normal
distribution in the original input variable space and the latent
variable space, respectively. The testing process is carried
out by selecting several examples from the probabilistic
encoder of the trained VAE model. The probability of the
original data produced from the distribution is computed
using mean and variance parameters, which are generated
by the probabilistic decoder or each example from the
encoder. The average probability, which is also called the
reconstruction probability (RP), is used as an anomaly score.
The RP is the Monte Carlo estimation of

Eqφ(z|x)
[
log pθ (x|z)

]
(9)

The stochastic latent variables, which produce the param-
eters of the original input variable distribution are utilized
to compute the RP. This is fundamentally equivalent to
the probability of the data being produced from certain
latent variables taken out of the approximate posterior
distribution.

RP computed in VAE differs from RE calculated in
AE in some ways [42]. First of all, while latent variables
are expressed as deterministic mappings in AE, they are
defined as stochastic variables in VAE. The variability of
the latent space can be taken into consideration from the
sampling process due to the fact that VAE employs the
probabilistic encoder to model the distribution of the latent
variables instead of the latent variable itself. This extends
the meaningfulness of VAE in comparison with AE since
the variability can vary although anomaly data and normal
data may possibly have an identical mean value. Secondly,
reconstructions are stochastic

variables in VAE. RP not only takes into account the
difference between the original input and the reconstruction,
but also considers the variability of the reconstruction by
taking into account the variance parameters. The selective
sensitivity to reconstruction in accordance with variable
variance is empowered by using this feature, which is not
available in AE due to its deterministic nature. Thirdly,
probability measures correspond to reconstructions. In AE
based anomaly detection, anomaly scores are generated using
REs. In that sense, the calculation of anomaly scores would
be challenging if the input variables were heterogeneous
because of the unavailability of a general objective technique
to determine the suitable weights, which vary depending on
the data. In addition to this, the determination of a proper
and objective threshold for RE is a problematic process.
On the other hand, as the probability distribution of every
single variable enables them to be independently computed
by its individual variability, the computation of the RP
doesn’t need weighing of the RE of the heterogeneous data.
Therefore, it can be concluded that the determination of the
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threshold value of the RP can be performed in significantly
more objective and readily comprehensible way than that of
the RE.

FIGURE 5. The flow chart of VAE-based anomaly detection algorithm.

C. ONE CLASS SUPPORT VECTOR MACHINE
Support Vector Machine (SVM) was originally suggested
by Boser et al. [44]. The primary objective of SVM is
to find out the best machine for a given dataset. SVM
accomplishes this objective by maximizing the correctness
of the machine for a given training dataset. In addition
to this, the ability of the machine is also maximized in
order to classify the forthcoming testing datasets accurately.
The best machine is discovered by utilizing a mathematical
optimization method [45].

The SVM method is modified into a One-Class
SVM (OCSVM) as explained in [46]. The dataset, which is
given as an input to the algorithm in OCSVM, consists of
examples belonging to two different classes, namely positive
and negative. Noises in the positive samples in the dataset,
which are also defined as ‘‘anomalies’’ or ‘‘outliers’’, are
employed as negative examples. The formulation of OCSVM

can be carried out as follows [46]:

f (x) =

{
+1, if x ∈ S
−1, if x ∈ S

(10)

The working logic of the algorithm is as follows. The input
data is first transformed into a feature space H by applying
a suitable kernel function. Then, the algorithm proposed
attempts to find a hyperplane to separate these transformed
feature vectors from the origin by maximum margin [47].

Given a dataset (x1, y1), . . . , (xN , yN ) ∈ Rn × {±1}, let
φ:Rn → H be a kernel map, which maps the examples
into H . Afterwards, in order to separate the dataset from the
origin, following quadratic programming problem needs to
be resolved:

min(
1
2
||ω||2 +

1
νN

l∑
i=1

ξi − ρ) (11)

subject to

yi(ω · φ(xi)) ≥ρ − ξi, ξi≥ 0, i = 1, . . . ,N (12)

The parameter ν ∈ (0, 1) refers to the ratio of ‘‘anomalies’’
or ‘‘outliers’’ in the training dataset. It regulates the tradeoff
in between, including most of the data in the region formed
by the hyperplane and maximizes the distance from the
origin. Some outliers are located outside the border by means
of the slack variables ξi. The decision function f (x) =
sign ((ω · φ (x))− ρ) will be positive for most examples xi
in the training dataset. Since the separation of some datasets
cannot be performed linearly, the kernel functions, such as the
radial basis kernel [48] and polynomial kernel, are generally
used in SVMs to transform the inputs to high dimensional
space to achieve linear separability.

D. EVALUATION METRICS
The evaluation of the proposed method should be performed
using an appropriate metric. For a binary classification,
the results can be separated into four groups [49], [50]:
1) True Positive (TP): Positive examples correctly classified;
2) False Negative (FN): A positive example misclassified;
3) False Positive (FP): A negative example misclassified;
4) True Negative (TN): A negative example correctly
classified. Furthermore, subsequent metrics can be calculated
from the previous ones [50]:

True Positive Rate (TPR): This metric corresponds to the
ratio of all ‘‘correctly identified examples’’ to all ‘‘examples
that should be identified’’.

TPR = TP/(TP+ FN ) (13)

False Positive Rate (FPR): This metric represents the ratio
of the ‘‘number of misclassified negative examples’’ to the
‘‘total number of negative examples’’.

FPR = FP/(FP+ TN ) (14)

Receiver Operating Characteristics (ROC): The ROC
curve [51], [52] is utilized as a standard criterion in the
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assessment of classifiers in the case of a class imbalance
problem encountered in the dataset [53]. The ROC curves
attempt to accomplish skew insensitivity by providing the
summary of the efficiency of classifiers on a range of TPRs
and FPRs. The ROC curves can decide which percentage of
examples will be properly classified for a certain FPR by
assessing the trained models at different error values. The
ROC curves offer an illustrated approach for deciding the
efficiency of a classifier [53].

The area under the ROC curve (AUC) metric is utilized
as a de facto standard in order to measure the efficiency of
classifiers facing class imbalance problem. The reason behind
is that AUC is not influenced by prior probabilities and the
chosen threshold. In addition, it provides a single number
to make comparison between classifiers. The AUC can be
taken into consideration to estimate how frequently a random
positive class example ranks higher than a negative class
example after it is ordered by its classification probabilities.
The AUC values are always bounded between 0 and 1.
If AUC value is less than 0.5, it means that the classifier is
unrealistic [54]. A rough classifying system can serve as a
guidance to the test accuracy as follows [55]: i) Excellent
(0.90-1), ii) Good (0.80–0.90), iii) Fair (0.70–0.80), iv) Poor
(0.60–0.70), v) Fail (0.50–0.60).

IV. EXPERIMENTAL RESULTS
Semi-Supervised Learning (SSL) paradigm is employed as
learning strategy. SSL covers several different settings includ-
ing [56]: a) Semi-supervised classification: Its alternative
name is classification with labelled and unlabeled data (or
partially labelled data). This emerged as an extension to the
supervised classification problem. b) Constrained clustering:
This strategy extends unsupervised clustering by using
training data consisting of unlabeled examples in addition
to a number of ‘‘supervised information’’ on clusters. SSL
strategy of constrained clustering was chosen as unlabeled
data were easier to get for the intrusion detection system
than labelled data by virtue of the fact that it required
less knowledge, time, and effort. Moreover, this strategy is
more appropriate for the unsupervised training nature of the
detection methods utilized.

FIGURE 6. The semi-supervised learning strategy.

As seen in Fig. 6, the dataset is broken down into two
parts as training and testing dataset. By applying the SSL

strategy, the labelled dataset, which contains only normal
flow features is used in training phase to create the normal
profile of network traffic, and in any case, the unlabeled
dataset consisting of both normal and attack flow features
is used in the testing phase. It is important to mention that
labels in the testing dataset are taken into consideration for
calculating the evaluation metrics in this study.

A. DATASET SETUP
In order to evaluate the methods used for intrusion detection,
a proper dataset needs to be used. Intrusion detectionmethods
that are referred to in the literature are evaluated through
several datasets. Many researchers use KDDCUP99 and
NSLKDD datasets to assess the models trained as mentioned

in Section I. However, KDDCUP99 dataset suffers from
the high redundancy problem in the training and test datasets.
NSL-KDD dataset was generated from KDDCUP99 to
resolve this issue. But, another issue, which is not addressed
by NSL-KDD, is that this dataset is not a realistic rep-
resentation of network traffic [14]. Additionally, although
these datasets include some flow-based features, they mostly
contain packet-based (content) features. As this study aims
to detect the attacks from flow-based features, some of
the candidate flow-based datasets are Kyoto 2006+ [57],
CTU-13 [58], UNSW-NB15 [59], CIDDS-001 [60] and
CICIDS2017 [61].

Kyoto 2006+ is a publicly accessible dataset, which
encompasses real network traffic including numerous attacks
performed against honeypots such as DoS, malware,
backscatter, port scans, exploits and shellcode. But it contains
merely a small amount of data and a small range of realistic
normal user behavior with both statistical information and
flow-based attributes. The CTU-13 was obtained in a campus
network by characterizing 13 scenarios covering various
botnet attacks and is accessible in the forms of packet,
bidirectional flow, and unidirectional flow. The UNSW-
NB15 was generated in a small emulated network over
31 hours by acquiring normal and malicious traffic in
packet-based format. The data set, which is also offered in
the form of flow dataset with extra features, comprises of
nine distinct categories of attacks such as DoS, backdoors,
fuzzers, worms or exploits, with predetermined separations
for training and testing. The CIDDS-001 was acquired from a
small emulated network by implementing the user behaviors
of normal and malicious users by executing python scripts.
It covers four weeks of unidirectional flow-based network
traffic as well as network attacks including DoS, SSH brute
force and port scan. The CICIDS2017 was produced in an
emulated network environment within 5 days and covers
network traffic in packet-based format as well as flow-based
format including more than 80 extracted attributes with extra
metadata information on IP addresses and a wide range of up-
to-date attack types including FTP patator, SSH patator, DoS
slowloris, DoS Slowhttptest, DoS Hulk, DoS GoldenEye,
Heartbleed, Brute force, XSS, SQL Injection, Infiltration,
Bot, DDoS and Port Scan.
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Among aforementioned datasets, CICIDS2017 was
selected for evaluation purposes due to the fact that:
1) It includes various types of attacks, which had been
carried out on networks recently, according to a McAfee
report [62], [23], 2) It is up-to-date, 3) It is a labelled
dataset consisting of flow-based features expanded by
measuring some parameters statistically, 4) It possesses the
characteristics of a real-time network traffic [23], 5) It is
non-linearly separable [23]. Table 1 presents the number of
flow examples in CICDS2017 categorized by attack type and
day. It should be noted that the only drawback of the dataset
is that the distribution of the classes is highly imbalanced as
specified in Table 1.

B. MODEL SETUP
In this section, discussion is made on how the configuration
of the AE, VAE and OCSVM methods is made and how the
selection of their parameters is carried out to achieve the best
anomaly-based intrusion detection model.

By virtue of the fact that the methods used in this study
are parametrized, the performance of the models need to be
determined by the optimal parameters. The cross-validation
task cannot be performed in the optimization of hyperparam-
eters as the training process is not executed using anomalous
data [63]. Thus, the tuning of hyperparameters is performed
by taking into consideration the recommendations proposed
by Patterson and Gibson [64]. After that, the hyperparameters
of AE and VAE are mostly configured using rule of thumb.
The default values of the library are used in the configuration
of OCSVM model.

FIGURE 7. The architectural diagram of AE and VAE used in models.

A simple form of deep autoencoder architecture was
chosen to perform experiments. The architectural diagram
of AE and VAE is illustrated in Fig. 7. For both AE and
VAE, the encoder has two hidden layers with 512 and
256 dimensions and the decoder has two hidden layers with
256 and 512 dimensions, respectively. The bottleneck layer
(latent dimension) of both AE and VAE has 64 dimensions.

In the determination of the best-performed models of both
AE and VAE, the dimensions in the layers were specified
with trial and error by keeping the number of layers
constant. The parameter settings used in the neural network
configuration of both AE and VAE are as follows: The
learning rates such as [0.1, 0.01, 0.001] and the momentums
such as [0.3, 0.5, 0.9] are used in the training trials. The
best-performed values are 0.001 for the learning rate and
0.3 for momentum. The parameter of l2 regularization [65]
is set to the commonly used value of 0.001 and Xavier [66]
is used as weight initialization method, which is the default
in the library and is recommended if ReLU is employed
in the hidden layers [64]. Both neural networks are trained
with the backpropagation algorithm using conjugate gradient
optimization algorithm, which is a recommended choice
for large datasets and real-valued outputs [64]. Nesterovs
updater [67] is selected because it uses the momentum that
supports the learning procedure to escape local minima and
discover better solutions to the optimization process [64].
The additional parameters used in VAE configuration are as
follow. Leaky Rectified Linear Unit [68] is used in hidden
layers as activation function. It is preferred over sigmoid
or tanh since it resolves the ‘‘dying ReLU’’ problem of
the vanilla ReLU and the vanishing gradient problem of
sigmoid/tanh [64]. Gaussian reconstruction distribution is
used with hyperbolic tangent (tanh) pzx activation function
because the type of data being modeled is real-valued [42].
In the additional parameters used in AE configuration,
which are commonly used and constitute the basis of the
studies such as [41], [69], the sigmoid activation function
is used, except for the output layer employing soft-max
activation function [65], withmean square error loss function.
Both AE and VAE neural networks were implemented with
deeplearning4j library [70] and trained in 1000 epochs with
a batch size of 8192.

In OCSVM, radial basis function was used as a kernel
with the default parameters, where γ (gamma) was set to 0.5,
the cost parameter Cwas set to 1 and the parameter v (nu) was
set to 0.5. The model was created using LibSVM library [71].

As an anomaly score, the RP is used in VAE, the RE is used
in AE, and the prediction score is used in OCSVM without
applying any threshold (if the score is less than 0, the example
is an anomaly, else it is normal).

C. PERFORMANCE EVALUATION
Initially, the normalization was carried out in the features
of the dataset using the feature scaling method [72], which
was also called unity-based normalization, to bring all values
into the range [0,1]. Separate training and test datasets were
used to assess the performance of the methods. The models
were created by training the neural network with only normal
flow data on ‘‘Monday’’. The reason is that the models are
trained in unsupervised approach, the last column in dataset
corresponds to attack class that is not used in training. Both
the normal and attack traffic in other days were used for
the testing process. In the testing process, all the classes
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TABLE 1. The number of examples in CICDS2017 dataset categorized by attack type and day.

except ‘‘normal’’ or ‘‘benign’’ are considered as ‘‘anomaly’’.
In the performance evaluation of an attack class, the metrics
are calculated only using the normal flow records and flow
records of that attack class excluding all the other attack
classes. For example, in the evaluation of ‘‘FTP-Patator’’
attack, ‘‘1829371’’ normal flow records and ‘‘7938’’ attack
flow records are used. Another evaluation strategy is also
performed by combining all attacks into one class ‘‘anomaly’’
other than ‘‘normal’’ in order to comprehend if the methods
can discriminate the unknown attacks from normal traffic.

The performance evaluation of methods is accomplished
by using both ROC and AUC metrics. An evaluation that
is based on AUC measure, is carried out as it is the de
facto standard in unsupervised anomaly detection along
with its feasible interpretability [73]. More specifically,
the whole ROC curve is summarized while the performance
is aggregated over the entire range of threshold values [73].
ROC based evaluation was performed as it was insensitive
to class distribution and also to demonstrate that one method
could perform better than another in different thresholds
(corresponds to different FP values in ROC graph).

The AUC results of the methods are given in Table 2.
In addition, the ROC curves of the algorithm applied to
different kinds of unknown (meaning not trained) attacks
are demonstrated in Fig. 8. The AUC results and the
interpretation of ROC curves are explained as follows.
An academic point system was also used as a guide in the
interpretation of AUC results.

If the AUC values in Table 2 are analyzed in general, it is
realized that VAE performs better than the other twomethods,
and OCSVM performs poorly, except for some attacks.
Moreover, some attacks have excellent or good AUC values
for all three methods, while others show poor or unrealistic

TABLE 2. The AUC results of the methods for specified attacks.

performance which indicate they fail to distinguish attacks or
abnormal cases from normal. It is observed that VAE detects
abnormal cases better than AE does in the occurrence of
high-rate of attacks such as various kinds of DoS attacks and
DDoS, and both of them exhibit good performance. In the
attacks of ‘‘SSH Patator’’, ‘‘Web Attack – SQL Injection’’,
‘‘Bot’’ and ‘‘Portscan’’, it is noticed that all three methods
perform poorly. Although each one contains a different
number of attack samples and is in different attack categories
such as brute force, web application attack, bot, and port
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FIGURE 8. The ROC curve of (a) normal vs FTP-Patator, (b) normal vs SSH-Patator, (c) normal vs DoS Slowloris, (d) normal vs DoS Slowhttptest, (e) normal
vs DoS Hulk, (f) normal vs DoS GoldenEye, (g) normal vs Heartbleed, (h) normal vs Web Attack-Brute force (i) normal vs Web Attack-XSS, (j) normal vs
Web attack-SQL injection, (k) normal vs infiltration, (l) normal vs Bot, (m) normal vs DDoS, (n) normal vs PortScan, (o) normal vs all attacks.

scan respectively, it can be seen that none of the training
models of all three methods are able to distinguish these
attacks sufficiently. Consequently, additional research needs

to be carried out to improve the performance of the models
and to differentiate between these attacks by appending
further different flow-based features or data or employing
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more highly developed machine learning methodology. It is
interesting to see that all three methods appear to exhibit good
and excellent performances in the cases of ‘‘Infiltration’’ and
‘‘Heartbleed’’ attacks, respectfully. The reason for this may
be that the certain attack types are in small numbers in the
dataset, so further research need to be conducted to confirm
this assumption by increasing the number of samples of these
attacks.

By combining all attacks types as an anomaly to calculate
a single AUC result and ROC curve, how the methods behave
when ‘‘All attacks’’ take place in the network can be assessed.
According to AUC results, VAE wins over all others with
fair performance. The AE also displays fair performance
whereas the performance of OCSVM is poor. This denotes
that the ability of VAE and AE to model normal network
traffic is quite successful in detecting fourteen different types
of unknown intrusions in wide variety of attack categories.
Moreover, it should be noted that although the number of
data samples used in training process (about 19% of the total
dataset) is much less than the number of data samples used
in the testing process (about 81% of the total data set), the
good performances of both VAE and AE clearly show that
these methods are highly capable of detecting the intrusions
or anomalies from flow based features. The use of much
more normal data samples in training (ratios of commonly
used splitting is 70% for training and 30% for testing in
supervised learning approach) when building the model of
normal network traffic from flow features can increase the
performance ratio even further.

If all ROC curves in Fig. 8 are examined, it is seen that
the attacks having the same behavioral nature exhibit similar
ROC curves in VAE even if it is not applicable to all attacks.
For example, the ROC curves of ‘‘Web Attack-Brute force’’,
‘‘Web Attack-XSS’’ and ‘‘Web Attack-SQL Injection’’ proves
this assumption right. Another similar observation can be
made for ‘‘FTP Patator’’ and ‘‘SSH Patator’’ in the category
of brute force. Even though AUC values of VAE and AE
methods yield good performance, the indicators that make it
difficult to use these methods in real life scenario without any
supplementary methods are clearly noticed in ROC curves.
Moreover, all ROC curves show that no high TP values
could be obtained in the low FP values in almost any of
the attack types (except Heartbleed). This observation can be
interpreted as it is not easy to determine a proper threshold
value that provides high detection accuracy or low false alarm
rate in a practical intrusion detection system.

V. CONCLUSION
In this study, the detection capabilities of AE and VAE deep
learning methods together with OCSVM were analyzed by
applying a semi-supervised learning strategy. The creation
of the models was carried out using normal flow-based
data only. Moreover, the testing of the models was realized
by using both normal and anomaly data. The experimental
results were computed in terms of ROC curves and AUC
metrics. Based on the results, the detection rate of VAE is

better, for the most part, than AE and OCSVM. However,
it is also important to mention that the methods need to be
supported by supervised learning methods due to their high
false alarms. Furthermore, in order to increase the detection
rate of methods, the flow-based features collected at specified
time intervals can be considered due to the fact that the
characteristics of some attacks could be better modelled.

We thank Google by providing free credit in order to
be able to use its infrastructure for training and testing
algorithms.
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