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ABSTRACT Daily total electron content (TEC) images created by splitting TEC maps for three time periods
from September 1 to 24, 1999; from February 1 to 24, 2003; and from May 1 to 24, 2003 (Taiwan Standard
Time [TST]) as training images (inputs) were used to create two convolutional neural network (CNN)
models. However, splitting the TEC maps of the three time periods into daily TEC images caused wedge
effects. The wedge effects were reduced using a low-pass filter called the Butterworth filter. This resulted in
clearer TEC precursors for earthquakes, facilitating the identification of earthquakes of magnitude M,, > 5.0
that exhibited associated TEC precursors during three periods, particularly for the Chi-Chi earthquake of
September 21, 1999. The results of this study were compared with those of Lin ef al. and Lin associated with
the Chi-Chi earthquake. Simultaneously, two CNN models that were developed were verified to be rational
due to the high accuracy of their predictions. These two models were used to verify each other’s accuracies
and to demonstrate the reliability of the method in this study. Therefore, statistical analysis was not the aim.
The final outputs of the two CNN model were defined as similarities. Similarities, which are larger than 0.5,
were defined as TEC precursors of earthquakes. TEC precursors described as temporal TEC multi-precursors
(TTMPs) by Zoran et al. were detectable on the 1st, 3rd, and 4th days (that is, on September 17, 18, and 20,
1999, respectively) prior to the Chi-Chi earthquake of September 21, 1999. These results are consistent with
those of Liu ef al. and Lin . A TEC precursor on May 13, 2003, (TST) was detectable 2 days prior to the
earthquake on May 15, 2003, (TST) with the magnitude (M,,) of 5.52. The low standard deviation (STD) and
mean square error (MSE) confirm the reliability of both CNN models. Regarding mechanical principles, the
TTMPs related to the Chi-Chi earthquake were caused by an electric field. The cause of the TEC precursor
on May 13, 2003, prior to the earthquake on May 15, 2003, was an argument without any corresponding
study for comparison.

INDEX TERMS Daily total electron content (TEC) images, convolutional neural network (CNN), wedge
effects, Butterworth filter, temporal TEC multi-precursors (TTMPs), Chi-Chi earthquake, standard deviation
(STD), mean square error (MSE).

I. INTRODUCTION

Many studies have researched the total electron con-
tent (TEC) anomalies associated with large earthquakes [64],
[44], [61], [25], [39], [57]. Wang et al. [64] predicted seis-
moionospheric TEC disturbances before an earthquake. The
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TEC data were extracted using data mining to obtain the
features of preseismic ionospheric anomalies. Liu et al. [44]
detected TEC precursors from 1 day before the Sumatra
Indonesia M,, 7.2 earthquake that occurred on July 5, 2005.
Tao et al. [61] identified a TEC anomaly from 2 days before
the M,, 7.7 earthquake south of Java on July 17, 2006.
Ho et al. [25] described seismoionospheric TEC anomalies
preceding 49 earthquakes with M,, > 6.5 in 2010 in Chile.
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FIGURE 1. TEC maps from September 1 to 24, 1999 (TST). The Chi-Chi earthquake occurred at 01: 47:15

on September 21, 1999 (TST) with the epicenter at 23.85° N and 120.82° E, at a depth of 8.00 km and
with the magnitude (My/) = 7.60 (CWB).
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FIGURE 2. TEC maps from February 1 to 24, 2003 (TST). No earthquakes occurred with the magnitude
(Mw) > 5.0 in this time period.

Lin et al. [39] predicted TEC precursors constituting spa- (M,, = 6.1) using Kernel-based two-dimensional princi-
tial TEC multi-precursors (STMPs) prior to the China pal component analysis through examination of the iono-
Ludian earthquake at 08:30:13 UT on August 3, 2014 spheric two-dimensional TEC variations obtained from the
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FIGURE 3. TEC maps from May 1 to 24, 2003 (TST). An earthquake occurred at 09:17:42 on May 15, 2003 (TST)

with an epicenter at 25.06° N and 122.52° E, at a depth of 17.58 km and the magnitude (My/) = 5.52.

3 24

NASA Global Differential Global Positioning System net-
work. Shah et al. [57] detected TEC variations in the iono-
sphere associated with the M,, 7.7 Chile earthquake on
November 14, 2007. However, they did not use the neural
network (NN) as their tool.

Artificial neural networks (ANNSs) such as convolutional
neural networks (CNNs) have been successfully used as
recognition methods and for earthquake magnitude predic-
tion [38], [69]. The researched results were better than those
of other studies. Perol et al. [50] researched seismicity in the
Central United States to improve seismic hazard assessment
and detect earthquake locations using CNN. However, this
study did not assess the precursor of larger earthquakes.

Akhoondzadeh [5] detected TEC and thermal anomalies
using an adaptive network-based fuzzy inference system for
the earthquake with an M,, of 6.4 on August 11,2012, in NW
Iran. Akhoondzadeh [6] detected TEC signal variations as
the precursors for the earthquake with an M,, of 7.7 in Iran
on April 16, 2013, by combining ANNs and particle swarm
optimization. This study also compared the results with those
from the mean, median, wavelet, Kalman filter, autoregres-
sive integrated moving average, support vector machine, and
genetic algorithm (GA) methods. The combined method pro-
vided a new tool for the detection of thermal and TEC seis-
moanomalies. Sompota et al. [56] used ANNs to determine
ionospheric TEC anomalies as ionospheric precursors of
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large earthquakes and, by combining ANNs with the Kriging
method, to estimate the epicenter area. Sabzehee et al. (2018)
performed an ANN and multilayer perceptron for pattern
recognition and prediction of TEC variations in the seismicity
area in Iran. TEC changed their special recognition as earth-
quake ionospheric precursor. Classic methods such as the
mean method failed to detect nonlinear TEC patterns because
TEC exhibited complex and nonlinear behavior.

Aji et al. [4] detected earthquake TEC precursors in Suma-
tra using the N-Model Neural Network Model. That study
also used the disturbance storm time index to account for
the effects of geomagnetic storms on TEC. Therefore, the
method could identify earthquake precursors, providing a
potential warning system for early detection of earthquakes.
Hanzaei [22] used three standard, classical, and intelligent
methods including the median, Kalman filter, and ANN
methods to detect potential unusual TEC variations as pre-
cursors to the Mexico earthquake with an M,, of 8.2 at
04:49:19 UTC on September 8, 2017. However, seismicity
was difficult to establish because of the complex behav-
ior of the ionosphere. Song er al. [58] applied NNs to
develop a regional TEC prediction model for China. The
traditional NN-based model and GA were utilized to opti-
mize the initial weights of NN. The NN had 19 input
parameters that clearly caused variations in ionospheric
parameters. These parameters included ionospheric diurnal
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FIGURE 4. Framework of a two-dimensional CNN with two hidden layers. For example, the symbol “6@"
means six feature maps with the concept of neurons to be generated after convolution called the actions
using a filter [26]. Pooling is the subsampling of feature maps to reduce the computing time. Using the
algorithmic called fully-connected in fully connected layers, the daily TEC images as inputs are classified
called classification to identify TEC precursors of earthquakes in this study.
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FIGURE 5. Procedure for creating a CNN model.

variations, seasonal information, solar cycle, geomagnetic
activities, geographic coordinates, and declination. The out-
put parameter was the daily TEC measured from 43 per-
manent Global Positioning System stations in China. The
TEC data during 2012-2014 served as training data. For NN
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model verification, the TEC data in 2015 were selected as
the test data. Predicted results of the GA-based NN (GA-NN)
model, backpropagation-based NN model, and International
Reference Ionosphere 2012 model were used for compari-
son. Finally, the GA-NN model demonstrated promise for
applications in ionospheric studies. By using median, Kalman
filter, and NN methods, Akhoondzadeh et al. [7] recorded a
TEC precursor 9 days before the earthquake with an M,,
value of 7.3 near the Iran—Iraq border in west Iran (34.911°N,
45.959°E) that occurred at 18:18:17 UTC on November 12,
2017. The Kalman filter and NNs were used to detect another
clear anomaly 11 days before this earthquake at 16:00 UTC.
Research methods used in other studies are overly compli-
cated, sometimes requiring the application of multiple meth-
ods and more TEC data to enhance the computing time. TEC
variance was easily affected by the space weather (e.g., the
planetary k index [kp index]), which should be considered in
the evaluation [39]. TEC seasonal variations also should be
considered [27]. Their research results had the major prob-
lem regarding the determination of accurate TEC precursors
for large earthquakes. When kp indices are too large (>4)
[9], geomagnetic storms are induced, which interfere with
and affect TEC variances. Therefore, an error is caused to
determine correct and true TEC precursors related to large
earthquakes. This represents a major shortcoming of other
studies.

CNN has been demonstrated to constitute a powerful and
suitable tool for image classification [35], [71], [33], [40].
Therefore, the objective of this study is to detect TEC precur-
sors of larger earthquakes by using a CNN (for convenience,
the abbreviation “CNN” means two-dimensional CNN in
this study) through the examination of TEC maps instead of
TEC data to confirm TEC precursors of the Chi-Chi earth-
quake of September 21, 1999 and compare the results with
those in the studies of Lin [36] and Liu et al. [41]. Simul-
taneously, the accuracy and rationality of the researched
results and analysis using CNN are verified. The research
in this study uses image classifications but not statistical
analysis.
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FIGURE 6. Visual presentation of Table 1.

Some factors require no consideration in this study. These
factors include geological environments around earthquake
epicenter, geological averment variance for large time scales
(e.g., the slip rate of the Philippine Sea Plate related to the
Eurasian Plate), kp index (indicating geomagnetic variances
such as the aforementioned geomagnetic storms), and TEC
seasonal variations [1], [2], [38], [27]. The information on
these factors is assimilated into the TEC maps examined,
which serve as training images for a CNN model. Therefore,
some solar-geomagnetic data are omitted in this study. The
text files of TEC data may not be obtained from the data
source, meaning that only TEC maps can be acquired from
the data source. The text files of TEC data can be obtained
through data mining. Data mining is more complicated [64].
Therefore, data mining is not necessary to perform in this
study. Simultaneously, high-resolution TEC maps are not
required. The waveform patterns in TEC maps can be directly
identified and classified using CNN with a suitable resolution
by reducing the resolution to shorten the image process-
ing time without considering the characteristics of spotty,
irregular, and nonstationary of TEC data sets [22], which
is assigned to a special classification. Subsequently, if this
special classification is associated with the classification for
earthquake-associated TEC anomalies, then the waveform
pattern can be identified as a TEC precursor. However, using
this CNN method of classification to identify TEC precursors
presents a problem regarding the cross-matching of differ-
ent image types. TEC map processing is straightforward.
Therefore, the method used in this study overcomes the
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shortcomings of those used in other studies. The TEC maps
used in this study can be acquired from other literatures
with copyright permission. Moreover, no similar studies have
been published yet. Therefore, a new proposal is presented
in this study. Finally, two prominent considerations merit
mention. This research involves the use of daily TEC images
through the splitting of TEC maps. Such splitting of inputs
causes wedge effects [54], a type of artificial image pro-
cessing errors. Thus, for these split images, a low pass filter
is applied to reduce wedge effects before the convolutional
layers in the first hidden layer. Addressing the aforemen-
tioned factors to compare and identify the TEC waveforms
for TEC images obtained daily using CNN is another cru-
cial consideration. Therefore, this study demonstrates that
the creation of a CNN model for the identification of TEC
precursors is uncomplicated without numerous TEC maps as
training images.

Il. DATA SOURCE

The TEC data of global positioning system (GPS) iono-
spheric maps are from the Chung-Li station (25.00° N and
121.20° E) of ground network stations of the ionospheric
observatory for the Central Weather Bureau (CWB) in Tai-
wan. The ionospheric TEC maps examined at this sta-
tion reflect the seismic activity of Taiwan called Chung-Li
Ionosonde. Liu et al. [41] examined TEC data to detect
the TEC precursors on the 1st, 3rd, and 4th days prior
to the Chi-Chi earthquake of September 21, 1999 using
the Chung-Li Ionosonde. For simultaneous observation of
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TABLE 1. Similarities in the first and second classifications for the time period in Fig. 1 using the first CNN model. STD = 0.012, MSE = 0.014.

Day, September, 1999 | Similarities in the first | Similarities in the second
(TST) classification classification
1 1.0000 0.0000
2 0.9999 0.0001
3 0.9997 0.0003
4 0.9999 0.0001
5 1.0000 0.0000
6 1.0000 0.0000
7 1.0000 0.0000
8 1.0000 0.0000
9 1.0000 0.0000
10 1.0000 0.0000
11 1.0000 0.0000
12 1.0000 0.0000
13 0.9997 0.0003
14 0.9773 0.0227
15 0.9998 0.0002
16 0.9942 0.0058
17 0.0043 0.9957
18 0.0229 0.9771
19 0.9999 0.0001
20 0.0150 0.9850
21 0.9880 0.0120
22 0.9889 0.0111
23 0.9963 0.0037
24 1.0000 0.0000

large areas of the ionosphere, recordings from a network
of ground-based stations are ideally used. TEC data from a
point (25.00° N, 121.20° E) located at Chung-Li are derived
and estimated from ground-based GPS stations to monitor
variations in the ionosphere in Taiwan through VHF radar
echoes emitted by the Chung-Li VHF radar station (24.91° N,
121.24° E), that is, the so-called Chung-Li Ionosonde. Iono-
spheric disturbances can be monitored with a radius 500 km
from the Chung-Li Ionosonde. Therefore, the TEC data
attributes belong to the Chung-Li Ionosonde, and the TEC
data are estimated using this Ionosonde combined with the
receiver system of the VHF radar station. The estimated TEC
data therefore have a high level of accuracy. The procedure
of this combined system is complex to explain for estimating
TEC data that is not an issue in this study. A number of
relevant studies exist [16], [41], [42], [63], [46], [52], [43],
[32], [37], [14], [21], [13], [45], [62], [65].

TEC maps for three time periods are used in this study.
They are from September 1 to 24, 1999 (Fig. 1); Febru-
ary 1 to 24, 2003 (Fig. 2); and May 1 to 24, 2003 (Fig. 3)
(Taiwan Standard Time [TST]). Earthquake catalogs with
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the magnitudes (M,,) > 5.0 during three time periods are
examined. The Chi-Chi earthquake occurred at 01:47:15 on
September 21, 1999 (TST) with the epicentre at 23.85° N and
120.82° E, at a depth of 8.00 km, and with the magnitude
(My) = 7.60 [34] (CWB). Another earthquake occurred
at 09:17:42 on May 15, 2003 (TST) with its epicentre at
25.06° N and 122.52° E, at a depth of 17.58 km, and with
the magnitude (M,,) = 5.52 (CWB). The TEC precursors
of the two earthquakes are detected with CNN. The dis-
tances from Chung-Li Ionosonde station to the epicenters
of two earthquakes are about 111km and 110km, respec-
tively (CWB). The epicenters locate within the range the
Chung-Li Ionosonde. There are only two earthquakes with
the magnitudes (M,,) > 5.0 in the three time periods as stated
previously. This is the reason that the three time periods are
selected.

1ll. CONVOLUTIONAL NEURAL NETWORK

The hidden layers of a convolutional neural network (CNN)
typically consist of convolutional layers, subsampling layers,
fully connected layers, and normalization layers, as shown in
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TABLE 2. Similarities in the first and second classifications for the time period in Fig. 2 using the first CNN model. STD = 0.162, MSE = 0.026.

Day, February, 2003 First classification Second classification
1 0.9936 0.0064
2 0.9710 0.0290
3 0.9879 0.0121
4 0.8997 0.1003
5 0.9454 0.0546
6 0.9979 0.0021
7 0.9981 0.0019
8 0.7999 0.2001
9 0.8300 0.1700
10 0.9689 0.0311
11 0.6879 0.3121
12 0.9999 0.0001
13 0.9899 0.0101
14 0.9423 0.0577
15 0.7368 0.2632
16 0.7286 0.2714
17 0.7881 0.2119
18 0.7464 0.2536
19 0.9990 0.0010
20 0.9457 0.0543
21 0.7856 0.2144
22 0.8856 0.1144
23 0.9976 0.0024
24 0.8591 0.1409

Fig. 4 [3]. Several studies and engineering applications have
indicated that a NN of two hidden layers with few neurons
can replace a network with numerous neurons in a hidden
layer [68], [26], [28], [24], [60], [66], [15], [18]. In the study,
the framework of CNN with two hidden layers is performed
as in Fig. 4.

The mathematical of CNN is briefly introduced in this
section. A normalization layer normalizes each input image
across a minibatch for each hidden layer, and this is termed
Batch normalization [3]. Batch normalization can accelerate
training of CNN and reduces sensitivity to network initializa-
tion. In the convolution layers in the first hidden layer, for the
Jjth output image YJ!‘

N
Y =fOQ X kE + bE) (1)
i=1

where the symbol X represents input images, and the super-
script L represents the positions of hidden layers. For exam-
ple, L = 1 represents the first hidden layer.

The symbol N represents the number of input images,
the subscript i represents the ith input image. K is kernel
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called filter, which is convolved with input images with the
symbol * x ” [26]. The symbols b and f represent bias and
the activation function, respectively. The normal activation
function is used. It is a sigmoid function, and its range is
between 0 and 1 as follows [31]:

1
H=—— 2
f0= 7 2)
The algorithm of the subsampling layer, termed polling for
the same hidden layer, is as follows:

sz+1 = FC[f(BjL“down,,(YjL) + bjL“)] (3)

where BJI.“+1 is the multiplicative bias for YJL. The word
“down,down” is called the subsampling function, which is
used to subsample Y& with summing over an n-by-n block,
so that the output image ZjLJrl exhibits an n-times smaller
spatial resolution. Subsequently, 71 s the input image for
the next hidden layer. The symbol “FC” is an algorithm
called fully connected in fully connected layers to obtain final
output images called classification.
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TABLE 3. Similarities in the first and second classifications for the time period in Fig. 3 using the first CNN model. STD = 0.183, MSE = 0.035.

Day, May, 2003 First classification Second classification
1 0.9937 0.0063
2 0.9740 0.0260
3 0.9992 0.0008
4 0.9993 0.0007
5 0.9997 0.0003
6 0.9992 0.0008
7 0.9682 0.0318
8 0.9904 0.0096
9 0.9720 0.0280
10 0.9785 0.0215
11 0.9993 0.0007
12 0.9998 0.0002
13 0.4292 0.5708
14 0.9998 0.0002
15 0.9999 0.0001
16 0.9989 0.0011
17 0.9917 0.0083
18 0.8137 0.1863
19 0.9800 0.0200
20 0.9969 0.0031
21 0.8999 0.1001
22 0.9989 0.0011
23 0.7999 0.2001
24 0.8349 0.1651

IV. TOTAL ELECTRON CONTENT MAP PROCESSING
USING CONVOLUTIONAL NEURAL NETWORKS

In this section, the procedure of creating TEC maps using two
CNN models is introduced as follows:

(1) The TEC map in Fig. 1 serves as a training image
to create the CNN model called the first CNN model for
detection of any TEC precursor of the Chi-Chi earthquake.
The TEC map in Fig. 3 serves as a training image for the
creation of another CNN model called the second CNN model
for the detection of any TEC precursor of the earthquake on
May 15, 2003 (TST). The first CNN model is used to verify
the accuracy of the second CNN model and the second CNN
model is used to verify the accuracy of the first CNN model.

(2) After two TEC maps are split from Fig. 1 and 3, 24
images from each TEC map—which are images obtained
daily images—are used as training images to create two CNN
models. The training images are used as inputs with two
classifications to identify the TEC precursors of larger earth-
quakes. The 24 daily images belong to two classifications.
The first classification is identified without earthquake-
associated TEC anomalies. The second classification is iden-
tified with earthquake-associated TEC anomalies, namely
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TEC precursors of earthquakes, which have been identified
in the studies of Lin [36] and Liu et al. [41] in the daily
images obtained on September 17, 18, and 20. Therefore,
two classifications exist, and this research uses these image
classifications.

(3) Splitting images causes wedge effects, which is a type
of artificial image processing errors. In these split images
used as inputs, a low pass filter called a Butterworth filter [10]
is applied to reduce wedge effects for the split images in
vertical and horizontal directions before the convolutional
layers in the first hidden layer as described. The Butter-
worth filter has been identified as a suitable filter for TEC
data [12], [67].

(4) For both CNN models, the training epoch is set as
2000 [47], and the learning rate is adaptive at O to 1,
with an increment of 0.01. The batch size is required to
reduce the computing time. The batch size is equal to 3.
For the backpropagation algorithm, the initial weights and
the initial biases were set to random variables [49], and
feature scaling was then performed to ensure that these
variables would be in the range from O and 1 [11] due to
the range of the sigmoid function being 0-1 as described.
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FIGURE 8. Visual presentation of Table 3.

Batch normalization is simultaneously performed as already
described. The Levenberg—Marquardt algorithm is applied to
obtain optimum weights and biases because it is superior to

110486
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other error back propagation algorithms for irregular and split
image patterns [8], [38]. The best learning rates of the first
and second CNN models are 0.25 and 0.19, respectively.
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FIGURE 9. Visual presentation of Table 4.

(5) A final output is defined as a similarity belonging to a
classification [26]. After normalization with feature scaling,
this similarity is in the range between 0 and 1. If the value
is equal to 1, then the respective classification is correct,
and the daily TEC image is a complete TEC precursor. If
the value is equal to O, then its exact classification is an
alternative classification, and the daily TEC image is not a
TEC precursor. However, this describes perfect classification.
In a real situation, daily TEC images cannot represent a
complete TEC precursor. Therefore, the similarity value is
between 0 and 1, and a threshold of similarities should be
reasonably determined.

If the value is close to 1, more information on the TEC pre-
cursor is present in the daily TEC image. If the value is close
to 0, then less information on the TEC precursor is present in
the daily TEC image. In this study, a similarity 0 < similarity
<0.5 is defined as the first classification without information
on the TEC precursor, and a similarity 0.5< similarity < 1 is
defined as the second classification with information on the
TEC precursor. Therefore, two classifications of similarities
are used as a new proposal. The flowchart of the procedure
for creating a CNN model is shown in Fig. 5.

The source codes of the program set used for the CNN
in this study, which have future development meaning
reliability by the author according to the research objec-
tive, are obtained from https://github.com/rasmusbergpalm/
DeepLearnToolbox.

V. RESULTS
Table 1 provides the results of the inside tests for the time
period in Fig. 1 using the first CNN model to verify the
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accuracy and reliability of this model’s prediction of TEC
precursors for earthquakes with the magnitude (M,,) > 5.0.
Fig. 6 depicts the visual presentation of Table 1. The simi-
larities on September 17, 18, and 20 belong to the second
classification. The results of the outside tests for the time
period in Fig. 2 using the first CNN model are for the pre-
diction of TEC precursors with the magnitude (M,,) > 5.0
shown in Table 2. Fig, 7 depicts the visual presentation of
Table.2. Their similarities belong to the first classification.
No earthquakes with the magnitude (M,,) > 5.0 occurred in
this time period. Therefore, no TEC precursors are found.
Table 3 shows the results of the outside tests for the time
period in Fig. 3 using the first CNN model for the prediction
of TEC precursors with the magnitude (M,,) > 5.0. Fig, 8
depicts the visual presentation of Table.3.

The similarity on May 13, 2003, belongs to the second
classification. Table 4 shows the results of the inside tests
for the time period in Fig. 3 using the second CNN model
to verify the model’s accuracy and reliability for the predic-
tion of TEC precursors of earthquakes with the magnitude
(M,,) > 5.0. Fig, 9 depicts the visual presentation of Table.4.
Table 5 shows the results of the outside tests for the time
period in Fig. 1 using the second CNN model for the pre-
diction of TEC precursors with the magnitude (M,,) > 5.0.
Fig, 10 depicts the visual presentation of Table.5. The sim-
ilarities on September 17, 18, and 20 belong to the second
classification. Table 6 shows the results of the outside tests
for the time period in Fig. 2 using the second CNN model
for prediction of TEC precursors with the magnitude (M,,) >
5.0. Fig, 11 depicts the visual presentation of Table.6. Their
similarities belong to the first classification because no TEC
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TABLE 4. Similarities in the first and second classifications for the time period in Fig. 3 using the second CNN model. STD = 0.123, MSE = 0.029.

Day, May, 2003 First classification Second classification
1 0.8800 0.1200
2 0.8999 0.1001
3 0.9197 0.0803
4 0.9399 0.0601
5 0.9967 0.0033
6 0.8990 0.1010
7 0.9098 0.0998
8 0.8324 0.1676
9 0.9856 0.0144
10 0.8942 0.1058
11 0.9998 0.0002
12 0.9966 0.0034
13 0.0193 0.9807
14 0.8773 0.1227
15 0.8897 0.1103
16 0.7942 0.2058
17 0.7890 0.2110
18 0.9229 0.0771
19 0.8999 0.1001
20 0.8150 0.1850
21 0.8880 0.1120
22 0.9889 0.0111
23 0.9163 0.0837
24 0.8967 0.1033

precursors occur due to the absence of earthquakes with the
magnitude (M,,) > 5.0 in this time period. The standard
deviation (STD) and mean square error (MSE) are used as
statistical approaches to evaluate the verified and prediction
accuracy of the two CNN models for their reliable applica-
tion [48], [38].

To verify the accuracy and reliability of the first CNN
Model, the STD and MSE are 0.012 and 0.014, respectively,
for the time period in Fig. 1 (Table 1). For the prediction
accuracy and reliability of this CNN model, the STD and
MSE are 0.162 and 0.026, respectively, for the time period
in Fig. 2 (Table 2). For the prediction accuracy and reliability
of this CNN model, the STD and MSE are 0.183 and 0.035,
respectively, for the time period in Fig. 3 (Table 3). To verify
the accuracy and reliability of the second CNN Model, the
STD and MSE are 0.123 and 0.029, respectively for the time
period in Fig. 3 (Table 4). For the prediction accuracy and
reliability of this CNN model, the STD and MSE are 0.313
and 0.098, respectively for the time period in Fig. 1 (Table 5).
For the prediction accuracy and reliability of this CNN model,
the STD and MSE are 0.271 and 0.074, respectively for the
time period in Fig. 2 (Table 6). Therefore, from previous
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statements, the two CNN models are used to verify the accu-
racies of each other.

VI. DISCUSSION

Through statistical analysis, researchers such as Liu et al. [43]
found that most of the ionospheric anomalies were exhibited a
few days prior to larger earthquakes. The ionospheric anoma-
lies exhibiting a sparse TEC were detected 5 days prior to
large earthquakes with the magnitude (M,,) > 5.0. TEC pre-
cursors termed temporal TEC multi-precursors (TTMPs) [72]
related to the Chi-Chi earthquake on September 21, 1999,
were detectable on the 1st, 3rd, and 4th days prior to the Chi-
Chi earthquake, that is, on September 17, 18, and 20, 1999,
respectively [41]. Therefore, the similarities on September
17, 18, and 20, 1999, belong to the second classification of
TEC precursors, and other daily images belong to the first
classification. Such TEC precursors are TTMPs, which differ
from the STMPs in the study of Lin et al. [39]. These results
are consistent with those of Lin [36] and Liu ef al. [41].
Lin [36] examined TEC data using principal component anal-
ysis (also called Karhunen-Loéve transform) to detect the
Chi-Chi earthquake’s TEC precursors on September 17, 18,
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TABLE 5. Similarities in the first and second classifications for the time period in Fig. 1 using the second CNN model. STD = 0.313, MSE = 0.098.

Day, September, 1999 First classification Second classification
1 0.6700 0.3300
2 0.5800 0.4200
3 0.7900 0.2100
4 0.8200 0.1800
5 0.7845 0.2155
6 0.6800 0.3200
7 0.7825 0.2175
8 0.8700 0.1300
9 0.6700 0.3300
10 0.5745 0.4255
11 0.6400 0.3600
12 0.7910 0.2090
13 0.7997 0.2003
14 0.6770 0.3230
15 0.6998 0.3002
16 0.6942 0.3058
17 0.4343 0.5657
18 0.4900 0.5100
19 0.6999 0.3001
20 0.4990 0.5010
21 0.6885 0.3115
22 0.7889 0.2111
23 0.6953 0.3047
24 0.6757 0.3243

and 20, 1999. A similarity on May 13, 2003, belongs to
the second classification because a TEC precursor should
be associated with the earthquake on May 15, 2003 (TST)
with the magnitude (M,,) = 5.52. This TEC precursor was
detectable 2 days prior to this earthquake. The reliable appli-
cation of a low pass filter is therefore discussed. Three split
daily images on September 17, 18, and 20 from Fig. 1 without
a low pass filter and another 21 split daily images from Fig. 1
as inputs with a Butterworth filter are used in the second CNN
model. The three similarities on September 17, 18, and 20 are
shown in Table 7. The similarity of split daily images from
September 18 belongs to the first classification, which is con-
sidered a non-TEC precursor in this day. The wedge effects
may have caused an error in the identification of the TEC
precursor, indicating that a low pass filter must be used. This
represents a major improvement that is advantageous in this
study.

The low STD and MSE values confirm the reliability
of both CNN models by using them to verify each other’s
accuracies. The prediction errors of both CNN models are
relatively small, and the prediction errors of the outside tests
are slightly larger than those of the inside tests from Table 1 to
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Table 6 (Fig.6-11). Therefore, both CNN models are suitable
and reliable for the prediction of TEC precursor prior to
large earthquakes. Specifically, factors such as the kp index
value, as mentioned, do not require consideration during the
training of the CNN model. Furthermore, using a low pass
filter belonged to the preprocessing was already considered
when training the CNN model. Unlike in other studies, the
TEC precursors do not require distinguishing from other TEC
anomalies in this study. Thus, the features of CNN models
are a prominent advantage of this study. The only concern is
the accuracy for the prediction of the TEC precursors. Only a
few TEC maps are used as the training images. These training
images, from a short-time period, overcame the nonstationary
influence of TEC seasonal variations, which indicates that
the two CNN models are valuable. This study also confirms
that the TEC precursor for earthquakes with the magnitude
(M,,) < 5.0 is not induced in Taiwan. Therefore, the two
models achieve the goal of this study, fitting with the results of
the study by Liu et al. [43]. In this study, the two hidden layers
were used. Future research should develop a better and more
suitable Al algorithm with suitable numbers of hidden layers
(e.g., support vector machine and extreme machine learning)
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FIGURE 11. Visual presentation of Table 6.
with a better and more suitable error back propagation algo- this study is a passive model, meaning the framework is not
rithm (e.g., scaled conjugate gradient algorithm) to realize an determined using training images. Therefore, for an optimal

optimized Al mode for this topic. The CNN model used in active CNN model, as per the concept of Lin et al. [38],
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TABLE 6. Similarities in the first and second classifications for the time period in Fig. 2 using the second CNN model. STD = 0.271, MSE = 0.074.

Day, February, 2003 First classification Second classification
1 0.7926 0.2074
2 0.7710 0.2290
3 0.7879 0.2121
4 0.8997 0.1003
5 0.7454 0.2546
6 0.8179 0.1821
7 0.6981 0.3019
8 0.8199 0.1801
9 0.7300 0.2700
10 0.8679 0.1321
11 0.7870 0.2130
12 0.6990 0.3010
13 0.7873 0.2127
14 0.6423 0.3577
15 0.7068 0.2932
16 0.6286 0.3714
17 0.7180 0.2820
18 0.7964 0.2036
19 0.8123 0.1877
20 0.7427 0.2573
21 0.6253 0.3747
22 0.7059 0.2941
23 0.6976 0.3024
24 0.6093 0.3907

TABLE 7. Three similarities on September 17, 18, and 20 from Fig. 1 using the second CNN model.

Day, September, 1999 First classification Second classification
17 0.4921 0.5077
18 0.5201 0.4799
20 0.4719 0.5281

the framework of a CNN model can be determined using
fewer training images to reduce costs and computing times
for image processing.

Regarding chemical, physical and mechanical princi-
ples and reasons to cause the ionospheric TEC precur-
sors observed before earthquakes have been a prominent
area of research in the field of seismoionospheric Solid
Earth—Atmosphere coupling [17], [51], [23], [53], [30], [19],
[29], [59]. Freund [17] reported ionosphere precursors by
using p-type semiconductors; the earth dipole field of earth-
quakes; magnetic field anomalies; and positive holes due
to crackled, sparkled, and glowed igneous and metamor-
phic rocks before large earthquakes. Hegai er al. [23]
found the ionospheric precursors by the internal atmospheric
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gravity waves and enhancements of the vertical electric
field generated before strong earthquakes. Pulinets [51]
detected the ionospheric precursors of earthquakes caused by
anomalous electric fields involving in ionospheric variations.
Pulinets and Ouzounov [53] examined ionospheric precursors
by using radon gases with the Lithosphere—Atmosphere—
Ionosphere Coupling model. Fu et al. [19] detected iono-
spheric precursors by radon gases before the 2016 M 6.6
Meinong earthquake. Kamogawa and Kakinami [30] detected
TEC enhancement as a precursor caused by a tsunami-
genic ionospheric hole after the coseismic acoustic waves.
Tachema and Nadji [59] confirmed the TEC precursors
caused by the electromagnetic for the 2008 Oran earthquake,
Algeria.
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Significant TEC decreases because TTMPs related to the
Chi-Chi earthquake were caused by an electric field [41].
The cause of the TEC precursor on May 13, 2003, before the
earthquake that occurred on May 15, 2003, will be an argu-
ment with any corresponding study, which is to be referred.
A similarity =0.5 was another argument to cause the classifi-
cations become meaningless. Finally, the results of the study
are consistent with those of Lin [36] and Liu et al. [41] related
to the Chi-Chi earthquake. Therefore, the application of this
study is reliable.

VIl. CONCLUSION

The TEC maps used in this study are from the Chung-Li
station, one of the ground network stations of the CWB
ionospheric observatory in Taiwan. The TEC maps examined
at this station reflect the seismic activity of Taiwan called
Chung-Li Ionosonde. Therefore, daily TEC images obtained
through TEC map splitting were used as training images for
two CNN models encompassing three time periods: Septem-
ber 1 to 24, 1999, February 1 to 24, 2003, and May 1 to
24, 2003 (TST). The aim was to verify the accuracy and
rationality of the research results using CNN models from
this study. A Butterworth filter was used to reduce wedge
effects, a type of artificial image-processing error, and to
obtain better data on TEC precursors. Statistical analysis was
not attempted. Similarities larger than 0.5 were defined as
TEC precursors of earthquakes. The TTMPs of the Chi-Chi
earthquake on September 21, 1999, were detectable on the
Ist, 3rd, and 4th days prior to the Chi-Chi earthquake, that
is, Karhunen-Loéve Trans form. These results are consistent
with those of Lin [36] and Liu et al. [41].

A TEC precursor on May 13, 2003 (TST) was detectable
two days prior to an earthquake on May 15, 2003 (TST) with
the magnitude (M,, = 5.52). The low STD and MSE values
confirm the reliability of the two CNN models. The TTMPs
related to the Chi-Chi earthquake were caused by an electric
field. The cause of the TEC precursor on May 13, 2003, prior
to the earthquake on May 15, 2003, was an argument without
any corresponding study to be compared.
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