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ABSTRACT We show that precise knowledge of epidemic transmission parameters is not required to
build an informative model of the spread of disease. We propose a detailed model of the topology of the
contact network under various external control regimes and demonstrate that this is sufficient to capture the
salient dynamical characteristics and to inform decisions. Contact between individuals in the community is
characterised by a contact graph, the structure of that contact graph is selected to mimic community control
measures. Our model of city-level transmission of an infectious agent (SEIR model) characterises spread
via a (a) scale-free contact network (no control); (b) a random graph (elimination of mass gatherings); and
(c) small world lattice (partial to full lockdown— ‘‘social’’ distancing). This model exhibits good qualitative
agreement between simulation and data from the 2020 pandemic spread of a novel coronavirus. Estimates of
the relevant rate parameters of the SEIR model are obtained and we demonstrate the robustness of our model
predictions under uncertainty of those estimates. The social context and utility of this work is identified,
contributing to a highly effective pandemic response in Western Australia.

INDEX TERMS Agent based model, complex network, infectious diseases, propagation on networks.

I. INTRODUCTION
Modelling of disease transmission via compartmental models
is well established and generally highly effective. However,
the differential equations of these models depend on good
estimates of underlying rate parameters and will then provide
a continuous solution under the assumption that the popula-
tion is well-mixed and homogeneous (i.e. all individuals have
equal contact with all others). Under these assumptions dis-
ease propagation is driven by the parameter R0 — the ratio of
the rate of new infections to the rate of removal of infectious
individuals from the transmission pool. Typically, and par-
ticularly for contemporary and evolving transmission, these
parameters can be somewhat difficult to estimate [1], [2].

We propose an alternative approach to modelling the
dynamic transmission of diseases. A consequence of this
alternative approach is that the main determinant of epidemic
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dynamic behaviour is the contact network between individ-
uals rather than precisely chosen optimal values of epidemic
rate parameters. The physics literature is rife with models of
propagation dynamics on networks. We observe that different
societal control measures manifest as distinct topological
structures and model city-level transmission of an infectious
agent. Our approach models changing control strategies by
changing the features of the underlying contact network with
time. This approach allows us to model the likely time course
of a disease and, perhaps surprisingly, we find that this
approaches is both quantifiable and robust to uncertainty of
the underlying rate parameters.

This report is intended as a guide to computational mod-
elling of reported epidemic infection rates when good esti-
mates of underlying epidemiological rate parameters are not
available. The model provides a useful prediction of cur-
rent control strategies. Nonetheless, we emphasise that the
methodology and techniques are not (of themselves) novel,
they have been discussed extensively in the references cited
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herein. The primary novel contribution of this paper is the
interpretation of complex network topologies as the principal
relevant parameter to characterise control, and a commentary
on the live application of this approach in pandemic response
and recovery. While global efforts to model the spread and
control of coronavirus continue, we are taking a decidedly
local approach. We focus our modelling and discussion on
transmission in Australian cities, which we characterise as
large heterogeneous populations. In particular, we focus on
the most isolated of all cities in Australia, Perth, the capital
of Western Australia. For the purposes of this manuscript
we treat Perth as a single isolated urban centre of approx-
imately 2 million people. Epidemic parameters, which we
describe later, either follow established epidemiological val-
ues or are estimated to fit the time course of infection data.
While our model is specific to one city, we intend that
the methods and conclusion are generic and will be useful
elsewhere.

Our model is a model of contact graphs. Different contact
graphs are utilised to model different contact patterns within
the population and hence model the effect of different control
measures. In Sec. II we introduce and discuss a small amount
of the most relevant literature, and in Sec. III we proceed to
describe our model.

II. BACKGROUND
It is no exaggeration to say that pandemic spread of infectious
agents has very recently attracted wide interest. Mathematical
epidemiology is a venerable and well respected field [3].
Propagation of disease in a community is modelled, under the
assumption of a well-mixed and homogeneous population via
differential equations characterisingmovement of individuals
between disease classes: susceptible (S), exposed (E), infec-
tious (I) or removed (R).

The standard compartmental (i.e. SIR) model dates back to
the mathematical tour de force of Kermack and McKendrick
[4]. The model assumes individuals can be categorised into
one of several compartments: S or I; S, I or R; or, S, E, I,
or R being the most common. Transition between the various
compartments is governed by rate parameters a and r and it is
the job of the mathematical epidemiologist to estimate those
rates—and hence, when dI

dt < 0 and the transmission is under
control. In the standard SIR formulation the condition dI

dt < 0
can be expressed as aI (t)

r ≡ R0 < 1. Somewhat confusingly,
R0 is also used in the physics literature to denote the threshold
itself — as in [5] where R0 is derived in terms of moments of
the contact network degree distribution. Nonetheless, efforts
to estimate the relevant parameters for the coronavirus pan-
demic are currently underway and are best summarised (from
our local perspective) by the technical reports of Shearer et al
[6], Moss et al [7] and co-workers.

Conversely, the renaissance of interest in mathemati-
cal graphs under the guise of complex networks [8], [9],
has raised considerable interest in propagation of infec-
tious agent-like dynamics on such structures [10], [11].

Commonly, the agent is either modelling the spread of infor-
mation or infection. When one is restricted to the spread
of infectious agents on a network (in the context of epi-
demiology, a contact graph) several interesting features arise.
In particular, if that contact graph is a scale free network
(i.e. it has a power-law degree distribution), then the crite-
rion on the key epidemic threshold to ensure control of the
outbreak (for the SIS model) becomes R0 = 0 [5]. Disease
transmission becomes faster than exponential. In effect, what
happens is that the power-law distribution of the scale-free
network ensures that there is finite probability of the epi-
demic reaching an individual with an arbitrary large num-
ber of contacts. The number of secondary infections arising
from that individual will be unbounded and transmission is
guaranteed to persist. Of course, in the real-world nothing
is unbounded and Fu and co-workers [12] showed that a
piece-wise linear/constant infectivity was enough to ensure
a positive epidemic threshold.

Surprisingly, however, little of the work in the physics lit-
erature on epidemic transmission has examined transmission
on real-world networks. The first evidence (to the best of our
knowledge) that epidemic transmission did really occur on a
scale-free contact graph was provided by Small and others
[13] for the transmission of avian influenza in migratory bird
populations. Curiously, though, the data presented there gave
an exponent for the scale-free distribution of approximately
1.2, significantly lower than the often cited ‘‘usual’’ range
of (2, 3) — that is, the distribution not only had divergent
variance, but also divergent mean.

The emergence of an earlier coronavirus, associated with
the Severe Acute Respiratory Syndrome (SARS) in 2003,
provided an opportunity to apply the structures and concepts
of complex systems to the modelling of infectious diseases.
Small and Tse [14] introduced a complex network based
model of propagation and showed good agreement between
simulations of that model and available case data. They found
that epidemic parameters widely quoted in the literature
were only consistent with observed case data when including
significant nosocomial transmission [15]. Finally, and most
importantly for the current discussion, the scale-free topology
of the model [14] explained super-spreader events through
contact rather than requiring pathologically highly infectious
individuals [16].

Both the network-based models used to model SARS in
2003 [14]–[16], and the model we describe here are net-
work models of contact between individuals. Unlike what
we will propose in this current communication, the model
of SARS in 2003 was topologically stationary [14]–[16].
The model assumed a lattice with long-range (i.e. small-
world) connections following a power-law degree distribu-
tion. In those papers [14]–[16] time varying control strategies
were reflected only in changes of the rate parameters. The
current coronovirus outbreak (that is, COVID-19) poses a
different and unique challenge. Since February 2020 (and up
to the time of writing) global transport networks and daily
movement of individuals have been disrupted on a global

109720 VOLUME 8, 2020



M. Small, D. Cavanagh: Modelling Strong Control Measures for Epidemic Propagation With Networks

scale. Entire cities and countries have engaged in various
levels of ‘‘lockdown’’. We argue that it is neither appropriate
nor sufficient to model this simply by modifying the rate
of transmission or rate of removal. In the current work we
propose a network switching model through which the topol-
ogy of the network changes to reflect various changes in
government and communitymitigation and control strategies.

In Sec. III we introduce our model structure, and Sec. IV
explores analytic expressions for the epidemic growth rate.
In Sec. V presents our results for the case study of most
interest to us, and Sec. VI describes a process for optimising
model parameters based on observed caseload data.

III. THE MODEL
We assume nodes in our network can be in one of four states,
corresponding to the four states of the standard SEIR model:
susceptible S, exposed E , infected I , and removed R. Rates
govern the probability of transition between these states, with
transition from S to E occurring only through neighbour-to-
neighbour contact on the graph with a node in state I .
For comparison, the standard SEIR compartmental differ-

ential equation based formulation is given by [3]:

dS
dt
dE
dt
dI
dt
dR
dt


≡


S ′

E ′

I ′

R′

 =

−pSI

+pSI − qE
+qE − rI

rI

 , (1)

where p, q, r ∈ (0, 1] determine the rate of infection, latency
and removal respectively. Clearly, if we desire dE

dt +
dI
dt < 0

we need pS(t)
r < 1. The parameter q determines the average

latency period, and hence the ratio of p and r determines the
rate of spread.

The assumptions underpinning models of the form (1) are
that the population is fully mixed — that is, contacts exist
between all members of the population, or, rather, every indi-
vidual is indistinguishable and contacts occur at a constant
rate between individuals. One way to extend this model is to
introduce multi-group or stratified (perhaps by age, vulnera-
bility, comorbidity, or location) transmission models. Doing
so for coronavirus transmission is reasonable and has been
extensively covered elsewhere: for the Australian perspective
see [17], [18] However, this would require estimating distinct
values of p, q and r for each strata. We choose an approach
which has fewer free parameters1 and model infection at the
daily time scale.

Let A be an N -by-N binary symmetric matrix, aij = 1
iff individuals i and j are in contact. The matrix A is the
adjacency matrix of the contact network which wemodel. We

1Our model is a network. One could argue that a network of N individuals
has N (N − 1)/2 parameters pij governing contact between individual i and
j and (worse) potentially unique ri and qi for each individual. We prefer the
statistical physics approach of describing the key features of a network with
a very small number of parameters.

suppose that all individuals, excluding a small number who
are exposed (E), are initially susceptible (S). Then, at each
time step (each day):

S → E a susceptible node i becomes exposed if there exists
a node j that is infectious (I) and aij = 1 with
probability p;

E → I an exposed node becomes infectious with probabil-
ity q; and,

I → R an infectious node becomes removed (R) with prob-
ability r .

The model structure is depicted in Fig. 1. Structural patterns
of contact within the community are then modelled by vary-
ing the structure of the network A. In this paper we propose
distinct models corresponding to the different control strate-
gies. in the following four subsections, the control strategies
which we consider are: III-A no control, modelled with a
scale free network; III-B hard isolation, modelled as a lat-
tice; III-C no mass gatherings via a random graph; and III-D
‘‘social’’ distancing via a small-world network. We explore
these four distinct network structures in the following sub-
sections.

A. SCALE-FREE NETWORK B
Let B denote an N -by-N unweighted and undirected
scale-free network. For simplicity (and rapidity of calcula-
tion) we generate this network via the preferential attach-
ment algorithm of Barabasi and Albert [8] — there are
good reasons for not doing this (notably that the rich club
will be highly connected [19]–[21]). Nonetheless, simula-
tions presented here did not depend on the choice of the
Barabasi-Albert model over alternatives including the con-
figuration model or likelihood approaches [21]. The network
B is parameterised by k

2 the number of new edges associated
with each new node and sowe represent it asB(k) (if each new
node contributes k

2 new edges, then the mean degree will be
k). Here, to ensure comparable number of edges, we choose
k = 4.
The network B(k) provides a model of random contacts in

a community. There is ample evidence that individual con-
tact patterns follow an approximately scale-free distribution.
Specifically, in the context of the current pandemic, there is
clear evidence in large scale community spread of COVID-19
at sporting events and other mass gatherings which are well
modelled via the tail of a scale-free distribution [22]–[24].
Due to the random wiring of connections between nodes we
expect contact network B to yield at least exponential growth
of infection. The tail of the degree distribution is unbounded
and so the actual growth rate is greater than exponential.

B. REGULAR LATTICE L(0)
Let L denote a regular two dimensional lattice with periodic
boundary conditions. Each node has four adjacent neigh-
bours. For consistency with what follows we denote this as
L(0). Growth of infection on a lattice will be equivalent to dif-
fusion in two dimensions and hence the infected population
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FIGURE 1. Model flow chart. A Graphical representation of the model state transition process. Each node can be in one of four states S, E , I ,
or R with transition between them determined by probabilities p, q and r and the contact process of elements aij of the network adjacency
matrix A. Hence node-i has probability paij of being infected through contact with node-j .

will grow geometrically – in the case of the configuration
discussed here growth is sub-linear.

Lattice configuration is used here as an approximation to
hard isolation: individuals do not move in geographical space
and are therefore only connected to neighbours. Intuitively,
one might expect a hard isolation model to consist of small
isolated clusters corresponding to individual family units.
In addition to being uninteresting – for the very obvious
reason that transmission would cease – such a model is overly
optimistic. Transmission would still be expected to occur
between neighbours (in the ordinary sense of the word). The
regular lattice configuration model is able to model such
infection between family units, and adjacent dwellings. This
is exactly the philosophy behind the model structure of [15].

C. RANDOM GRAPH L(1)
Let L(1) denote a random graph (ala Erdös-Renyi [9]) with
mean degree equal to four. Connections between nodes are
chosen uniformly at random and constrained to avoid multi-
ple edges or self-loops. That is, each edge is assigned to con-
nect two randomly chosen nodes within the network, subject
to the constraint of no self-loops and no multiple edges. At
the opposite extreme to L(0) we denote by L(1) the lattice
graph with no lattice structure — all connections have been
rewired and hence correspond to complete random wiring.
In other words, while L(1) is not a lattice it is the limiting
case of L(q) for q → 1. Unlike B the degree distribution of
L(1) is binomial (there is a fixed constant probability that a
link exists between any two random nodes, independent of

all other structure). Hence, while B will be characterised by
super-spreader events (spiky outliers in the daily infection
count), spreadingwith L(1) contacts is exponential but devoid
of extreme events.

The random graph model represents a mixing populace
with limitations placed on mass gatherings.

D. SMALL-WORLD LATTICE L(s)
Finally, let L(s) denote a Watts-Strogatz [25] two-
dimensional lattice with random rewiring with probability s.
That is, the network L(s) is constructed as a regular lattice
L(0) each edge emanating from node-i has a probability s
of being disconnected from the neighbour node-j and then
rewired between node i and random node-k (in doing so, one
node will decrease in degree by one, and one will increase by
one).

For s > 0, the graph L(s) is an imperfect approximation to
L(0). That is, individuals are bound in a lattice configuration
due to being geographically constrained. However, a fraction
of individuals still exhibit long range connections. Effec-
tively, the model L(s) assumes that the populace is practising
what is referred to in the popular press as ‘‘social distancing’’
(everyone is fixed at a home location and connected only to
others in the same vicinity). However, there is some finite
limit to compliance with the enforced isolation. A probability
s of a given link switching and therefore connecting random
nodes corresponds to a fraction c = (1 − s)k of nodes
compliant with these distancing measures since all there k
edges are not switched.
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In opposition to the standard and rather flawed nomen-
clature, we will refer to this control strategy as physical
distancing.

IV. GROWTH RATES
We now provide estimates of the characteristic growth rates
for propagation on the network structures described above.
A widely used approach [26] is to replace the compartmental
equations (1) with distinct equations for nodes of each degree.
What we describe here is the approach commonly adopted
in the physics literature. For an excellent treatment of the
original theoretical biology approach see [27]. Let Sk , Ek , Ik
and Rk denote the number of nodes of degree k in state S, E ,
I or R. The system (1) then becomes

S ′k
E ′k
I ′k
R′k


k

=


−pSk

∑
` kP(`)I`

pSk
∑
` kP(`)I` − qEk
qEk − rIk

rIk


k

, (2)

where P(`) is the degree distribution of the network A. In gen-
eral P(`) is a little unsatisfactory as we should really compute
the sum over P(`|k). But even in the SIS case, doing so
becomes rather unwieldy. Conversely, for SEIR-type or (SIR)
epidemics the asymptotic state is trivial: Sk (t) → S∗k ∈
(0, S(0)), Ik (t),Ek (t)→ 0 and Rk (t)→ R∗k ∈ (0, S(0)). This
provides no insight.

Nonetheless, we are interested in growth rate which is
determined via decrease in the susceptible population

pkSk
∑
`

P(`)I`.

In the scale free case P(`) ∝ `−γ and hence growth is super-
exponential: high degree nodes have a contact rate propor-
tional to their degree and a non-zero probability of connecting
to other high degree nodes.

Conversely, suppose that each node has a fixed degree

P(`) =

{
1, ` = L
0, otherwise.

In our lattice model L = 4. The growth rate is then given
by pSkLIL , system (2) immediately reduces to (1), and one is
left with the usual exponential growth or decay. Hereafter,
we are considering only nodes of degree k = L and will
drop the subscript k for convenience. However, for s < 1
this reasoning is flawed.

Employing (1), assumes perfect mixing and hence random
distribution of infectious and susceptible nodes on the lattice.
Under diffusion the infectious nodes will spread in a single
cluster: nodes in that cluster will be in class E, I or R and the
remainder of the population will be susceptible. The cluster
will be of size E + I + R and the exposed boundary will
be of size scaling with

√
E + I + R, nodes on that exterior

will be either E or I (we assume that diffusion is fast enough
that the removed nodes are interior — this is certainly only
an approximation and will depend on relative values of p, q
and r), but only the nodes in state I are infectious. Hence,

the number of infectious nodes in contact with susceptibles
will scale with a quantity bounded by I

E+I+R

√
E + I + R and

√
E + I + R — mostly likely around I

E+I

√
E + I + R.2 On

average, only half the links from an infectious node will point
to a susceptible (the remainder will point to other nodes in the
cluster), hence, the number of susceptible nodes connected to
an infected node is approximated by

I
2(E + I )

√
E + I + R

and the proportion of susceptible nodes that satisfy this
condition will be

I
√
E + I + R

2S(E + I )
.

Hence, the expected number of new infections from a lattice
diffusion model is obtained from the product of the rate p and
the contact between these exposed infected and susceptible
individuals

p×

(
I
√
E + I + R
2(E + I )

)
×

(
I

2(E + I )

√
E + I + R

)
= p×

(
I2(E + I + R)
4(E + I )2

)
.

Wenote in passing that typically S � E ∝ I > R—certainly
during initial growth, or in the case of limited penetration.
Moreover, the arguments above only hold when S � E, I .

Finally, in a small-world model there is probability s of a
link pointing to a random distant location.With S � E+I+R
we assume that that link is pointing to a susceptible node and
so the expected number of new infections is now

(1− s)p
(
I2(E + I + R)
4(E + I )2

)
+ spSI .

Since, E and I are linearly proportionate, the first term scales
(very roughly) like (E + I + R) the second like SI . That is,
a mixture of the sub-linear growth dictated by the lattice (with
proportion 1− s) and the classical compartmental model (1)
with probability s. Considering the E and I individuals as a
single pool, the rate of new infections is balanced by the rate
of removal rI and so infection will grow if

p
r

(
(1− s)

(
I (E + I + R)
4(E + I )2

)
+ sS

)
> 1.

V. RESULTS
In this section we first present results of the application of
this model. We choose a city of population of approximately
2.1×106 (Perth,Western Australia) and perform a simulation
with initial exposed seeds and contact network A = B (for
0 ≤ t < t∗). The transition time t∗ is the time with I (t) > Ith
for some threshold infection load Ith for the first time (i.e.

2Throughout, we’ve assumed a 2-D lattice. Of course, this choice is
arbitrary and an N -D lattice would naturally lead to an expression involve
the exponent N − 1N with the random model prevailing at n→∞.
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TABLE 1. Epidemic simulation parameters. The simulation size N is
chosen to be a square number to make the construction of L(s) simpler.
Latency period of q = 1

7 is comparable to observation, the other
parameters are estimated derived from the values used in [6], [7] for
Australian populations. These parameter values ensure growth in
infection for t < t∗ but barely endemic otherwise (for A 6= B). That is,
these parameters are selected to match the observed data for our
principle region of interest. Subsequent parameter sensitivity
computation will indicate that variation of these parameters does not
change the qualitative features, only the scale of the observed
simulations.

I (t) < Ith for all t < t∗ and I (t∗) ≥ Ith. For t > t∗ we set
B = L(s) for various values of s. In what follows we will use
p(t > t∗) to denote the value of parameter p assumed for all
time t > t∗, similar notation is adopted for p(t < t∗) and also
for parameter r .
The epidemic parameters which we have chosen for this

simulation are illustrated in Table 1. We do not wish to dwell
on the epidemiological appropriateness of these parameters
— except to say that the were chosen to be consistent with
our understanding of epidemiology and also gave results
that appropriately coincided with the available time series
data. The specific parameter values described in Table 1
were computed to be consistent with those employed by
[6], [7]. However, the models described in [6], [7] are more
epidemiologically detailed than ours and hence the parameter
values reported here represent an agglomeration of various
rates. Moreover, we confirm empirically that the rate of
spread implied by these parameter choices shows very good
agreement with the transmission data for Australia — see
Sec. VI-B.

Some brief notes on the effect of parameter selection are
in order. First, varying Ith will delay the transition to a ‘‘con-
trolled’’ regime and produce a larger peak. The parameter q
is largely determined by the epidemiology of the infection,
and for coronavirus COVID-19 is fairly well established [7].
It does have an important influence on the time delay of
the system, but that is not evident from Fig. 2. Second, the
parameters p and r for t < t∗ also determine the initial
rate of spread — as standard epidemiology would expect.
Third, the value of these parameters for t > t∗ determine
the length of the ‘‘tail’’. In all simulations these parameters
are chosen so that a well mixed population would sustain
endemic infection. It is the network structure, not fudging of
these parameters that causes extinction of the infection— this
will be further illustrated in Fig. 3.

Figure 2 depicts one ensemble of simulations. Of note from
Fig. 2 is the complete infection of the population without
control. Conversely, the random Erdös-Renyi graph L(1) has
a sufficiently narrow degree distribution that the infection
does (slowly) die away. Various values of L(s) with s ∈ (0, 1)

have the expected effect of gradually decreasing the total
extent and duration of the outbreak. However, it is important
to note that the 90% confidence windows are very wide and
overlap almost entirely—while, on average smaller s is better
this is very often not evident from individual simulations.
This is due to random variation in the initial spread for t < t∗.

It is very clear from Fig. 2 that the variance between
simulations is similar in magnitude to variation in parame-
ters. However, parameters in Fig. 2 correspond to moderate
parameters p and r and a wide variation in social isolation.
In an effort to understand the parameter sensitivity of this sim-
ulation we perform repeated simulations over a wide range of
p(t > t∗) and r(t > t∗). For all selected valueswe generate 20
simulations of 300 days each and compute several indicators
of infection penetration

• Mean total infection: The total number of individuals
that become exposed, infected or removed during the
duration of the simulation. That is, maxt S(0) − S(t) =
S(0)− S(300).

• Mean maximum infected: The maximum daily
reported number of infections - that is, the maximum
number of new infected individuals: −maxt (S(t) +
E(t)− S(t − 1)− E(t − 1)

• Half recovered time: The time in days required for half
the simulations to entirely eliminate infection. That is,
the median (over simulations) of the minimum (over
time) t such that E(t)+ I (t) = 0

Results for Ith = 100 are reported in Fig. 3, varying Ith simply
scales the reported numbers (data not shown). Depicted in
Figs. 3 and 4 are computed values of the mean total infection.
The other parameters described above behave in a consistent
manner.

Figures 3 and 4 starkly illustrate the importance, for the
coronavirus pandemic of 2020, of implementing and strin-
gently enforcing isolation. Without isolation the epidemic
impact is limited only for very optimistic values of p(t > t∗)
and r(t > t∗). Otherwise, the mean behaviour indicates
infection growth by two orders of magnitude within 300 days
- almost complete penetration. Our simulations indicate that
this first becomes a risk as physical distancing is less than
90% effective. There is a boundary in our simulations which
appears below 90% isolation and grows to include even
moderate values of the other epidemic control parameters
p(t > t∗) and r(t > t∗).

VI. PARAMETER SELECTION
In part, our aim with this communication is to dissuade the
application of modelling of time series to predict certain
specific futures. That is, we are interested in simulation and
inferring structure from the ensemble of such simulations.
The random variation reported in Fig. 2 should discourage all
but the most determined from prediction. Nonetheless, it is
valid to ask two questions of observed time series data: (1)
what parameter values are most likely given this observed
trajectory, and (2) which trajectory (or set of trajectories)

109724 VOLUME 8, 2020



M. Small, D. Cavanagh: Modelling Strong Control Measures for Epidemic Propagation With Networks

FIGURE 2. Predicted epidemic time series. The upper panel is daily new infected individuals (i.e. −1(S(t)+ E(t))), lower panel is total number infected
(S(0)− S(t)). For each network configuration, results show mean and distribution of 100 simulations over 240 days. In black A = B(4) for all time. In other
simulations A = B(4) for all t until I(t) > 150, otherwise A = L(s) with values of s from 0 to 1. The shaded envelopes are 90% confidence intervals.
To compute the fraction of population compliant with social isolation measures d we compute d = P(no rewired links) = (1− s)k (here, the number of
neighbours k = 4). Epidemic parameters follow the values established for our later simulations in Table 1. For the purposes of this plot, we vary only
s — the rewiring probability from s = 0 to s = 0.15.

are most consistent with the current state. The first ques-
tion we will address via a greedy optimisation procedure,
to be described below. The second question is equivalent
to asking for an ensemble estimate of the current state
of exposed but undetected individuals within the commu-
nity. A complete study of this second problem is beyond

the scope of the present discussion, but some points are
worth considering before we return to the issue of param-
eter estimation in Sec. VI-B. Finally, in Sec. VI-C we pro-
vide some estimates of the effectiveness of various control
measures during recovery phase, subsequent to localised
eradication.
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FIGURE 3. Parameter sensitivity. The four surfaces explore the expected total number of infections (population
N = 14502) for various parameter values p and r (for t > t∗) and different control strategies (i.e. L(s) for different
s). The four surfaces depicted here correspond to (a) s = 0.0025; (b) s = 0.026; (c) s = 0.054; (d) s = 0.065 (that
is, 99%, 90%, 80% and 70% observance of physical distancing measures). The three coordinates are (x) r ; (y) p;
and (z) log(maxt (S(0)− S(t))) (the logarithm base-10 of the total number of infections). In each case we
computed 80 simulations of 300 days. Other parameters are as reported in Table 1. Surface (a) and (b) exhibit
linear scaling with changing parameter values p(t > t∗) and r (t > t∗), while for (c) and (d) that growth is
exponential. That is, when compliance with isolation measures drops below 90% there is an explosive growth in
the level of infection with p(t > t∗) and r (t > t∗).

A. STATE ESTIMATION
As noted previously, there is very significant variation
between trajectories for the same model parameter settings.
While this means that the construction of more complex
models – solely from time series data – is inadvisable, it is
natural to seek to explain this variability. Simulations con-
ducted above for an SEIR model with nontrivial latency
period indicates that at any instance in time there is a large
number of exposed but undetected individuals within the
network. The location of this exposed class within the net-
work (their distribution relative to hubs, for example) explains
the variation we observe. This has been demonstrated by
simulation from repeated random distributions of exposed
individuals. It is easy to estimate the expected number E(t)
from the time series I (t) and R(t), however, the distribution of
these individuals on the network is not uniform. The question
that must be addressed to resolve this issue is what is the
expected distribution of E(t) random walkers on a network
A? In the interest of clarity and succinctness, we do not

address this issue here. For the purposes of Sec. VI-C, below,
we simply model a re-introduction of infection as a small
number of exposed individuals randomly distributed on the
contact graph.

B. PARAMETER ESTIMATION
A separate problem is to determine the maximum likelihood
values of the parameters p, q, and r for a given population N
and Ith from an observed time series. This can be decomposed
to several discrete steps.

1) We suppose that q is fixed and estimable by other
means. For COVID-19, for example, q should yield
a latency period of 7-14 days [7], [17]. Hence q ∈
( 1
14 ,

1
7 ).

2) Determine the epidemic peak from the time series —
this will define the turning point and the time when
growth changes from exponential for geometric. This
will allow one to determine Ith and the corresponding
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FIGURE 4. Parameter sensitivity. The three panels explore the expected
total number of infections (population N = 14502) for various parameter
values p(t > t∗) and r (t > t∗) (i.e p and r for t > t∗) and different control
strategies (i.e. L(s) for different s). The four panels depicted here
correspond to (a) s = 0.013; (b) s = 0.026; (c) s = 0.054 (90%, 80%, 70%
physical distancing as reported in the panel headings). In each case we
computed 80 simulations of 300 days. Other parameters are as reported
in Table 1). Note that panel (a) has a linear ordinate, panel (b) and (c) are
depicted with a logarithmic scale. As in Fig. 3 we observe explosive
growth in impact with lower levels of compliance.

t∗. In effect we are now seeking a turning point of the
total number of infections (S(0)−S(t)) and not just I (t)
as done in Fig. 2.

3) For t < t∗ determine p(t < t∗) and r(t < t∗). The
ratio of these two parameters determines the epidemic
growth rate via R0

4) For t > t∗ it remains to determine s, p(t > t∗) and
r(t > t∗). We note that s controls the extent to which
the system is driven by diffusion geometric) versus
exponential growth. But, for now, the best we can do
is a greedy likelihood maximisation process.

Note that, in the event that the peak has not yet been
reached (i.e. t < t∗) it is not even sensible to attempt
to estimate the parameters s, p(t > t∗) and r(t > t∗).

Nonetheless, in this situation one can estimate instantaneous
(or windowed) values for R0 and attempt to pick the end of
the exponential growth phase. The latency introduced by q
somewhat complicates this process. Figure 5 illustrates the
result of such a calculation. Finally, we note (as is indicated
in the illustrated exemplars) that we assume a single policy
change-point t∗ — this is clearly inappropriate for more
complex time dependent responses.3 Of course the value of t∗

is actually determined by societal responses and control mea-
sures instituted in response to an outbreak. That is, it should,
in principal be observable. Nonetheless, it is not clear that this
will necessarily translate to the time when control takes effect
— nor will it necessarily be possible to reduce it to a single
control point. Hence, the value of t∗ we introduce here is a
single parameter value corresponding to the single moment
in time when a broad range of control measures modify the
dynamics of the epidemic.

C. CONTROLLED RECOVERY
Finally, in Fig. 6 we explore the effect of control measures
to mitigate against reemergence of the virus. We assume a
healthy population and five individuals in state E . We then
simulate various different control measures, again modelled
via complex networks as contact graphs. The population is
2.1 × 106, as before, and the parameters p = 1

10 , q =
1
8 and

r = 1
4 represent a state of heightened vigilance — but not

sufficient to suppress infection. Each of the control measures
described in the figure is modelled as follows
• Mass gatherings are modelled with A = B(k) a
scale-free network and hence no upper bound on the
number of contacts a node might have.

• Contact tracing (CT) is modelled by assuming that a
fraction w of the population has adopted contact tracing
through their mobile device. Hence, if an infection were
to occur between two such individuals, that infection
will be extinguished via intervention from authorities.
The fraction of links that are effectively removed is w2.

• N person limit is modelled by truncating the scale-free
network so that no node has degree larger than N . This
is equivalent to the treatment described in [12].

• No Mass gatherings are modelled with A = L(1),
as before.

• d% Stay home models physical isolation of a fraction
d
100 of the population and is modelled with a small world
lattice L(s) where d = (1− s)k .

VII. SOCIAL CONTEXT AND UTILITY
This model has its origins in the severe societal challenge
of COVID-19, when the population of Perth was facing the
prospect of loss of 30,000 lives, and hospitals being over-run
within two or three weeks if the rate of escalation continued.
The model was first used in a pandemic response work-
shop for a city of 100,000 people, led by the second author.
The model results informed the importance in influencing

3Or for regimes with inconsistent, indecisive or ineffectual responses.
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FIGURE 5. Control evaluation. We depict the effectiveness of control measures for each Australian state and internal territory (excluding Jervis Bay).
In each case the epidemic diffusion is fitted to data up to the end of the exponential growth phase (that is, the point of inflexion on curves S(0)− S(t)).
Simulations up to this time point t∗ effectively seed the network and provide a distribution of infectious and exposed individuals within the community.
Beyond this point we simulate the application of small-world control network structure L(s) for various values of s. Here we illustrate s = 0.013, s = 0.026
and s = 0.054 corresponding to 95%, 90% and 80% control. Actual observed time series data is also shown and illustrates exception effectiveness of
control measures for various Australian states.

people’s behaviour, to greater than 90% compliance, and
hence the guidance to give to the city officers in theworkshop.
It served to demonstrate the dramatic range of outcomes
which were possible, depending on the behaviour of con-
stituents of the city, and degree of social distancing achieved.
This proved very effective in enabling appropriate action,
both in the workshop and afterwards with the city response
seen as a model. Subsequently the results were shared on pro-
fessional social media, and an online conference, influencing
thousands more.

In combination with effective timely coordinated state
and federal government polices, and a high level of societal

compliance, a very strong result of virus suppression was
achieved. The model was further developed to update
progress, within two weeks, and at the time of the workshop
debrief this was used to show the importance of continuing
measures in suppression, and the rate at which rapid outbreak
could occur, even in the context of strong initial suppression.
This allowed the appropriate focus to shift towards a positive
recovery. Again this was shared locally and internationally to
provide hope for others and influence behaviour.

Subsequently, the actual case data within the state was
plotted against the forecast range, and this was shared with
state scientific authorities, enabling a constructive discussion
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FIGURE 6. Recovery and return. Here we depict the effect of various palliative control measures in the event of a
reemergence of infection (modelled here by a population seeded with 5 exposed (infected but asymptomatic)
individuals. The four solid lines represent a return to mass gatherings (black), a 50 person limit on gatherings (red),
no mass gatherings (blue), and continued physical distancing (green). The dashed lines model the same scenarios
with the addition of 50% of the population adopting and using contact tracing software (CT). Note that the red
(second solid) line grows exponentially, the black line (top) is faster than exponential and the blue and
green (bottom) lines are significantly below exponential. In all cases these lines represent the median of 100
simulations.

about the correlation between application of selected state
and national control measures and outcomes. The exten-
sion to modelling different approaches to recovery con-
tinues in a similar mode, with distinctive results, and
the model outcomes have since been included in brief-
ings for state health authorities and COVID-19 safety
training.

To gain most value from the model, its results have been
interpreted in a variety of environments, including most
recently in collaborative virtual reality mode, in a digital

Public Health Emergency Operations Centre (PHEOC)
(Fig. 7). This has the advantage of rich immersion in the data,
while allowing deep multi-party interaction and dialogue to
discern appropriate observations, and at the same time allow
parties to engage together from anywhere in the world. At the
time of drafting, the number of new cases of COVID-19 has
for the first time reached zero, with only seven fatalities in the
State to date, remarkably low compared to world averages.
A few weeks later the disease had been eliminated from the
hospital system in Western Australia.
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FIGURE 7. Immersive multiperson visualisation of the model in context using virtual reality. Here illustrated in our
implementation of a digital Public Health Emergency Operations Centre, where the model is integrated into wider
contextual information such as national trends and geospatial information. The model is used to communicate scenarios
allowing stakeholders able to draw conclusions collaboratively in context.

VIII. CONCLUSION
The model we present here has a small – perhaps minimal
– number of parameters, and describes the observed dynam-
ics of pandemic disease transmission. When applied to data
from the global outbreak of coronavirus in 2019/2020, the
model provides good qualitative agreement with observed
data across population centres. Nonetheless, identical simu-
lations with new initial conditions yield vastly different out-
comes. The variance of our model predictions is large, and in
fact much larger than the variance observed between distinct
epidemiological parameter values. Hence, choice of optimal
transmission rates is a secondary concern behind appropriate
description of contact patterns and transmission mitigation
strategy. Our results indicate that particular simulations of
models that claim to have predictive power within that pre-
diction envelope may be prone to over-interpretation. Finally,
despite modelling a complex system with complex networks
we have demonstrated the sufficiency of a minimal model.
Models with large numbers of parameters which are fitted
to time series data are unnecessary and likely to be unreli-
able and misrepresent the underlying dynamical process. Our
model emphasises accurate reproduction of the qualitative
behaviour of the system, this does not preclude the construc-
tion of more complex models when sound epidemiological
reasoning dictates it is necessary and when informed with
direct evidence to allow for quantitative estimation of the
relevant parameters.

While we are reluctant to make predictions from, or over
interpret the application of, this model to the current
coronovirus pandemic, our results indicate that strict physical
isolation in combination with monitoring and the usual trans-
missionmitigation strategies are required tominimise impact.
Below 80% compliance with physical isolation measures
risks catastrophic spread of infection (Fig. 4). This data is
consistent with the evidence of explosive growth of infec-
tion experienced in some localities. Without decisive and

potentially severe intervention, similar disasters are likely to
occur in regions with weaker health systems.

In the simulations described above, we do not make any
attempt to ensure ‘‘pseudo-continuity’’ between time varying
manifestations of A. That is, nodes that are connected for one
network are not more likely to be connected after switching
the network topology. We could see no simple and generic
way in which to achieve this. Moreover, we did not detect any
excessive mixing that one might expect should this mismatch
be an issue.

It is worth noting that the computation cost of this model
— despite being a population level simulation— is not great.
We simulate the state of an entire population, but at each
iteration the updates are determined entirely by a predefined
contact structure. For population size N and simulating T
time steps the computational time cost is NT . The memory
requirement is N +N logN (for a sparse contact network and
population state vector). This modest computation demand
mean that the algorithm can be successfully deployed in
immersive, interactive and real-time environments.

In Sec. VI-A we raise the issue of estimating the expected
distribution of unobserved infection sites (i.e. state E) on a
network. Should the model described here prove relevant, this
will be an issue of immense importance to the proper quantifi-
cation of uncertain future behaviour. Figure 6 illustrates the
application of these technique for future scenario planning.

Finally, the social context and utility of this modelling
is demonstrated by its live use in shaping the planning and
implementation of a highly effective response to COVID-19
on a city and state level. Ultimately, one must ask what is
the purpose of modelling. Epidemic disease transmission is a
fairly simple mathematical problem — exponential growth
followed by decay. The difficulty is in reliably estimating
parameters. We show that the contact structure provides a
direct and effective approach to model control strategies.
In addition to the information provided by our simulations,
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we describe in Sec. VII the application of these methods to
effectively inform and influence policy makers.

DATA AVAILABILITY
Source code for all calculations described in the manuscript
is available on https://github.com/m-small/epinets. Data
was obtained from https://github.com/CSSEGISandData/
COVID-19.
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