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ABSTRACT We present a method for predicting the recovery time from infectious diseases outbreaks such
as the recent CoVid-19 virus. The approach is based on the theory of learning from errors, specifically
adapted to the control of the virus spread by reducing infection rates using countermeasures such as medical
treatment, isolation, social distancing etc. When these are effective, the infection rate, after reaching a peak,
declines following what we call the Universal Recovery Curve. We use presently available data from many
countries to make actual predictions of the recovery trend and time needed for securing minimum infection
rates in the future. We claim that the trend of decline is direct evidence of learning about risk reduction, also

in this case of the pandemic.

INDEX TERMS CoVid-19, pandemic, risk, recovery rate, learning theory.

I. INTRODUCTION AND BACKGROUND
We develop a new way to predict the recovery rate of infec-
tions following a pandemic outbreak, using the basic pos-
tulates of learning theory. This theory has been previously
applied to outcome, accident and event data from multiple
socio-technological systems, like transportation, medicine,
military, power grids, aviation, mining, and manufacturing.
This new approach is completely different from traditional
epidemiological modeling of the rate of spread by fitting
a variable person-to-person transmission parameter, Ry or
totally empirical fits using differential control theory. Learn-
ing theory simply postulates that humans learn from experi-
ence in correcting their mistakes and errors (sometimes even
just by trial and error), as they gain knowledge on the problem
and skill for addressing it. The theory is consistent with the
models and data in cognitive psychology of how humans
behave and the brain operates [1]-[5]. The importance of this
theory stands in that human errors and incorrect decisions
are the dominant contributors to accidents, crashes, system
failures, errors, and operational incidents.

The theory is based on the fact that human learning demon-
strably reduces error rates [4]: wisdom is gained after an
accident. Evidence on this relates to even highly hazardous
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industries like the nuclear one. A good example is that the safe
operation of nuclear power plants has been, and continuous
to be, improved from lessons learned from nuclear accidents
and incidents. These accidents and incidents, in addition to
highlighting the role of human errors in their occurrence and
progression, have helped identifying various critical technical
elements and contributed to the safer operation of nuclear
power plants. Similarly, the observation is applicable to out-
breaks of infectious diseases.

Improving health systems following epidemic outbreaks
and enhancing reliability and safety measures following
nuclear power plant accidents have to be handled with objec-
tive data and accurate calculations [6]. However, whereas
nuclear power plant operation has done this by a world-
accepted, high standard of procedures, the ““protection sys-
tem’ against pandemics is not there yet. The key is how to
design, evaluate and implement the procedures, for reaching
a high standard.

Learning theory has been successfully applied to quantify
error and learning rates in technical systems, casualties in
large land battles, everyday accident and event data, and to
human, software and hardware reliability [2], [7]-[9]. The
novel feature is to replace calendar time or test interval, which
has always been used before, with a measure for the accu-
mulated experience and/or risk exposure, thus defining rate
trends and quantifying effectiveness of responses to errors
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and accidents, and allowing totally different systems to be
directly intercompared. Additionally, the trend is governed
by two parameters that are physically based: the learning
rate constant and the minimum achievable error rate. This is
in contrast with statistical analysis, where fitting to learning
data is typically done on three empirical parameters [10], and
with the inverse “power laws”’ extensively fitted in cognitive
psychology data ( e.g. in reference [5] and the references
therein).

The theory shows the Learning Hypothesis that humans
learn from their mistakes and reduce outcomes in such a way
that the rate of decrease of the outcome (in the present case
of interest, the infection rate, R) with the rate of accumulated
experience, ¢, (in the present case the advancement in the
knowledge of the virus, the contagion spreading dynamics,
the effects of the countermeasures) is proportional to the
rate R itself. Thus, very simply, the differential equation that
describes the accident and outcome data with learning or
forgetting describes the proportionality between the rate of
change of the learning rate, R, and the learning rate itself [1],
(91, [11]:

dR

— = —k(R — Rin) ey

de
where ¢ is the measure of the risk exposure, learning oppor-
tunity or experience/knowledge gained; k is the learning rate
(positive for a learning/improving situation and negative for
no learning/improving, e.g. because of no effectiveness coun-
termeasures) and R, is the lowest or minimum achievable
error rate, which is never zero as the process of error-making
and cognitive rule revision always continues. Physically, & is
related to the non-detection or error rate in unconscious mem-
ory scanning for recall and recognition, manifesting itself in
the conscious external actions, decisions and judgments. The
error rate solution obtained from integration of this Minimum
Error Rate equation (MERE) is:

R(&) = Ry + (Ro — Ryy)e* ). 2)

where, Ry is the initial rate at the beginning or start of the
problem when the level of experience/knowledge on itis ¢ =
0. Different data sets are characterized by different values of
the learning constant.

It is clear in Equation (2) that for practical applications a
suitable measure of the experience/knowledge or risk expo-
sure accumulated with respect to the initial one, (¢-gp), is
needed and that the original or starting one, &g, is a suitable
arbitrary or convenient reference dependent on the problem at
hand. In other words, the measure for the accumulated expe-
rience/knowledge or risk exposure is technology/system spe-
cific. In our present case, accumulated experience/knowledge
is referred to the days, ¢ = d, of risk exposure and/or
infection opportunity from the origin here taken as the day
of observing 100 cases. Then, for data inter-comparisons, it
is useful to render non-dimensional the quantities of interest,
which results in the Universal Learning Curve (ULC) for the
non-dimensional error rate
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Ex = (R(d) — Ry)/(Ro — R;;) as a function of the non-
dimensional experience/knowledge or risk exposure N* =
d/dr, where dr is the maximum accumulated experience or
risk exposure days, thanks to which the error is recovered
(the problem is considered under control), its rate having
reached the lowest or minimum achievable value R,,. From
(2), dividing by Ro-Ry,

E*:M:eld\’*' 3)

Ro — Ry,

where k~ 3 is the fitted learning rate ‘“‘universal con-
stant” and N* is the non-dimensional accumulated expe-
rience/knowledge measured in days and normalized to the
maximum risk exposure days experienced or expected in
order to reach the minimum. This expression has already been
shown to represent the learning trends for outcome rate data
from industrial, surgical, transportation, mining, manufactur-
ing, chemical, maintenance, software and a multitude of other
systems [2], [8], [9]. For skill acquisition tasks in cognitive
psychological testing, this same trend exists and is called the
Universal Law of Practice (ULP).

Generally, the frequency estimate of the probability, P, of
any outcome of interest from a human activity/process is the
ratio of the number, n, of such outcomes observed or expected
to the total number, N, of possible outcomes of any kind from
that activity/process. The outcomes occurrence depends on
the experience/knowledge ¢ on the human activity/process
and this experience/knowledge is a function of time (in time,
it increases if learning or decreases if forgetting). The proba-
bility of observing n outcomes of interest given the error rate,
R(¢), at the current level of experience/knowledge ¢ is:

P=n/N=1—¢ /RO (4)

Il. “"NORMAL" INFECTIOUS DISEASE RISK
Illnesses are still around in the world, many of them deadly. In
the past, there have been pandemics' killing many millions of
people, like the “Black Death” or Bubonic Plague disease of
the Middle Ages, and the influenza epidemic in 1918. In addi-
tion to these sudden attacks, other equally deadly pestilences
have been and are still around for centuries - yellow fever,
cholera, small pox, typhus, measles, malaria.... As modern
medical practice eliminated or reduced these hazards using
better procedures and new vaccines, other exotic variants and
viruses have recently emerged, like SARS, HIV, Ebola and
CoViD19, infecting and endangering the ever-increasing and
interconnected world population. As we evolve and learn, so
do the things that like to kill us, but they usually kill relatively
few people compared to, say, automobile accidents or the
yearly seasonal influenza.

To determine risk from these instances, we can and must
turn to data. As a fine example, we have the official data from
the World Health Organization. The WHO gave the death

ITo be clear on terminology: Pandemic-disease affecting the whole world;
Epidemic-disease affecting whole communities; Pestilence-a fatal epidemic
disease.
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World Death Rates 1996
(Data Sources : WHO, 2000 and World Bank,2000 )
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FIGURE 1. The rate of deaths from all causes (lozenges) and from

infectious diseases (squares) for 194 countries (data extracted from the
WHO and World Bank).

rates for ““all causes” and for infectious (like cholera) and
parasitic (like malaria) diseases for some 194 countries in
the mid 1990s. The data cover the full global spectrum, from
developed to developing nations, from vast urban conglom-
erates with very crowded living conditions to scattered rural
communities, from jungles to deserts, and all Continents. The
data cover and include the effects of modern epidemics, and
of course local wars and regional conflicts.

In Figure 1, the data are plotted not against the usual arbi-
trary calendar year but -as we now know we should- against
the risk exposure measure, in this case the population size.
This number is the direct indicator of how many people are
at risk of infection, and the country-by-country populations
come from the World Bank Indicators. The data are plotted
in the Figure with the lozenges being the overall death rate
data and the squares representing the death rate data due to
infections.

From these data, we can know the risk of death from any
health cause: it is about 1000 deaths for every 100,000 people,
or one in a hundred, and does not depend much on where you
live. To verify this overall number “locally”, we can analyze
the data for New York, as given in the graph ‘“The Conquest of
Pestilence in New York City”’ from 1800 onwards, published
by the Board of Health and the Health Department. This
is a typical modern city that had grown in population from
120,000 to about 8 million people, and includes characteris-
tics of immigration, high-density living, mass transportation,
high-rise apartments, modern health care, national and inter-
national trade, and a large flow of inbound-outbound travel,
in other words, globalization. The biggest improvement in
health has come from introducing effective hygiene and anti—
infection measures, and from improved health prevention and
treatment (not from wonder drugs): we have learned how to
treat sick people, cure problems and reduce the spread of bad
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diseases. It is an expensive investment, and it is hard work
that requires devoted and trained professionals. As a result,
after curing and containing many pestilences during the 19"
century, the average death rate in New York over the last hun-
dred years has fallen to 10 to 11 per 1000 people, or almost
exactly the same one-in-a-hundred rate as the world rate. So
modern cities behave pretty much like whole countries, as far
as average or overall death rates are concerned.

Infectious and parasitic diseases are responsible for 5 to
15 deaths in 100,000 people, so average about one in ten
thousand or 1 to 5% of all deaths worldwide, the other 95
to 99% or so being deaths from ‘“‘normal” causes. So the
“normal” death risk is still about twenty to a hundred times
of what it might be if a new pestilence emerges, spreads and
takes hold without effective countermeasures.

Another way to view this risk contribution is to say that
the chance of death might be increased by a maximum of
about 5% if a new global pandemic infection occurs where
it has not been prevalent before. This is always the fear, that
in today’s highly interconnected, high-speed, global world a
possible rapid spread of new or variant diseases can occur.

And that is exactly what recently happened, as the
2019-2020 coronavirus (labeled CoVid-19 or SARS-CoV?2)
rapidly spread across the four corners of the Globe. There was
extensive reporting of nearly every new case occurring and
great worldwide information available. By the time of accep-
tance of this paper in June 2020, the world had over 6,000,000
reported cases (and still growing at the time of writing) and
400,000 deaths, with the infection having spread quickly
across borders, imported from nation-to-nation mainly via
travellers, visitors and tourists, and spread internally from
just social and day-to-day human contact. Globally, as we
expected in March, that is currently a risk of death of 5 in
100,000 people, which lies exactly in the middle of the above
range for ““‘normal” infectious diseases risk.

IIl. INFECTION RATE REDUCTION AND RECOVERY
Looking at these available numbers, the individual infection
risk today is comparatively negligible, with a few hundred
thousand cases in a world population of several billion.
But the high speed at which this virus has spread makes it
legitimate to feel worried and unease, and correspondingly,
legitimate questions arise, given that this novel pandemic
compares to the “normal” or accepted risk of infectious
death:

What is the “worst case” scenario?

Should we panic and shun other people who may be carry-
ing what might kill us?

How long will it take to recover?

This calls for the need to try to objectively evaluate the risk,
based on the current experience knowledge.

As noted, we normally can treat the spread of disease as a
“diffusion” or ““multiple contact” process, where it steadily
expands outward from some central source or origin; or as
a highly mobile source that is potentially spread everywhere
due to rapid multiple global personal and social interactions.
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The excellent US Centers for Disease Control simply states
the obvious:

“Risk depends on characteristics of the virus, including
how well it spreads between people”

(Source: www.cdc.gov/coronavirus/2019-ncov/summary)

The data from China on CoVid-19 infections suggest that
there is, or was, a 50%-90% chance of the initial infections
spreading between cities, depending on location and size
[12]. Using simple doubling rates, the news media carried
projections that a ““worst case’” in the USA could infect over
200 million (i.e. most people in the USA) and cause nearly 2
million or so deaths, and experts were hard at work estimating
global, country and age-dependent risks, including of death.

We certainly need to estimate or know the risk of infec-
tion. As a simple guess and knowing nothing else, let us
assume infections are randomly transmitted anywhere and
everywhere from person to person, the spread is instantaneous
and guaranteed if a source exists and the probability of being
(successfully!) infected is also random and equally possible.
This is really a “worst case” scenario or “model”, as obvi-
ously not everyone is exposed to everyone and not everyone is
equally vulnerable. The worst case scenario is, then, that there
is no preventative measures, no immunity and no vaccine, and
for whatever reason, the source is not quarantined or isolated,
and any such infected person or mobile source can and does
transmit the virus (or disease) randomly to others somewhere
in the world.

Independent of the transmission mechanism, given contact,
the probability of cross-infection, then, depends solely on
the total numbers of the possibly equally risk- or infection-
exposed recipient population, and the probability of infection
is also random. In this model, anyone can get it by interacting
with someone that has it.>

To help see this more clearly, the black balls (the
“unknowns”’) emerging from the Jar of Life is one way to
view what might happen based on what we have already seen
or been exposed to. Here the one black ball (n = 1) is a
“known unknown” infected person or infection opportunity
among those ten (m = 10) non-infected (‘known knowns”)
white balls (m = 10), so a chance of 10% or one over ten.
The probability of interest is, then, of infection for more peo-
ple exposed and infected, or N “unknown unknowns”, and
some not exposed or not successfully infected, M ‘““‘unknown
knowns™’, out of a total of all exposed people, N + M.

These numbers, N and M, vary by city, country, cruise ship
passengers, soccer matches or rock concert arena, and can
systematically vary up to the total of about six billions or so
in the global world. We can also think of it as our possible
exposure experience. The formula for the probability p of the
event of an individual / becoming infected takes the form,

p(I)=Number infected (N)/total number exposed (N +M).

21t turns out to be similar to the assumptions made in the elegant sim-
ulations shown at www.washingtonpost.com/graphics/2020/world/corona-
simulator/
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If there is a gathering limit of ten or so people, as in the
case of the white and black balls of the Jar of Life shown
in the picture, the observed chance of being infected, p(I), is
assumed to be about one infection (black ball) in some ten
non-infections (white balls), or 10%. This we know. But the
sample is limited to 10 and, so, we could also be exposed to
one in a hundred, or one in a thousand, or more: how many
more infection cases would we, then, expect out there hidden
in the Jar?

The method used to estimate this probability is random
sampling based on the so-called hypergeometric formula.?
For possible gathering numbers of 10,100, 300 and 1000
with one infection source known or observed, the chance of
observing or finding, say, 100,000 new cases of infection, p(1)
in a bigger group rises to a maximum or peak of about 37%
(about one in three).*

The estimate that comes out in this “worst case scenario”
seemingly agrees with the estimates publicly available on the
internet and social media of the awful possibility (risk) of
perhaps even a 40-70% chance of being at risk of infection, if
nothing is done to prevent it or reduce it.> That is a significant
and very high risk of infection, and has been used to justify
varying degrees of quarantining, limiting social gatherings,
societal “lockdowns” and extensive travel restrictions.

This inevitably brings fear to the individuals of the global
population and the only way to address fear is by using
scientific knowledge and data to inform any theory behind
estimates and predictions.

During the early onset of the CoVid-19 pandemic, many
such gloomy scenarios were made and analyzed but they gen-
erally assumed no effective countermeasures to the spread of
infections. The infection numbers grew quickly at first, before
countermeasures such as isolation, distancing, restrictions
and curfews were implemented to reduce infection rates and
“flatten the curve” of numbers versus time. Sad to say, deaths
(distressing as they are) are also NOT the right measure-
infections are the measure for the spread and control of infec-
tious diseases. A logical question is whether the infection or
death data show any signs that we are learning how to reduce
risk?

Just like for any accident, the number killed or dying
is highly variable depending on who and how many risk-
exposed individuals happen to be there, so it is random. In
this viral case, and as for HIN1, the number of deaths also just
depends on too many uncontrolled variables and factors (age,
pre-existing health conditions, health care system, propensity,
socio-economic factors, etc. ...) so the average death per-
centage per infection also varies in magnitude, location and
time (as the data clearly show). The correct measure to look

3For the mathematically inclined, this function is available in the Excel
program in Microsoft Office under the heading HYPGEOMDIST, and is
discussed extensively in Edwin Jaynes’ book (see Bibliography)

4Numerically, the peak corresponds to the complement of the probability
of not having more infections (1/e = 0.366)

SFor similar pessimistic estimates see, for example, www.kevinmd.com/
blog/2020/03/a-covid-19-coronavirus-update-from-concerned-physicians.
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at is infection numbers and rates (not the number of deaths),
say the number per day. The infections numbers also depend
on which country/region they refer to and at what infectious
stage (early onset, spread extent, countermeasures deployed
... etc.). We already know that if uncontrolled, the increase in
infections will rise exponentially, as the rate of infections is
proportional to the number of infected people.

As usual, the most representative case can be based on
actual infection data from where containment of contagion
has already been successfully applied, namely in China where
it originated. Using data reported by the John Hopkins Center
for System Science and Engineering, by March, 2020, there
were, n = 81,000 infections and some 3200 deaths in China
with a falling to near-zero rate. So with a national popula-
tion of N+M = 1,400,000,000, the overall probable risk of
infection is about 0.00006, or one in 17,000, (or about six
in 100,000).° Locally, in some cities/regions it is ten times
higher, but although comparable to infectious death rates, the
overall CoVid-19 death rate in China was on average one in
nearly half a million people, much lower than deaths from
other infectious diseases. That is a significant reduction in
the risk of infection: countermeasures have worked.

So far, we have these scenarios:

The scary or “Worst” with no measures: at least one in
three people infected.

The real or “Best” control and mitigation: only one in
17000 people infected.

But remember the famous Bayes Theorem:

The probable Future is the Past modified by the Likelihood.

So, the possible probability reduction, or Likelihood, must
be considered in a future estimate based on projections using
past data. This simple-minded upper and lower limit com-
parison suggests the individual Likelihood is about 0.0002,
or very low. Societal countermeasures reduced the risk by a
factor of 500 to 5000 over the inevitable “‘worst case” random
spread of infection or survival-of—only-the-fittest scenarios.

IV. RECOVERY TIMESCALES USING LEARNING THOERY
The approach based on Learning Theory illustrated in this
Section uses the fact that humans learn how to control the
CoVid-19 outbreak spread and reduce infection rates using
countermeasures (treatments, isolation, ‘‘social distancing”
etc). IF these are effective the rate, therefore, must reach a
peak and, then, decline.

To look at pandemic recovery, we really need to look at
the rate of infections, NOT just deaths since these depend
on too many social and personal health factors as already
stated. These include propensity, age profile, medical sys-
tem effectiveness, treatment options, pre-existing conditions,
early detection, etc. The risk of an infectious disease is not
controlled unless the infection rate slows down, so-called
‘flattening the curve”. Once the rate peaks the rate, then,
should decrease due to successful countermeasures (whatever
they are).

For similar realistic estimates see, for example, https://wmbriggs.
com/post/29830/
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FIGURE 2. Randomness at work: we have already seen or heard about at
least one infection (black ball) among our ten friends, colleagues, or
contacts (white balls); so the obvious questions are: how many more
infections (black balls) are hidden in the jar, i.e. possible in the future,
and what is the risk of drawing a black ball, i.e. of infection?.
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FIGURE 3. The overall infection rate in differing regions is essentially
similar if recovery is occurring due to effective countermeasures.

So, the next question is: what happens next and how do we
know how effective the control measures are, and how long
before they can be relaxed or maintained?

In China, where the infection originated, the actual infec-
tion rates (per day after first recording 100 cases) rose to a
peak of nearly 4000 a day in about 17 to 20 days, and, then,
fell away steadily to about 50 or so a day by another 30 days.
As a further consideration for different countries, we have
expanded our original graph (Figure 3) to show Italy and New
York City being the earliest and worst infected regions in
Europe and USA, respectively; and for comparison Germany,
which acted early in implementing countermeasures.

Remarkably, all share essentially the same profile, similar
peak rates and timing, and characteristic declines as counter-
measures become effective. The increase and decrease in viral
infection rates do not reflect borders or differing cultures,
confirming: (a) the inherently similar statistical nature of the
initial increase; and (b) the essentially identical learning to
control using countermeasures, resulting in similar recovery
trajectories.

In other cases, after some delay in implementing coun-
termeasures, the infection rate seemingly peaked at several
1000s per day after about 30 or so days, as can be seen in

110793



IEEE Access

R. B. Duffey, E. Zio: Analysing Recovery From Pandemics by Learning Theory

the graph of Figure 3. As of writing, (early June) this rate has
decreased everywhere to about a few hundred cases per day
(see graph in the Figure), but zero is not attainable according
to the China residual, low, new case count.

V. COMPARISON TO LEARNING THEORY
Based on the early available data for China and S Korea,
using countermeasures, the overall recovery timescale is
about 20-30 days to attain the minimum infection rate of
about 50 per day, but as shown in Figure 3 higher peak rates
simply take longer to decline.

The process of inter-comparison of the recovery rate curves
in different areas or regions consists of the following steps’:

1) Collect infection numbers, n(d), day-by-day reported
from reliable sources (we used CDC.gov, world-in-
data.org, Johns Hopkins University and WHO) for each
country, region or city based on days since exceeding
100 cases, d > dp;

2) Calculate and record the daily infection rates, R, =
dn/dd, starting with d = dy, and identify the maxi-
mum rate, Ry, at day, dys, declining to some minimum
rate, R,,, attained or observed at dr;

3) Calculate E* according to Equation (3) and identify
the initial rate, R, as the maximum rate, R ; calculate
N* =d/dy.

At the time of submission of our original MS,
just two countries had exhibited recovery thus far
(China and S Korea), but since then several more have con-
firmed the recovery trend and all can now be readily com-
pared using Equation (3).

The infection rate, E*, normalized to the initial peak
value, as a function of the time elapsed from the peak, N*,
normalized to the time of peak is plotted for nine coun-
tries with a defined recovery trajectory. The results for all
countries that show some form of recovery are reported
in the Figure 4-graph, which plots E*, the non-dimensional
infection rate normalized to the initial peak value, versus
N* =d/dr, the non-dimensional elapsed time of experi-
ence/knowledge accumulation or risk exposure after the rate
has peaked (d> dy;, number of days after peak/day of peak).

The CoVid -19 pandemic and pulmonary disease recovery
rate data all fit with the Universal Learning Curve trend of
Equation (3), which with £ = 3 is known to fit millions of
events with learning, and the best fit line to the 211 data points
for CoVid-19 is E*= exp(—3.1N™).

There is essentially no discernable statistical difference
between presumably disparate countermeasures, except for
the example of New Zealand. This essentially mono-cultural
“island nation” follows almost exactly a “perfect learning™
curve, thanks to three key elements: a low peak rate of only
100 per day; complete control of its borders avoiding infec-
tion imports; and internal adherence to strict “lockdown”
measures. The population of 4.8M, is comparable to local
areas, e.g. Arkansas, USA with 3M population, which shows

TThe Authors thank an anonymous Reviewer for suggesting including
these simple steps.
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Universal Recovery Curve - predictions
(CoVid-19 infection recovery rate data after peak )
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FIGURE 4. Predicted recovery rate curve (universal learning curve)
compared to data.

a similar rate, with essentially no prolonged countermeasures
but a rate of about 100 per day that persisted.

For further direct comparison, and showing the larger
implications of learning, we plot also the reduction curve of
the world pulmonary disease death rate per day for 1870-1970
(Source: Human Nature, T.McKeown, April, 1978 as given
in Horwitz and Ferleger “Statistics for Social Change”). We
can simply think of this overall World data over the years, and
its reduction trend, as resulting from many pandemics and
multiple outbreaks of influenzas and differing virus strains,
that have been more and more successfully treated as we
have learned to better control/reduce infections and improved
effect recovery, thus steadily reducing the rate.

Despite the huge differences in timescales (130 years ver-
sus typically 60-90 days), the recovery rate curve globally and
locally is simply the exponential Universal Learning Curve of
equation (3) above, given by E* =exp(—kN ™).

The key point is that all the data follow almost exactly
the same decreasing trajectory and, furthermore, the learning
curve is nearly the same (k ~ 3), as previously found for
any learning experience on outcomes, accidents, events of
any other modern technological system operated by humans.
Indeed, the results surprisingly follow the curve developed
some ten years after it was first discovered, while working
on completely different data. We can claim that this trend
decline due to learning is direct evidence of learning about
risk reduction also in this case of the pandemic, and call it the
Universal Recovery Curve.

To further confirm the URC general theoretical correlation,
we next compare to the latest projections for medical resource
loads made by complex computer modeling of infections and
deaths in the USA [13]. As a reasonable surrogate measure,
the number of required hospital beds was assumed to be
proportional to the number of infections, which daily values
were directly transcribed from the website graph (available at
covid19.healthdata.org/united-states-of-america). The inter-
val available is a projection from a peak resource use on April
15% out to July 1%, 2020, so to be consistent with the actual
available country data. The infection rate per day, R, was
calculated until attaining an assumed but realistic minimum
rate, R, of 50 per day on 10" June (55 days later).
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FIGURE 5. Comparison of learning theory to model predictions of
required hospital beds.

The comparisons of the observed decreasing infection
rate for both (independent) countries (China data circles,
S. Korea open triangles) and the widely used IHME model
projections with the Universal Learning Curve shown in the
Figures 4 and 5, respectively, are compelling. The data fits
with learning curve theory, which we know already inciden-
tally fits millions of events, accidents and trends. China, Italy
and S. Korea have indeed learned how to control the spread of
a viral pandemic. All other countries/systems/people have to
do to predict the infection rate evolution is to follow the same
trend after first reaching their rate peak. This type of analysis
allows countries and systems to compare the effectiveness of
their countermeasures implemented to control the pandemics
and the related timescales.

A word of caution is necessary, however, these numbers
cannot be exact and are not meant to be exact. These are
just calculated risk estimates, which are subject to uncertainty
related to all the many endogenous factors related to the
virus spreading, and the actuation and respect of the measures
implemented. The numbers provide guidance to thinking
about the absolute risk and the best approach to take given
the risk is constant unless we do nothing to reduce it!

The strong message here is that the rational and logical
approach to dealing with the risk of the occurring pandemic
(as with any other risk, for that matter) is to limit own personal
and potential exposure, and to minimize both the size and
scale of the potentially exposed population. This is precisely
what governments and contagious disease experts have been
saying all along- but is also what any individual should be
doing anyway while exposed to the risks of “normal” life. A
sort of ethics of resilience [14].

VI. CONCLUSION

In this paper, we have originally proposed to adapt Learning
Theory for describing the reduction of pandemic infections
like that of CoVid-19. A key point is to look at infection
rate, as a measure of error outcome, and at time, as a
measure of experience/knowledge accumulated or risk expo-
sure which allows learning. The analyses of the currently
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available data show that the CoVid-19 infection rate data
follow, after peaking, almost exactly the Universal Learning
Curve describing the decreasing trajectory of many other
instances where humans learn to apply effective countermea-
sures. More specifically, the learning curve is nearly the same
(with universal constant k ~ 3) as for any learning experience
reducing outcomes, accidents and events for other modern
technological systems operated by humans.

We claim that this trend decline due to learning is direct
evidence of learning about risk reduction, also in this case
of the pandemic, and call it the Universal Recovery Curve.
It can be used to predict the expected time at which the
pandemic will be under control, in terms of minimum achiev-
able infection rate, and to test and demonstrate the relative
effectiveness of the adopted countermeasures. As such, it is
a fundamental tool for risk handling for resilience during the
development of a pandemic, whose aspects we will explore in
future work related to the exploitation of recovery predictions
for emergency decisions and preparedness planning purposes.
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